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Nonlinear analysis with resurgent functions

David Sauzin

April 20, 2014

Abstract

We provide estimates for the convolution product of an arbitrary number of “resurgent
functions”, that is holomorphic germs at the origin of C that admit analytic continuation
outside a closed discrete subset of C which is stable under addition. Such estimates are then
used to perform nonlinear operations like substitution in a convergent series, composition
or functional inversion with resurgent functions, and to justify the rules of “alien calculus”;
they also yield implicitly defined resurgent functions. The same nonlinear operations can be
performed in the framework of Borel-Laplace summability.

1 Introduction

In the 1980s, to deal with local analytic problems of classification of dynamical systems, J. Ecalle
started to develop his theory of resurgent functions and alien derivatives [Eca81], [Eca84],
[Eca93], which is an efficient tool for dealing with divergent series arising from complex dynami-
cal systems or WKB expansions, analytic invariants of differential or difference equations, linear
and nonlinear Stokes phenomena [Mal82], [Mal85], [Eca92], [CNP93|, [DDP93], [Bal94], [DP99],
[GS01], [OSS03], [Sau06], [Cos09], [Sau09], [KKKT10], [LRRI1I], [FS11], [Raml2], [KKKI14],
[DS13a], [DS13b]; connections were also recently found with Painlevé asymptotics |[GIKMI12],
Quantum Topology [Gar08|], [CG11] and Wall Crossing [KS10].

The starting point in Ecalle’s theory is the definition of certain subalgebras of the algebra
of formal power series by means of the formal Borel transform

B: ¢(2) = anz""t €2 'C[z ] = 2(0) = Zanni; e C[[(]] (1)
n=0 n=0

(using negative power expansions in the left-hand side and changing the name of the indeter-
minate from z to ¢ are just convenient conventions).

It turns out that, for a lot of interesting functional equations, one can find formal solu-
tions which are divergent for all z and whose Borel transforms define holomorphic germs at 0
with particular properties of analytic continuation. The simplest examples are the Euler series
[CNP93], [Ram12], which can be written PE(z) = Yo% (—1)"n!z~""1 and solves a first-order
linear non-homogeneous differential equation, and the Stirling series [Eca81) Vol. 3]

[e.9]

B
S0\ 2k —2k+1
aQ ; 2%(2k — 1)

(here expressed in terms of the Bernoulli numbers), solution of a linear non-homogeneous dif-
ference equation derived from the functional equation for Euler’s Gamma function by taking



logarithms. In both examples the Borel transform gives rise to convergent series with a mero-
morphic extension to the ¢-plane, namely (1 + ¢)~! for the Euler series and (2 (% coth% - 1)

for the Stirling series (see [Saul3b]). In fact, holomorphic germs at 0 with meromorphic or
algebraic analytic continuation are examples of “resurgent functions”; more generally, what is
required for a resurgent function is the possibility of following the analytic continuation without
encountering natural barriers.

One is thus led to distinguish certain subspaces R of C{(}, characterized by properties of
analytic continuation which ensure a locally discrete set of singularities for each of its members
(and which do not preclude multiple-valuedness of the analytic continuation), and to consider

#:=Cao B (%) cCllz"1].

Typically one has the strict inclusion C{z7'} C % but the divergent series in A can be
“summed” by means of Borel-Laplace summation. The formal series in Z as well as the holo-
morphic functions whose germ at 0 belongs to % are termed “resurgent”. (One also defines, for
each w € C*, an “alien operator” which measures the singularities at w of certain branches of
the analytic continuation of ¢.)

Later we shall be more specific about the definition of 2. This article is concerned with
the convolution of resurgent functions: the convolution in C{(} is the commutative associative
product defined by

¢
1% @a(C) = /0 $1(C)62(C — C1)der for || small enough, )

for any ¢1, 2 € C{(}, which reflects the Cauchy product of formal series via the formal Borel
transform:

Bor = ¢1 and Bpg = @2 = B(P192) = @1 * Pa.

Since the theory was designed to deal with nonlinear problems, it is of fundamental importance
to control the convolution product of resurgent functions; however, this requires to follow the
analytic continuation of the function defined by , which turns out not to be an easy task.
In fact, probably the greatest difficulties in understanding and applying resurgence theory are
connected with the problem of controlling the analytic continuation of functions defined by such
integrals or by analogous multiple integrals. Even the mere stability under convolution of the
spaces Z is not obvious [Eca81], [CNP93], [Oul0)], [Saul3al.

We thus need to estimate the convolution product of two or more resurgent functions, both
for concrete manipulations of resurgent functions in nonlinear contexts and for the foundations
of the resurgence theory. For instance, such estimates will allow us to check that, when we
come back to the resurgent series via B, the exponential of a resurgent series is resurgent and
that more generally one can substitute resurgent series in convergent power expansions, or
define implicitly a resurgent series, or develop “alien calculus” when manipulating Ecalle’s alien
derivatives. They will also show that the group of “formal tangent-to-identity diffeomorphisms
at oo”, i.e. the group (for the composition law) z 4+ C[[z7!]], admits z + 2 as a subgroup, which
is particularly useful for the study of holomorphic tangent-to-identity diffeomorphisms f (in
this classical problem of local holomorphic dynamics [Mil06], the Fatou coordinates have the
same resurgent asymptotic expansion, the so-called direct iterator f* € z + X of [Eca&1]; thus
its inverse, the inverse iterator, also belongs to z + R, as well as its exponential, which appears
in the Bridge equation connected with the “horn maps”—see § .



Such results of stability of the algebra of resurgent series under nonlinear operations are
mentioned in Ecalle’s works, however the arguments there are sketchy and it was desirable to
provide a proofﬂ Indeed, the subsequent authors dealing with resurgent series either took such
results for granted or simply avoided resorting to them. The purpose of this article is to give
clear statements with rigorous and complete proofs, so as to clarify the issue and contribute to
make resurgence theory more accessible, hopefully opening the way for new applications of this
powerful theory.

In this article, we shall deal with a particular case of resurgence called (2-continuability or
Q-resurgence, which means that we fix in advance a discrete subset €2 of C and restrict ourselves
to those resurgent functions whose analytic continuations have no singular point outside of €.
Many interesting cases are already covered by this definition (one encounters 2-continuable
germs with 2 = Z when dealing with differential equations formally conjugate to the Euler
equation or in the study of the saddle-node singularities [Eca84], [Sau09], or with Q = 27iZ
when dealing with certain difference equations like Abel’s equation for tangent-to-identity dif-
feomorphisms [Eca81], [Sau06], [DS13a]). We preferred to restrict ourselves to this situation so
as to make our method more transparent, even if more general definitions of resurgence can be
handled—see Section 3.4l An outline of the article is as follows:

— In Section [2| we recall the precise definition of the corresponding algebras of resurgent func-
tions, denoted by Zq, and state Theorem |1| which is our main result on the control of the
convolution product of an arbitrary number of 2-continuable functions.

— In Section |3 we give applications to the construction of a Fréchet algebra structure on R,
(Theorem [2|) and to the stability of Q-resurgent series under substitution (Theorem , im-
plicit function (Theorem [4)) and composition (Theorem ; we also mention other possible
applications and similar results for 1-summable series.

— The proof of Theorem [1]is given in Sections

— Finally, there is an appendix on a few facts of the theory of currents which are used in the
proof of the main theorem.

Our method consists in representing the analytic continuation of a convolution product as
the integral of a holomorphic n-form on a singular n-simplex obtained as a suitable deformation
of the standard n-simplex; we explain in Sections what kind of deformations (“adapted
origin-fixing isotopies” of the identity) are licit in order to provide the analytic continuation
and how to produce them. We found the theory of currents very convenient to deal with our
integrals of holomorphic forms, because it allowed us to content ourselves with little regularity:
the deformations we use are only Lipschitz continuous, because they are built from the flow of
non-autonomous Lipschitz vector fields—see Section [6] Section [7] contains the last part of the
proof, which consists in providing appropriate estimates.

!This was one of the tasks undertaken in the seminal book [CNP93] but, despite its merits, one cannot say
that this book clearly settled this particular issue: the proof of the estimates for the convolution is obscure and
certainly contains at least one mistake (see Remark 17.3)).



2 The convolution of (2-continuable germs

Notation 2.1. For any R > 0 and (o € C we use the notations D((p,R) :={{ € C||¢— (| <
R}, Dp = D(0,R), D} :=Dg \ {0}.

Let £ be a closed, discrete subset of C containing 0. We set
p(Q) = min {|w|, w € Q\ {0}}.

Recall [Sanl3a) that the space Zq of all Q-continuable germs is the subspace of C{¢} which can
be defined by the fact that, for arbitrary (o € D,(q),

¢ germ of holomorphic function of D,q) admitting analytic continuation

P EHy
along any path v: [0,1] — C such that (0) = ¢y and v((0,1]) C C\ €.
For example, for the Euler series, resp. the Stirling series, the Borel transform belongs to R
as soon as 1 € §, resp. 2wiZ* C Q.
It is convenient to rephrase the property of 2-continuability as holomorphy on a certain
Riemann surface spread over the complex plane, (%, mq).

Definition 2.2. Let I := [0,1] and consider the set Pq of all paths v: I — C such that either
v(I) = {0} or v(0) =0 and v((0,1]) C C\ Q. We denote by

yg = @Q/ ~
the quotient set of Pq by the equivalence relation ~ defined by

for each s € I, v € Pq and v5(1) = v(1)

~~ = 3 such that
v~y (Vs)ser (s,t) € I x I+ ~4(t) € C is continuous, yo =, 71 =

for v,y € Pq (homotopy with fixed endpoints). The map v € Pq — (1) € {0} UC\ Q passes
to the quotient and defines the “projection”

Ta: (€ S — e {0}UC\ Q. (3)

We equip .%o with the unique structure of Riemann surface which turns mq into a local biholo-
morphism. The equivalence class of the trivial path v(t) = 0 is denoted by Oq and called the
origin of .

We obtain a connected, simply connected Riemann surface .75, which is somewhat analogous
to the universal cover of C\ Q except for the special role played by 0 and 0q: since we assumed
0 € Q, the equivalence class Oq of the trivial path is reduced to the trivial path and is the only
point of .%o which projects onto 0. It belongs to the principal sheet of S, defined as the set of
all ¢ € .%o which can be represented by a line segment (i.e. such that the path ¢ € [0,1] — t&
belongs to #q and represents (); observe that mq induces a biholomorphism from the principal
sheet of . to the cut plane Ug == C\ U w1, +00).

weQ\{0}
Any holomorphic function of .# identifies itself with a convergent germ at the origin of C
which admits analytic continuation along all the paths of Zq, so that

Fo ~ O(F)

4



(see [Eca81], [Sau06]). We usually use the same symbol ¢ for a function of () or the
corresponding germ of holomorphic function at 0 (i.e. its Taylor series). Each ¢ € Zo has
a well-defined principal branch holomorphic in Ug, obtained (via mq) by restriction to the
principal sheet of .#q, for which 0 is a regular point, but the points of %, which lie outside
of the principal sheet correspond to branches of the analytic continuation which might have a

singularity at 0 (for instance, as soon as {0, 1} C €, the Taylor series >, n%l = —% log(1—¢)

defines a member of % of which all branches except the principal one have a simple pole at 0).

From now on we assume that §) is stable under addition. According to [Saul3al, this ensures
that Zq is stable under convolution. Our aim is to provide explicit bounds for the analytic
continuation of a convolution product of two or more factors belonging to Zq.

It is well-known that, if U C {0} UC \ € is open and star-shaped with respect to 0 (as
is Ug) and two functions @1, $a are holomorphic in U, then their convolution product has an
analytic continuation to U which is given by the very same formula ; by induction, one gets
a representation of a product of n factors ¢; € O(U) as an iterated integral, ¢ * - - - % ¢, () =

¢ ¢—C1 ¢—(C14+Cn—2)
[aa [ Tae | At @1(1)+ Pro1(Gu)Pnl(C = (G- + o) (4)
0 0 0
for any ¢ € U, which leads to

. . ¢ . .
O1 % x O ()] £ ——= max|p1] - - - max|py|, ¢eU. 5
| Q)] < g gy masigal - maig| 5)
This allows one to control convolution products in the principal sheet of .%o (which is already
sufficient to deal with 1-summability issues—see Section but, to reach the other sheets,
formula must be replaced by something else, as explained e.g. in [Saul3a]. What about the
bounds for a product of n factors then? To state our main result, we introduce

Notation 2.3. The function Rq: o — (0,+00) is defined by

dist (&, Q\ {O}) if ¢ belongs to the principal sheet of S
¢ € Sa — Ra(C) = (6)

dist (&, Q) if not
(where & is the shorthand for mq(C) defined by ) For §,L > 0, we set

KCs.0.(R2) == {C € Sa | Iy path of S with endpoints Oq and ¢, of length < L,
such that Ro(y(t)) > 6 for allt}. (7)

Informally, K51 (€2) consists of the points of .7o which can be joined to Oq by a path of

length < L “staying at distance > § from the boundary” || Observe that (IC(;, L(Q)) 5L~ 1S an

exhaustion of .%q by compact subsets. If L+ < p(€2), then K5 1(€2) is just the lift of the closed
disc Dy, in the principal sheet of .7.

2 Given ( € Yo, observe that any ¢ € %q induces a function holomorphic in D(&,RQ(C)) and Rq(¢) is
maximal for that property. The idea is that R measures the distance to the closest possibly singular point, i.e.
the distance to {2 except that on the principal sheet 0 must not be considered as a possibly singular point.



Theorem 1. Let Q C C be closed, discrete, stable under addition, with 0 € Q. Let 6,L > 0
with 6 < p(2) and

1 )
C = p(Q) 3F6L/% § = ip(ﬂ) e 2TAL/S, L'=L+ 3 (8)
Then, for anyn > 1 and @1,...,0Pn € Zq,
Bro-wgal <2 21 2] (9
max koo k — - —— + Inax <+ INax .
Kar©) "' ST k) T e )

The proof of Theorem (1| will start in Section We emphasize that §,¢’, L, L’,C do not
depend on n, which is important in applications.

Remark 2.4. In fact, a posteriori, one can remove the assumption 0 € 2. Suppose indeed that
Q) is a non-empty closed discrete subset of C which does not contain 0. Defining the space o
of Q-continuable germs as above [Saul3al, we then get Zqg ~ 0(.%), where .%; is the universal
cover of C\ © with base point at the origin (the fibre of 0 is no longer exceptional). Clearly
Ko C @{O}UQ, but the inclusion is strict, because 2-continuable germs are required to extend
analytically through 0 even when following a path which has turned around the points of 2
and e.g. D5 (nﬂc)ﬁ = —% log(1 — é) is in .@{O}UQ but not in % for any w € . Suppose
moreover that  is stable under addition. It is shown in [Saul3a] that also in this case is P
stable under convolution. One can adapt all the results of this article to this case. It is sufficient
to observe that any point ¢ of 7 can be defined by a path v: [0, 1] — C such that y(0) € D, q),
7((0,1)) N (QU{0}) = 0 and (1) ¢ Q; if y(1) # 0, then the situation is explicitly covered
by this article; if v(1) = 0, then we can still apply our results to the neighbourhing points and
make use of the maximum principle.

3 Application to nonlinear operations with ()-resurgent series

3.1 Fréchet algebra structure on @Q

Recall that 2 is a closed discrete subset of C which contains 0 and is stable under addition. The
space of 2-resurgent series is . R
Hao =Cd B’l(,%’g).

As a vector space, it is isomorphic to C x 0(.%). We now define seminorms on Fo which will
ease the exposition.

Definition 3.1. Let K C .%q be compact. We define the seminorm ||-| ;-2 %o — Rt by

&€ o~ |6 = lel +max|,

where p =c+B~1p, ce C, ¢ € Xq.

Choosing Ky = K51, (£2), N € N*, with any pair of sequences dx | 0 and Ly 1 oo (so that
Sq is the increasing union of the compact sets Ky ), we get a countable family of seminorms
which defines a structure of Fréchet space on Zqg. A direct consequence of Theorem [1] is the
continuity of the Cauchy product for this Fréchet structure. More precisely:



Theorem 2. For any K there exist K' D K and C > 0 such that, for anyn >r >0,
_ _ oo _
o1+ Pnllx < 7||¢1||K/ e dnll g (10)

for every sequence ((]31, ce én) of Q-resurgent series, r of which have no constant term.

In particular, Zq is a Fréchet algebra.

Proof. Let us fix K compact and choose §, L > 0 so that K C Ks51(f2). Let ¢',L" be as in
and K’ := Ky /(). According to Theorem , we can choose C' > 1 large enough so that for

any m > 1and @1,...,35m € B~Y%q),

L . cn .
o1 Pl = el - lomll - (11)

Let n > r and and s := n — r. Given n resurgent series among which r have no constant
term, we can label them so that

&1201_{—@17 RN QBSZCS—F@S) d;s_i,_]_:@s_i_l? e &n:@n’
with ¢1,...,¢, € Cand @1,..., 3, € B-Y(%q). Then ¢1 - - - ¢ = ¢+ 1 with
w:ZCil"'Cipﬁﬁjl "'@quas—&-l"'@n 6871(%9)7
I

where either r > 1, ¢ = 0 and the summation is over all subsets I = {i1,...,i,} of {1,...,s} (of
any cardinality p), with {j1,...,j¢} == {1,...,8}\ I, or r =0, ¢ = ¢1 - - ¢, and the summation
is restricted to the proper subsets of {1,...,n}. Using inequality , we get [[d1-- dnll g <

catr

. L L L cr - -
21:((1*’")! i i, 12ai lger - I @sa e I Bstaller - Nl@nller < —ll@nllger - 1l

(even if 7 = 0, in which case we include I = {1,...,n} in the summation and use C' > 1).
The continuity of the multiplication in Zq follows, as a particular case when n = 2. O

Remark 3.2. %, is even a differential Fréchet algebra since % induces a continuous derivation
of Zq. Indeed, the very definition of B in shows that

d¢ . .
b=ctBe = W =B with §(0) = ~¢a(0),

whence || 9| < D(K)| ¢l ;e with D(K) = maxcex]|C].

3.2 Substitution and implicit resurgent functions

Definition 3.3. For any r € N*, we define Zo{wi, ..., w,} as the subspace of Bq[wi, ..., w,]]
consisting of all formal power series

H = Z Hp(z) wh -k
k=(k1,....kr)ENT

with coefficients Hy, = ﬁk(z) € %o such that, for every compact K C Fq, there exist positive
numbers Ay, Bx such that

|kl < A By (12)
for all k € N" (with the notation |k| = ki + -+ k;).



The idea is to consider formal series “resurgent in z and convergent in wi,...,w,”. We
now show that one can substitute resurgent series in such a convergent series. Observe that
Fo{ws,...,w} can be considered as a subspace of C[[z~} wy,. .., w,]].

Theorem 3. (i) The space Zof{w, ..., w,} is a subalgebra of C[[z=1, wy, ..., w,]].

(ii) Suppose that 1, ..., or € R, have no constant term. Then for any H = S Hy, w]fl R T
Ho{wi,...,w.}, the series

H(@r,... @) = Z H @' - @ e Cllz7Y)]
keNT

18 convergent in Ko, and, for every compact K C .%q, there exist a compact K' D K and
a constant C' > 0 so that

V(@1 30l < CAgr OBt (181l +1rlcr)
(with notations similar to those of Deﬁnition for Ak, By ).
(i4) The map H € @Q{wl, ce Wt H(f1,...,¢r) € Zq is an algebra homomorphism.

Proof. The proof of the first statement is left as an exercise. Observe that the series of formal
series

is formally convergen in C[[z7']], because Hy, @’fl .-~ @Fr has order > |kl|; this is in fact a
particular case of composition of formal series and the fact that the map

HeCllz"  wy,...,w]] = H(@1,...,5r) € Cl[z7Y]

is an algebra homomorphism is well-known. The last statement will thus follow from the second

one.
Let us fix K C ., compact. We first choose K’ and C as in Theorem and then A = Ag,
B = By so that holds relatively to K’. For each k € N, inequality yields

. Clkl+1 (CB)\kI
~k3 ‘*k'r 4 k ~ kv‘ = k P kT
[He 1" & Ml < W”HkHK’H‘PlHKl’ [l < CAWIMIIKE (28112

and the conclusion follows easily. O
As an illustration, for ¢ = ¢+ ¢ with ¢ € C and ¢ € 371((@9)’ we have
- 1 .
__ ¢ ~n
exp(¢p) =e Z P E Ko
n>0

and, if moreover ¢ # 0,

1/¢=> (-1)"c " 1¢" € Zq.

n>0

3 A family of formal series in C[[z™']] is formally summable if it has only finitely many members of order < N
for every N € N. Notice that if a formally summable family is made up of 2-resurgent series and is summable for
the semi-norms ||-|| ., then the formal sum in C[[2~']] and the sum in Zq coincide (because the Borel transform
of the formal sum is nothing but the Taylor series at 0 of the Borel transform of the sum in ,@Q)



Remark 3.4. An example of application of Theorem [3] is provided by the exponential of the
Stirling series ¢S mentioned in the introduction: we obtain the 27iZ-resurgence of the divergent
series exp(¢S) which, according to the refined Stirling formula, is the asymptotic expansion of

1

Var
and this function is its Borel-Laplace sum in the sector —7 < argz < 7; see Section [3.5)).

2377 I'(z) (in fact the formal series exp(¢®) is 1-summable in the directions of (-7, %),

We now show an implicit function theorem for resurgent series.

Theorem 4. Let F(x,y) € C[z,y]] be such that F(0,0) = 0 and 9yF'(0,0) # 0, and call p(x)
the unique solution in xC[[z]] of the equation

F(z,¢(z)) = 0. (13)

Let F(z,y) = F(z~',y) € C[[z ", ]] and P(2) = p(z71) € z7IC[[z7Y]], so that ¢ is implicitly
defined by the equatzon F(Z,go ) = 0. Then

F(z,y) € Zoly} =  @(2) € Za.
Proof. Without loss of generality we can assume 0, F'(0,0) = —1 and write
F(z,y) = —y+ f(2) + R(z,y)

with f(z) = F(z,0) € zC[[z]] and a quadratic remainder

,y) =Y Ba(@)y",  Ra(z) €Cllz]], Ri(0)=0.

n>1

When viewed as formal transformation in y, the formal series 0(x,y) = y — R(x,y) is
invertible, with inverse given by the Lagrange reversion formula: the series

H(z,y) —y—i—zk'@kle Y)
k>1

is formally convergent (the order of 85_1(Rk) is at least k41 because the order of R is at least 2)

and satisfies 6 (x, H(z,y)) = y. Rewriting as 0(z,¢(z)) = f(z), we get p(z) = H(z, f(x)).
Now, the y-expansion of H can be written H(x,y) = >_, <1 Hp(2)y™ with

- 1 - (m+k—1)!
H =(1—-R;)™ ! and Hm_; T ZRm" R, form > 2,

where the last summation is over all k-tuples of integers n = (n, ..., nx) such that nq,...,ng >
land ny +---+nx =m+ k — 1. For m > 2, grouping together the indices ¢ such that n; =1,
we get an expression of H,, as a formally convergent series in Cl[x]]:

Hp, = Z Z (m +n:!_7’“_!2! ZRT i Ry (14)

r>0 s>1

where the last summation is over all s-tuples of integers j = (j1,...,Js) such that ji,...,js > 2
and j1 + .-+ js = m+ s — 1. Observe that one must restrict oneself to s < m — 1 and that

there are (T__f) < 2m=2 summands in the j-summation.



1

Replacing = by 27, we get

¢(2) = H(z, [ (2))
with f(z) = f(z~') € Zq without constant term and

= Z H,,(2)y", H,(2) == Hp(271) for m > 1.

m>1

In view of Theorem [3|it is thus sufficient to check that H € Zo{y}.

Let K C .%o be compact. Setting R,(z) = R, ( 1) for all n > 1, by Theorem I we can
find K’ > K compact and C' > 0 such that | R} Rj, --- Rj. || < Crﬂ IR | Rj Ml ser == 1| Ry || -
Assuming F(z,y) € Zq{y}, we can find A, B > 0 such that ”RnHK/ < AB™ for all n > 1.
Enlarging A if necessary, we can assume 3ABC > 1. We then see that the series is
convergent in Ry for m > 2,

m—1
[ (m +r+s— 1)' 2m72cr+s r+s pm+r+s—1
1l = Z Z m!r!s! r! ATTB
r>0 s=1
2m—2

m—1
l' Z 3m+r+s—1(cA)r+sBm+r+s—1 % 6B m—1 Z BABC r+m— 1

T
r>0 s=1 r>0

=
g

which is < o™ ! with a = %exp(SABC) and 3 = 184AB2C. On the other hand, H; € Zq by
Theorem [3 O

3.3 The group of resurgent tangent-to-identity diffeomorphisms

One of the first applications by J. Ecalle of his resurgence theory was the iteration theory for
tangent-to-identity local analytic diffecomorphisms [Eca81, Vol. 2]. In the language of holomor-
phic dynamics, this corresponds to a parabolic fixed point in one complex variable, for which,
classically, one introduces the Fatou coordinates to describe the dynamics and to define the
“horn map” [Mil06]. In the resurgent approach, one places the variable at infinity and deals
with formal diffeomorphisms: starting from F(w) = w + O(w?) € C{w} or C[[w]], one gets
f(2) =1/F(1/2) =24+ 0 _qamz~™ € z+ C{z"'} or z + C[[z7!]]. The set

G =2+ C[[z7Y]

is a group for the composition law: this is the group of formal tangent-to-identity diffeomor-
phisms.

Convergent diffeomorphisms form a subgroup z +C{z71}. In the simplest case, one is given
a specific dynamical system z — f(2) = z + « + O(z7!) € 2 + C{z7!} with a € C* and
there is a formal conjugacy between f and the trivial dynamics z — z 4+ «, i.e. the equation
vo f =04 a admits a solution v € g (strictly speaking, an assumption is needed for this to be
true, without which one must enlarge slightly the theory to accept a logarithmic term in 9(z); we
omit the details here—see [Eca81], [Sau06]). One can give a direct proof [DS13a] that 0(z) — 2z
is Q-resurgent with Q = 27wia~'Z. The inverse of ¥ is a solution @ of the difference equation
@(z+ o) = f(a(z)) and the exponential of ¥ plays a role in Ecalle’s “bridge equation” [DS13b],
which is related to the Ecalle-Voronin classification theorem and to the horn map (again, we
refrain from giving more details here).

This may serve as a motivation for the following

10



Theorem 5. Assume that Q is a closed discrete subset of C which contains 0 and is stable
under addition. Then the Q-resurgent tangent-to-identity diffeomorphisms make up a subgroup

QZQ ::z+<@QC§é,

which contains z + C{z7'}.

Proof. We must prove that, for arbitrary f(z) = z 4 @(2), §(z) = z + 9 (z) € %, both fo§ and
h= fol= belong to Za.
We have fo§ = g+ ¢ o g, where the last term can be defined by the formally convergent

series . d
bog=d+y —i"(3) 6 (15)
Let K C .%o be compact, and let K/ D K and C' > 0 be as in Theorem [2, We have

167 (35) 9l < MG () "l < € DU 19 Wl

where D(K') = maxccx|¢| (by Remark , hence the series is convergent in Zq, and
l¢ 0l < Cllgll g exp (CD(E) 9] ).
As for h, the Lagrange reversion formula yields it in the form of a formally convergent series

(L)@, (16)

e}

+)° (=
k=1

We have d Nkl . i i
I(5) @l < DUIGE N < DU CH61 5

(again by Remark. 3.2 and Theorem' hence the series is convergent in Zq, and ||h—z|| - <
Clill e exp (CDE) ]l ) O

Remark 3.5. One can easily deduce from the estimates obtained in the above proof that Yo
is a topological group: composition and inversion are continuous if we transport the topology
of Zq, onto %, by the bijection ¢ — 2z + ¢.

3.4 Other applications

In this article, we stick to the simplest case which presents itself in resurgence theory: for-
mal expansions in negative integer powers of z, whose Borel transforms converge and extend
analytically outside a set §2 fixed in advance, but

— the condition of Q-continuability can be substituted with “continuability without a cut” or
“endless continuability” which allow for Riemann surfaces much more general than . [Eca81,
Vol. 3], [CNP93];

— the theory of “resurgent singularities” was developed by J. Ecalle to deal with much more
general formal objects than power series.

11



The extension to more general Rieman surfaces is necessary in certain problems, particularly
those involving parametric resurgence or quantum resurgence (in relation with semi-classical
asymptotics). To make our method accomodate the notion of continuability without a cut,
one could for instance imitate the way [Oul2|] deals with “discrete filtered sets”. The point is
that, when convolving germs in the (-plane, the singular points of the analytic continuation of
each factor may produce a singularity located at the sum of these singular points, but being
continuable without a cut means that the set of singular points is locally finite, thus one can
explore sequentially the Riemann surface of the convolution product, considering longer and
longer paths of analytic continuation and saturating the corresponding Riemann surface by
removing at each step the (finitely many) sums of singular points already encountered.

The formalism of general resurgent singularities also can be accomodated. The reader is
referred to [Eca81] and [Sau06] for the corresponding extension of the definition of convolution
(see also [DS13D] and [Saul3b]). In short, the formal Borel transform (1), which must be
considered as a termwise inverse Laplace transform, can be generalized by considering the action
of the Laplace transform on monomials like (*(log ()™ with m € N and a € C for instance.
One is thus led to deal with holomorphic functions of  defined for arbitrarily small nonzero
|| but not holomorphic at the origin: one must rather work in subsets of the Riemann surface
of the logarithm (without even assuming the existence of any kind of expansion for small |(])
before considering their analytic continuation for large values of |(|. If one restricts oneself
to functions which are integrable at 0, like the convergent expansions involving monomials
(*(log )™ with Rea > —1, then formula may still be used to define the convolution. To
deal with general resurgent singularities, one must replace it with the so-called convolution of
majors. This should be the subject of another article, but we can already mention that it is
in the context of resurgent singularities that the alien operators A, associated with non-zero
complex numbers w are defined in the most efficient way.

These operators can be proved to be derivations (they satisfy the Leibniz rule with respect
to the convolution law) independent between them and independent of the natural derivation

% except for the relations [Aw, %} = —wA,, (this is why they were called “alien derivatives”

by Ecalle). They annihilate the convergent series (because A, measures the singularity at w of
a combination of branches of the Borel transform and the Borel transform of a convergent series
has no singularity at all) and a suitable adaptation of Theorem (1| allows one to check the rules
of “alien calculus”, e.g.

Aw(ﬁ(@,...,@)):(Awﬁ)(@,...,gpr+Z wP;) w‘(gol,...,gbr)

Au(fog) =0 (Auf)ogt (3 0d) Aup
in the situations of Theorems |3 and! (where A, H is defined, with the notation of Theorem l
as the formal series S (A, Hy)( cwkrand (ALH)(@1, ..., @) and (Ayf) o § must be
defined properly; see Theorem 30.9 of [Saul3b] for an example).

As another possible application, it would be worth trying to adapt our method to the
weighted convolution products which appear in [Eca94]. Their definition is as follows: given a
sequence of pairs By = (w1,b1), By = (w2, bs), etc. with w,, € C and b, € C{¢} and assuming
that

Op =wi+ - +w, #0, n € N*,

12



one defines a sequence S5, §B1:B2 ¢ C{¢} by the formulas

SPHC) = ibl (i)’ §H(Q) = - /OC/@2 b (C_c:z&>b2(§2) déo,

w1 w1 w1

. ¢/ws (C—waé3) /w2 _ _
§PLBBs () = 1/0 dfs/£ dés b1<< w2i)21 wg&’)bz(fz)bg(&%), etc.

w1 3

A 1
The general formula is P18 (¢) = o /d{n - d€a b1 (&1)b2(&2) - - - bp(&n), where the integral
1

is taken over

¢ — (wiy1&ip1 + -+ wnbn)
w;

fori=n—-1,n—2,...,2

R

n

and g = St bunts)

symmetrality: if B’ = B ... Bi» and B"” = B/ ... Bi then §B' « §B” is the sum 3 SB over
all words B belonging to the shuffle of B’ and B”, e.g.

There is a relation with the ordinary convolution called

SB1 g §B2 — §B1,B2 5327317 §B1,B2 o §Bs _ §B1,B2,Bs | §B1,B3,Ba | 533,31732’ ete.

It is argued in [Eca94] that the weighted convolutions SB1.Bn asgociated with endlessly continu-
able germs by, ba, ... are themselves endlessly continuable and constitute the “building blocks”
of the resurgent functions which appear in parametric resurgence or quantum resurgence prob-
lems (see [Sau95] for an example with w; = 1 for all 7). It would thus be interesting and natural
(because the weighted convolution products present themselves as multiple integrals not so dif-
ferent from the n-fold integrals below) to try to deform the integration simplex, in a manner
similar to the one that will be employed for convolution products in Sections in order to
control the analytic continuation of SB1,-Br

3.5 Nonlinear analysis with 1-summable series

For the resurgent series encountered in practice, one is often interested in applying Borel-Laplace
summation. It is thus important to notice that the property of 1-summability too is compatible
with the nonlinear operations described in the previous sections.

We recall that, given a non-trivial interval A of R, a formal series ¢(z) € C[[z']] is said
to be 1-summable in the directions of A if it can be written ¢ = ¢ + B¢ with ¢ € C and
&(€) € C{(}, there exists p > 0 such that ¢ extends analytically to

S(p, A) = ID)pU{rei9 |7 >0, 0€c A}

and there exist 7 € R and C' > 0 such that |[¢(¢)| < Cel¢l for all ¢ € S(p,A). In such
a case, the Borel sum of q~5 is the function obtained by glueing the Laplace transforms of ¢
associated with the directions of A (the Cauchy Theorem entails that they match) and adding
the constant term c, i.e. the function SumAQB holomorphic in the union of half—plane E;“ =

eigoo
U {z | Re(z€?) > 7} defined by (SumA qg) (2) =c —|—/ @(¢) e ¢ d¢ with any 6 € A such
oeA 0

4

viewed as a subset of the Riemann surface of the logarithm if 7 > 0 and A has length > 7
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that Re(ze?) > 7. This function admits ¢(z) as Gevrey asymptotic expansion and is the only
one with this property—see e.g. [Bal94], [Ram12].
Let us denote by .#* the subspace of all 1-summable series, so that

C{z"yc sz

(Sum* coincides with ordinary summation in restriction to C{z~!}). The open sets S(p,.A)

being star-shaped with respect to 0, we can use and check that the properties imposed to
the ¢’s to define 1-summability (analytic continuation to S(p,.A) and exponential bound) are
stable under convolution. More precisely, we get

15 (0)] < Cy el for ¢ € S(p, A) and j=1,...,n

¢
(n—1)!

= g1 n(Q)] < C1-+Cpe™ for ¢ € S(p, A). (17)

It follows that .7 is a subalgebra of C[[z~']] and, since the Laplace transform maps the
convolution product onto the multiplication of functions, Sum” (¢ ¢2) = (Sum* ¢;)(Sum™ ¢5).

In view of Remark it is even a differential subalgebra and Sum 3—‘5 = % Sum* (Z)
To go farther, we fix a non-trivial interval A of R and set

1611, = lel + sup e l|3()]
S(p,A)
forany p >0, 7€ Rand ¢ = c+ B 'p e Ca B~1(0(S(p,A))), so that a formal series b(2)
belongs to 4 if and only if there exist p and 7 such that ||<z~5|]p,T < 00, and Sum? ¢ is then

holomorphic at least in Zf. The results of the previous sections can be complemented with the
following four theorems, the proof of which will be outlined at the end of this section:

Theorem . Supposen > 1, ¢~>1, .. .,(]En e YA and N € N. Then
%
dzN

. . _ _ NI -
61 bnll,rre < max(1, Z50) 1], - 0nll, < wlloall,r

pT+e

for every p >0, 7€ R and € > 0.

Theorem . Suppose that H = D k=(k1,.. k)N Hp(2)wh - whr e [z~ wi,...,w,]] has

T

its coefficients 1-summable in the directions of A and HI:Ika’T < AB¥ for all k € N", with
some p, A, B >0 and T € R independent of k. Then

HAz wr, ... wy) = Z (Sum™ Hy)(z) wh* - - whr
k=(k1,....kr)EN

is holomorphic in Ef XDyp---xDyp and, for all ¢1,...,0r € SA without constant term,

H(p1,. ., @r) c . YA and Sum™ (fl(gbl,...,@r))(z):HA(z,SumAgbl(z),...,SumAgbr(z))

for z € 4 as soon as 7' is large enough. One can take 7/ = 7 + B(HgﬁalJ +-F Hcﬁer) if
this number is finite (if not, take T larger and p smaller), in which case

VE @1, 80 < A2+ BIG ]+ + 1601,,) ).
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Theorem . Suppose that F = > k>0 Er(2)y* € C[[z~1, y]] and HFka’T < AB¥ for all k € N,
with some p, A, B >0 and 7 € R independent of k, so that

FA(z,y) = Z(SumA E)(2) "
k>0

is holomorphic in YA x Dy, p. Suppose moreover that Fy(z) € z7'C[[z7Y]] and that the constant

term of Fy is nonzero, so that the equation F(z,gb(z)) = 0 implicitly defines a formal series
@(z) € 271C[[z7Y]]. Then this unique formal solution is 1-summable in the directions of A, and
Sum™ & is a solution of the corresponding functional equation .7-"“4(2, (Sum* gb)(z)) = 0 which
is holomorphic in Ef, for T large enough.

We also define the set of “l-summable tangent-to-identity diffeomorphisms”
GA =24 SACG =2+ C[[z7Y
and use the notations Hf”w = ||<;~S||W and Sum™ f := Id 4+ Sum™ ¢ for any f(z) = z4+¢(z) € GA.

Tpeorem . The set {éA is a subgroup Offé and contains Z+(C{Z_1}. For f,g c {!7“4 with
Hpr,T7 Hng,T < 00, one has

130 fllper < W lpr + 13l prs 1T < UF N e

with 7 =17+1+ ||f|]p7T. Moreover, the composition (SumA g) o (SumA f) is well-defined and
coincides with Sum™ (f] o f) on Zf, and, for 7" large enough, SumAf 18 injective on Eﬁ, and
the composition (SumA(fo(_l))) o (SumA f) 1s well-defined and coincides with Id on Ef,/.

Before proceeding with the proof of these statements, we first mention

Lemma 3.6. Let ¢ € .SA with HéHpJ < 00. Then

~ ~ 1
A < A : _
[Sum” ¢(2)[ < D(z)¢ll, . forz€ X7, with D(z) =max <1, Supge A Re(z o — ))

1

—7 "

If¢ has no constant term and z € £4 2 with 7' > T, then one can take D(z) =

,T/

Proof. Write b =c+ @ with @ without constant term and take z € ZA For any 0 € A such
that dp(z) == Re(ze? — 7) > 0, we have |Sum? 3(z)| < 59 Hcp||pT, whence the conclusion
follows. H

Outline of the proof of Theorem [ For j=1,...,n, we write ggj = ¢j +¢; with ¢; € C and ¢;

without constant term. For N > 1, d %1 is the inverse Borel transform of (—¢)"¥1(¢), whose

modulus is bounded on S(p,.A) by K' o€

The first statement results from the 1dent1ty qSl d)n =c+ w Wlth c=c1- ¢, and Y =

Y Ciy o CiyPjy ¥ - % P, with summation over all proper subsets I = {i1,...,i,} of {1,...,n}
. . . n ~ q

and {j1,...,jq} = {1 o sE T yields [¢(Q)] < Xleiy - ¢, [ @5y B .eT'C‘

p,T HSOJqu,T(q 1)!
on S(p, A) and (ICI ol (1, L )efldl while |¢|] < max(1, En%l)|ci1 Gyl O

eldl < é\]fVH(b [P e(Ttaldl,
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Remark 3.7. A simple modification of the previous argument, in the spirit of the proof of
Theorem |2 l shows that, if among ¢, ..., ¢, at least r > 1 formal series have no constant term,
then ¢1 - -+ ¢, = 9 is the inverse Borel transform of a function which satisfies

r—1
BN < max(1, )11l el for € S(0.4)

Outline of the proof of Theorem[3’. The first statement follows from Lemman Suppose C; =
12l < oo for each j, then Lemma also shows that H4(z, Sum® 3y (2), ..., Sum? @, (2 ))
is well-defined for z € 4 as soon as 7/ — 7 > Bmax(C1, ..., Cy).

Let us write Hy, = ¢ + G with G}, without constant term. Then ﬁ(gﬁl, cey@r) =co+ 1[),

¥ = B~Y), P = Z ck@]fl**gbf’“—}—z:ék*g&]fl**@f?“

keNm\{0} keN"

By inequality (L7)), representing by (ei,...,e,) the canonical basis of R", we get lh(C)] <

r ~ |k ’ -
Ser (Salnre s + Gl )OF -+ Chr el < A(B(Cy 4+ €+ 1) O

Outline of the proof of T heoremm Dividing F by the appropriate factor, we can suppose that
F(z,y) = —y + f(2) + Zn>1R (z)y", where f and R; have no constant term, ||f|| < A
and ||Rn||p7 < AB™ for every n > 1. Arguing as in the proof of Theorem I, we have Q=
S oy Hon f™ with Hy == (1 — Ry)~! and H,, given by (14) for m > 2. The main task consists
in showing that there exist o, 8 > 0 and 7; such that HfImeJ1 < af™ for all m, so that
Theorem [3] can be applied.

In the r-summation defining H,,, we separate r = 0 and r > 1, so that H,, = I:I,QI + JEI#L
with H] .= 1, H{ =) -, R}, and, for m > 2,

with summation over all j = (ji,...,Js) such that ji,...,js >2and j1 +---+js=m+s— 1.

Enlarging A if necessary, we suppose 2AB > 1. Theorem [3[ yields, for m > 2, || H. | ol <

m—1
(m+s—1)!{m-2 Ll gmas-l . (aB)ymt
7 ASB™ts < — 9™ %(AB)*B™ ! <« L — 2AB)*

whence ||H!, o1 < (8AB%)™~! for all m > 1. On the other hand, ||H1HpT+AB < oo by
Theorem [3] and, by Remark [3.7], for m > 2 and ¢ € S(p, A),

m—

. +r+s—1!/m—-2 Tt I<I"™”
1/ *(T+1)K| < m AT’+SB’H’L TS 17
‘Hm(g)’e ; Z m!r!s! s—1 (T 1)

m— 13m+r+8 1

. 9m- Q(AB)rJrsBm 1 ’C‘
(r—1!
7“21 s=1

r—1
< §(6B)™! Z(3AB)’"+’"‘1(LC|_ i
r>1 ’

(because 3AB > 1), whence || H/|

pr+143AB = MTBUSAB%m*l- O
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Outline of the proof of Theorem[J’. Write f=z4+c+¢@(2), 3 =z+c+ U(z), with ¢, € C, ¢
and ¢ without constant term, and let A := [|¢[|, . and B = [|¢[|, .. The function (SumA g) o
(Sum™ f) is well-defined on ¥4 because, by Lemma ISum™ f(2) — 2| < |c| + A= <7 — 7.

T'—7

Let ¢o(z) == @(2 — ¢): we have go f = z+c+c + ¢+ x with

= oo (Id+0), Xo=voId+@), hence %(¢)=x0(Q)e™, %0(0) = (S8 ¥) a5,
k>0

Given # € A and 7, = 7 4+ Re(cel?), since @o(¢) = eX@(C), we have |@o(¢)| < Aemll
. A~ 2k

on RT 61497 thus |((_]§!)k¢) % ¢6k(g)| < BAk%emax{r,u}lq and |)A(O(C)’ < Be(\/z+max{777+})|g|,

whence |{(¢)] < BeVATTHeDIl < Bl and ||g o f||p7T/ <le|+|d|+ A+ B.

Using the Lagrange reversion formula to compute fo(_l) = (Id+@o)~! — ¢, we get
So(— - - _1)k k—1 - N k=1 .
V=Tt ¢, ¢-=3 G (5)"E hence p_(Q) = - Fret®

E>1 E>1

k—1 ’
On S(p, A), |§5F(C)] < AF KL el HeDIdl thus [ (¢)] < AoV < 4e7d]. 0

4 The initial n-dimensional integration current

We now begin the proof of Theorem Notice that convolution with the constant germ 1
amounts to integration from 0, according to , thus S—C(l * ) = ¢ and, by associativity of the
convolution,

R . d R R
Prxcxgn = qa(lxfrsoox fn) (18)

for any ¢1,...,¢n € C{C}.
We shall now dedicate ourselves to the proof of a statement similar to Theorem |I| for convo-

lution products of the form 1% @y * - -+ % @, with @1,..., 9, € O(F); this will be Theorem
of Section [7] The proof of Theorem [I] itself will then follow by the Cauchy inequalities.

It turns out that, for ( € g close to Oq, there is a natural way of representing 1 % (1 *
-+ % Pn(C) as the integral of a holomorphic n-form over an n-dimensional chain of the complex
manifold .#{}; this is formula of Proposition which will be our starting point for the
proof of Theorem [I].

Notation 4.1. Given ¢ € Sq, we denote by L¢: Dpy,c) — Fa the holomorphic map defined
by
L (&) == endpoint of the lift which starts at ¢ of the path t € [0,1] — &—i— 173

(so that L¢(€) can be thought of as “the lift ofé + £ wich sits on the same sheet of g as (7).
We shall often use the shorthand

C+&=L(E)

(beware that, in the latter formula, § € Dp,(¢) is a complex number but not ¢ nor ¢ + £, which
are points of q). If n > 1 and { = (C1,...,¢n) € A5, we also set
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for& = (&1,...,&) € C" close enough to 0 (it suffices that |£;| < Rq((j); observe that Sp((+€) =
Sn(Q) + &+ -+ &)

Notation 4.2. For any n > 1, we denote by A, the n-dimensional simplezﬁ
Ay ={(s1,---,8n) ER" | 51,...,8, >0ands; +---+s, <1}

with the standard orientation, and by [A,] € &,(R™) the corresponding integration current:
[An]: « complex-valued smooth n-form on R™ — / aeC.
Ap

For every ¢ € D,yq), we consider the map
D(C): s=(S1,---,5n) — Z((,8) = 0q + (s1(,...,sn0) € Y,
defined in a neighbourhood of A, in R™, and denote by 2(Q)4[An] € E.(FG) the push-forward
of [An] by Z(¢):
D(C)#[Arn]: B smooth n-form on & — [Ay] (2(()#[3).

See Appendix [A] for our notations in relation with currents. Notice that the last formula
makes sense because Z(C) is a smooth map, thus the pullback form 2(¢)* 3 is well-defined in
a neighbourhood of A,,. The reason for using the language of currents and Geometric Measure
Theory is that later we shall require the push-forward of integration currents by Lipschitz maps
which are not smooth everywhere. The reader is referred to Appendix [A] for a survey of a few
facts of the theory which will be useful for us.

Proposition 4.3. For ¢1,...,p, € Ro and ¢ € Dyq), one has
L gy 5 on(Q) = Z(Q#[An](B)  with § = ¢1(C1) -+ Pn(Cn) Gt A -+ A dCp, (19)

where we denote by d¢y A --- A d¢, the pullback in S by Wg)n: (e —E= (517 .. ,én) of
the n-form d&y A --- Ad&, of C™.

Proof. Since ((1,...,(n) € DS(Q) — 0q + (C1,-..,Cn) € Y is an analytic chart which covers a
neighbourhood of Z(¢)(A,), we can write Z(0)* = $1(51¢) - - - Pn(snC)ds1 A - - - A ds,,. Since

Ap={(s1,...,8,) ER" | 51 €[0,1],50 € [0,1 —s1],...,8, €[0,1 = (51 4+ -+ 5Sn—1)] }
with the standard orientation, the right-hand side of the identity stated in can be rewritten

1 1—s1 1—(s14+s5n-1)
Cn/ dsy / dsg - / dsp 951(51C) T @n(an)
0 0 0

¢ -G ¢—(¢G++Cn—-1)
/ G / Gy / ACn 31(C1) - nlC). (20)
0 0 0

When n = 1, formula is thus the very definition of 1 % ¢1(¢). Writing

or

¢
1*¢1*---*¢n<o=/0 4G (G (L# @a %% @) (€ = 1),

we get the general case by induction. O

5 This A,, has nothing to do with Ecalle’s alien derivatives A, mentioned earlier.
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Figure 1: Projections of (£{(s),...,&L(s)) = Ui(s17(a), ..., snv(a)) = Ur o0 Z(v(a))(s).

5 Deformation of the n-dimensional integration current in .7

In this section, we fix an interval J = [a,b] and a path v: J — C\ Q such that y(a) € D% o)
we denote by 4 the lift of v which starts in the principal sheet of .#5. In order to obtain the
analytic continuation of formula , we shall deform the n-dimensional integration current
2(¢)#[Ay] as indicated in Proposition [5.2f below.

Definition 5.1. Givenn > 1, for( € C and j =1,...,n, we set

N@Q={Ce g5 =¢t  Nj={{=(CQ,.-.C) €G] =00a}.

We call y-adapted origin-fixing isotopy in A} any family (V)i of homeomorphisms of S
such that U = Id, the map (t,¢) € J x AF = W4(() € AF is locally Lipschitzﬁ and for any
teJandj=1,...,n,

Proposition 5.2. Suppose that (V)i is a y-adapted origin-fizing isotopy in . Then, for
any @1, ..., Pn € Za, the analytic continuation of 1% @1 x -+ *x @, along v is given by

(Lxprs- 5 @) (7)) = (Tro 2(1(a)) L[AR](B),  tE (21)

with B = @1(Cl) T @n((n) dCl JANCERIVA an

See Figure . Observe that, for each t € J, the map ¥; o Q(V(a)) : A, — S is Lipschitz,
so that the push-forward (¥; o Z(v(a))) #[An] is a well-defined n-dimensional current of /%
(see Appendix . The proof of Proposition relies on the following more general statement:

By that, we mean that each point of .7} admits an open neighbourhood % on which 75" : 7% — C™ induces
a biholomorphism and such that the map (¢,§) € J x n3"™ (%) > 73" 0 ¥y o ((W%")‘%)fl(é) € C" is Lipschitz.
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Notation 5.3. Given a map C = (C1,...,Cp): J x Ay — S, for each t € J we denote by
C,: Ay — S5 the partial map defined by

s €Ay Cy(s) = C(t, 5)
(not to be confused with the components Cj: J x A, = S, j=1,...,n).

Proposition 5.4. Let 8 be a holomorphic n-form on /& and

F: (e Dp(g) — F(C) = @(C)#[An](/@)

Then F is a holomorphic function in D, q).
Let C: J x Ay — A be a Lipschitz ma]ﬂ such that the partial map corresponding tot = a
satisfies
C,=2(v(a))
and that, for everyt € J, s = (s1,...,8,) € Ap and j=1,...,n,
st tsp=1 = C(ts)eN(y(t)
s;=0 = C(t,s) € Nj.

Then F admits analytic continuation along v and, for each t € J,

F(3(1)) = (C4[Aa)(8). (22)

The proof of Proposition [5.4] requires the following consequence of the Cauchy-Poincaré
Theorem [Sha92]:

Lemma 5.5. Let M be a complex analytic manifold of dimension n and let Ny, N1,..., N, be
complex analytic hypersurfaces of M. Let H: [0,1] x A,, — M be a Lipschitz map such that,
for every T € [0,1], s =(81,...,8,) €EAp and j =1,...,n,

s1+:--+sp,=1 = E(T,S)ENO
SjZO = ﬂ(T,S)ENj.
Then the partial maps H, and H{ corresponding to T =0 and 7 = 1 satisfy

(Ho)#[An](8) = (H1)#[An](5) (23)

for any holomorphic n-form B on M.

Proof of Lemma([5.5 Let B be a holomorphic n-form on M. Let us consider P := [0,1] x A,
and the corresponding (n + 1)-dimensional integration current [P] € &,4+1(R™™!). Its boundary
can be written

I[Pl =Q1— Qo+ Bo+---+ By,

where each summand is an n-dimensional current with compact support:

spt Qz = {l} X An7 spt Bj = [0, 1] X Fj

“in the sense that Wg" oC: J x A, — C" is Lipschitz
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with F} = the face of 9A,, defined by s; = 0if j > 1 or sy +---+ s, = 1if j = 0. This
is a simple adaptation of formula of Appendix [A} in fact, Q; = [4;(A,)] with an affine
map A;: z € R" — (i,z) € R"" and B; = +[A}(Ay)] with some other injective affine maps
A7 R" — R™*! mapping A, to [0,1] x F;. In this situation, according to Lemma and
formula , we have

OHyu[P] = Huo[P],  HuQi= (HoA)y[Anl,  HyBj= (Ho Aj)y[An].

On the one hand, the Cauchy-Poincaré Theorem tells us that H 4 [P](8) = 0 (because d = 0),
and H o A; = H;, thus

(Ho)#[An](B) = (Hy)#[An](8) = HyBo(8) + - - + Hy Bn(f).

On the other hand spt H » B; C N; and the restriction of 3 to any complex hypersurface vanishes
identically (because it is a holomorphic form of maximal degree), thus H, B;(3) = 0, and
is proved. O

Proof of Proposition[5.] Observe that the function Rq defined by @ is continuous, thus we
can define a positive number

R = min{RQ(C’j(t,§)) |ted seA,, j= 1,...,n}
and, for each t € J and ¢ € D(V(t), R*), a Lipschitz map and a complex number
Q) s€ DMy = Clt,s) + (C—(t)s € 74, GilQ) = Zy(O)[An](B).

For ¢ € D(y(a),R*), we have 2,(¢) = 2(¢), hence G4(¢) = F(¢). For t € J, we have
2,(v(t)) = C,, hence
Gi(y(1) = (C)#An](B).

Therefore it suffices to show that, for each ¢t € J,
i) the function Gy is holomorphic in D(v(t), R*) (and G, = F is even holomorphic in D) );

ii) for any ¢ € J close enough to ¢, the functions Gy and Gy coincide in a neighbourhood
of y(t).

i) The case of G, = F is easier because, for ¢ € D ) UD(y(a), R*), the range of Z,(¢) = Z2(¢)
entirely lies in a domain % = % X - -- %,, where each %; is an open subset of .7 in restriction
to which 7q is injective, so that

X:Wf‘%ni (Cla"'vcn) E%H(fl,---,én): (éla"':én) (24)

is an analytic chart of #; we can write X8 = f(&,...,&) dE A+ - AdE, with a holomorphic
function f and x o Z,(¢)(s) = (51, - - ., sn(), therefore

Go(Q)=F() =" /A f(s1¢y..oyspC)dsy---dsy
is holomorphic.

Given t € J, by compactness, we can cover A,, by simplices Q™| 1 < m < M, so that any
intersection QU NQI™ is contained in an affine hyperplane of R™ and each QU™ is small enough
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for Ucen(y),r) Z:(C) (Q[m]) to be contained in the domain %™ of an analytic chart x["
similar to (i.e. % "] is a product of factors on which 7q is injective and x[™ is defined by
the same formula as x but on % ™). For each m, we can write (X[m])#ﬁ = flml(gy, ... 6,)da A
- A dé, with a holomorphic function fI™ and x[™ o 2,(¢) = (dm](g, B R Lm]( , )) with,
foreach j=1,...,n,

(¢,8) € D(v(1), R*) x QI s €1"(¢, 5) = mq 0 Cj(t, 5) + 55 (C — 7(1)).

These functions & ][»m] are holomorphic in (; applying Rademacher’s theorem to s — 7 o C(t, s)

(recall that t is fixed), we see that, for almost every s, the partial derivatives of & j[-m} exist and
are holomorphic in (, therefore

G0 =3 /Q G ]<<,s>,...,g,am]<<,s>)det[ 5;. <¢,s>] dsi - ds,

1<i,j<n

is holomorphic for ¢ € D(v(t), R*).

ii) We now fix ¢ € J. By compactness, for t' € J close enough to t, we can write
C(t',s) = C(t,s) +d(s)
for all s € A,,, with
bi(s) =ma(C;(t',s) — Cj(t, s)) GD%, j=1,...,n

Then +(t') € D(y(t), R*/2) (because s1 + - -+ + s, = 1 implies Sy, 0 d(s) = y(t') —y(t)) and, for
¢ € D(y(t'), R*/2), we have

Gi(Q) = Z,(Q#[An](B8),  Gr(Q) = Zy(Q)x[An](B)
with
2,(Q)(8) =C(t.s) + (C—(1)s,  Zp(Q)(s) = C(t, ) +4(s) + (¢ —7(¥))s.
Let us define a Lipschitz map H: [0,1] x A, — ./ by
H(r,s):=C(t,s) + (1= 7)(¢ —(t))s +7(d(s) + (¢ = (t))s).
An easy computation yields

51+"'+Sn:1 = Snoﬂ(Tvﬁ):C
s; =0 = Hj(7,s) = Oq.

We can thus apply Lemma with Ny = NV (¢) and N; = N}, and conclude that Gy = Gy on
D(~(t'), R*/2). O

Proof of Proposition[5.4 In view of Proposition we can apply Proposition with g =
¢1(G) -+ on(G)dG A+ Ad¢, and Oy = Uy 0 D(v(a)). O
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6 Construction of an adapted origin-fixing isotopy in .

To prove Theorem (1}, formula tells us that it is sufficient to deal with the analytic continu-
ation of products of the form 1 % @y * - -+ *x o, instead of Py * - - - x @, itself, and Proposition [5.2
tells us that, to do so, we only need to construct explicit y-adapted origin-fixing isotopies (U;)
and to provide estimates.

This section aims at constructing (¥;) for any given C! path 7 (estimates are postponed
to Section @ Our method is inspired by an appendix of [CNP93| and is a generalization of
Section 6.2 of [Saul3a).

Proposition 6.1. Let v: J = [a,b] — C\ Q be a C! path such that v(a) € D7y, and let
n: C — [0,+00) be a locally Lipschitz function such that

{€eCln()=0}=10

Then the function

(t,¢) € J x F4 = D(t, ) :=n(Cy) + -+ +1(C) +n(y(t) = Su(Q)) (25)
is everywhere positive and the formula
_ &)
X1 = D(t,lg)ﬁy(t)
X(t,¢) = (26)
. ﬁ(én) ’
Xn = D(t,C)V(t)

defines a non-autonomous vector field X (t, () € T¢ (5”{;) ~ C™ (using the canonical identification
between the tangent space of Sq at any point and C provided by the tangent map of the local
biholomorphism mq ) which admits a flow map V; between time a and time t for every t € J and
induces a y-adapted origin-fizing isotopy (Vi) in -S4

An example of function which satisfies the assumptions of Proposition [6.1] is

n(§) = dist(¢,2),  £eC.

Proof of Proposition[6.d. (a) Observe that D(t, ((1,...,¢n)) = E(t, (51, ...,¢,)) with

(t7§) €JxC"— D(tvé) = 77(61) +oeee n(fn) + 77(7(0 - Sn(é)) (27)

and Sn( ) =& + -+ &, for any £ € C". The function D is everywhere positive: suppose

indeed 5(75,@ 0 with ¢t € J and § € C", we would have

&, &ny(t) = S(€) € 9,

whence 7(t) € by the stability under addition of €2, but this is contrary to the hypothesis
on 7.
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Therefore D > 0, the vector field X is well-defined and in fact

X (8 (G- 6n)) = X (8 (Crs -5 Ca))
with a non-autonomous vector field X defined in J x C", the components of which are

_ &)
2 b(g)

These functions are locally Lipschitz on J x C™, thus we can apply the Cauchy-Lipschitz theorem
on the existence and uniqueness of solutions to differential equations to d§/dt = X (t,§): for

every t* € Ji and § € C", there is a unique maximal solution ¢ Pt *(€) such that Pt € =¢
The fact that the vector field X is bounded implies that ®!" *(€) is defined for all ¢ € J and the
classical theory guarantees that (t*,t,§) Pt (§) is locally Lipschitz on J x J x C™.

V@),  j=1,...,n (28)

(b) For each w € Q and j =1,...,n, we set
Njw) ={&=(&,...,&) €C" | & =w}.

We have X; = 0 on J x Nj(w), thus & leaves N;(w) invariant for every (t*,t) € J x J. In
particular, since 0 € €2,

EeN;(0) = 7€) e N;(0). (29)

The non-autonomous flow property @'t o &t = &'t o " = Id implies that, for each
(t*,t) € J x J, &t is a homeomorphism the inverse of which is ®“'", which leaves Nj(w)
invariant, hence also

£eC\Nj(w) = @7 eC\Nj(w). (30)

Properties and show that the flow map between times t* and ¢ for X is well-defined in
S for ( € ST, the solution t — ®!({) can be obtained as the lift starting at ¢ of the path

t— Pt (&1, .. ,5n) (indeed, each component of this path has its range either reduced to {0}
or contained in C\ ).

We thus define, for each ¢ € J, a homeomorphism of .74 by ¥, := &' and observe that
Ui (N;) CN;, ¥, =1d and (t,¢) — W4(¢) is locally Lipschitz on J x 7.

(c) It only remains to be proved that
U, (N (v(a)) € U(N(y(t))) (31)

for every t € J.
Given ¢ € #f, the function defined by

S0t tE T () = S0 Ti(Q).

is C! on J and an easy computation yields its derivative in the form &)(¢) = h(t)¥'(t)/d(t), with
Lipschitz functions

h(t) =n(6(t),  d(t) = D(t, ¥:(C)).
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Since 7 is Lipschitz on the range of &y, say with Lipschitz constant K, the function h = 1o &g
is Lipschitz on J, hence its derivative h’ exists almost everywhere on J; writing |h(t') — h(t)| <
K|&(t') — &o(t)|, we see that ‘h’(t)! < K‘ﬁé(t)’ < Kh(t) m?x|%’| a.e., hence

W (t)
h(?)

g(t) =

exists a.e. and defines g € L>(J).

By the fundamental theorem of Lebesgue integral calculus, ¢ — f(j g(7) dr is differentiable a.e.
and

t
h(t) = h(a) exp (/ g(7) dT), telJ
Now, if ¢ € N'(v(a)), then &(a) = 0, thus h(a) = 0, thus h = 0 on J, thus &(¢) stays in
for all ¢ € J, thus § =0 on J, i.e. ¥4(¢) € N (y(t)). O

7 Estimates

We are now ready to prove
Theorem [If. Let 6, L > 0 with § < p(Q)/2 and
1

§ = 5P(2) e 23, (32)
Then, for anyn > 1 and @1,...,QPn € Zq,
1

TGy %--x0.| < —(p(Q) e3L/5\" Al 5 1. 33

e [Lx o+ #@n| < — (p(Q) ) ;cgfff(n)'%' K??fm!sonl (33)

The proof of Theorem [I] will follow from

Proposition 7.1. Let 6, L > 0. Lety: J = [a,b] — C\ be a C* path such that v(a) € D% )27
|v(a)]+b—a <L and

h’(t)‘ =1 and dist (y(t),Q) >4, ted

Consider the vy-adapted origin-fizing isotopy (Vy)iey defined as in Proposition by the flow of
the vector field with the choice n(§) = dist(§, Q). Then, for each t € J,

e the Lipschitz map Wy 0 Z(v(a)) = (&,..., &) maps A, in (Ks 1, (2)", with &' as in ([32),

2t
e the almost everywhere defined partial derivatives gﬁ; . A, — C satisfy

oét }
det (s
[asj ) 1<i,j<n

Proof of Proposition[7.1. We first fix s € A,,, omitting it in the notations, and study the solution

te &= (&,....8) =V (2(1(a)(s))

< (p(2) e3L/6)n for a.e. s € A,. (34)
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of the vector field X defined by , the components of the initial condition being f? =0q +
siv(a).

(a) We observe that dég/dt = X;(t,£") has modulus < 1 for each i = 1,...,n, thus the path
teJw éf has length < b — a and stays in Dy,.

(b) The denominator is

d(t) :== D(t,&") > 6, teJd

Indeed, we can write d(t) = 77(56) + n(éﬁ) +oee n(éfl) with 56 = (t) — Sn(£"), and, since
is stable under addition and 56 + é'i + éfl = 7(t), the triangle inequality yields

d(t) = Zn:dist (2,0) > dist (v(1),Q),
=0

which is > § by assumption.
(c) We now check that for t € Jand i =1,...,n,

e L0 (E8) < n(€l) < eMn(d). (35)

Since 7 is 1-Lipschitz, the function h; == no éf is Lipschitz on J and its derivative exists a.e.;

writing [hs(t) — hi(t)] < |&:(t) — &i(t)], we see that a.e. |hl(t)] < |E(t)| = hs(t)/d(t) hence

gi(t) = Z;g; exists a.e. and defines g; € L>(J) with

lgi(t)] < 1/8 for ae. t € J. (36)

By the fundamental theorem of Lebesgue integral calculus, ¢t — f(: 9i(7) dr is differentiable a.e.
and

hi(t) = hi(a) exp (/at gi(T) dT)7 teJ,

whence follows in view of .
(d) Now, the fact that é;’ = si7(a) € Dyq)/2 implies that dist (éf, Q\ {0}) > p(€2)/2, whence

n(Ed) = dist (£2,Q) = |E2] < p(2)/2.

If ]éﬂ < %p(ﬂ) e~L/9 then the second inequality in shows that n(éﬁ) stays < %p(Q),
hence & stays in the lift of D,y /2 in the principal sheet and Ro(&}) stays > () > ¢

If |5f| > %p(Q) e~L/% then the first inequality in shows that n(éf) > %p(ﬂ) e2L/% which
equals &, hence Rq(€!) stays > ¢'.

We infer that £ € Ky (2) for all ¢ € J in both cases (in view of point (a), since & € S
can be represented by the the path T's|t € &g which is obtained by concatenation of [0, s;v(a)]
and 7 € [a,t] — éf and has length < |y(a)| +b—a < L).

t
(e) It only remains to study the partial derivatives gﬁ; (s) which, given t € J, exist for almost

every s € A, by virtue of Rademacher’s theorem. We first prove that for every t € J, s,s' € A,

n

D

i=1

Es) — E)| < () st - sil. (37)
=1

26



Lemma 7.2. Whenever the function n is 1-Lipschitz on C and |v'(7)| < 1 for all T € J, the
vector field X defined by — satisfies

&

n , ' 3 n
;’Xi(T,g) — Xi(r,¢)| < D d) Z} (38)

for any T € J and {,{ € L.

Proof of Lemma[7.3. Let 7 € J and (,{' € 4. For i =1,...,n, we can write

Xi(T’ <,) - Xl(Tvg) = <7I( ;) - 77(@) - (D(Ta C,) - D(Tv C))

with D(T,g) — D(1,¢) = Z?:o (77(&3) — n(&j)), using the notations &0 = (1) = Sn(Q), 56 =
(1) = Sn(¢’). Since n is 1-Lipschitz, we have \77(5;) — n(&])| < |&; — é]] for j =0,...,n and
¢ = Col < 32741 = &I, whence [D(7,¢) = D(7,0)| € S7-/¢ = &5l < 2555415 = ¢ The
result follows because Y ;" 77(51) < D(1,(). O

Proof of inequality . Let us fix 5,8’ € A, and denote by A(t) the left-hand side of , i.e.

A =180, Ault) = ES) — EXs).
=1

For every t € J, we have

By Lemma ((7.2), we get
A®) - A@)] < YA - M) < [ =2 A(r)dr.
2 | 5w

We have seen that D (7,£7(s')) stays > 4 (this was point (b)), thus |A(t) — A(a)| < 2 LfA(T) dr
for all t € J. Gronwall’s lemma yields

A < Aa) D0 te

and, in view of the initial conditions A;(a) = (s} — s;)v(a), (37) is proved. O

f) Let us fix t € J. For any s € A,, at which .t, . ,ét is differentiable, because of (37)), the
1 n

ot
entries of the matrix ¢# = [gg? (g)} satisfy
i li<ij<n

n

D

=1

50| <@l =1
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We conclude by observing that

det( 7)| < (iufi,n) (iw,m) < (0 (a))"

(because the left-hand side is bounded by the sum of the products ‘ o)1 /U(n),n‘ over all
bijective maps o: [1,n] — [1,n], while the middle expression is equal to the sum of the same
products over all maps o: [1,n] — [1,n]). O

Proof of Theorem[1]. Let 6, L > 0 with § < p(Q)/2 and ¢ € K5, (2). We want to prove

1
1%QO1 %% < — QesL/(Sn a LR a b
1% ¢ PO < — (p() ) K?Lgimlml zc?fmm‘

for any n > 1 and ¢1,..., ¢, Eﬁ?g.
We may assume ¢ & Lo, (]D)p(g)) (since the behaviour of convolution products on the principal

sheet is already settled by (5) and ¢ € Log (D,q)) would imply % < p(Q) e3/%). We can then

choose a representative of ¢ in %o which is a C' path, the initial part of which is a line
segment ending in Do) /2 \ Ds; since we prefer to parametrize our paths by arc-length, we take
A: [a,b] — C with 4/(t) = 1 and length(y) =b—a < L, and a € (a,b) such that

e (a) € Dyq))2,

e J(t) = =25(a) for all t € [a, dl,

e dist (3(t),2) > 4 for all t € [a, b].

Now the restriction v of 4 to [a,b] satisfies all the assumptions of Proposition while for-
mula of Proposition for t = b can be interpreted as

: : : : 02!
Legrespn@) = [ o1(ee) - uleho)det [0 dsds. @9
A, 5j 1<i,j<n
The conclusion follows immediately, since the Lebesgue measure of A,, is 1/n!. O

We can now prove the main result which was announced in Section 2]

Proof of Theorem[1 Let 6, L > 0 with § < p(2), n > 1 and ¢1,...,¢p € K. Let € ICs..(2).

We must prove
Gre-x (@) < 2- S 2] Bl
- — . max -+ max .
v Pn ) n! ’C5/’L/(Q) 1 ]CE’,L’ Q) Pn

One can check that any ¢’ € L¢(Ds/o) = { ¢ +w | |w| < §/2} satisfies
¢" € Ko, (), where L' := L + §/2. (40)

Indeed, ¢ is the endpoint of a path « starting from Oq, of length < L, which has Rq (v(t)) > 9.
In particular Rq(¢) > § thus the path ¢ € [0,1] — o(t) == ( + t(&’ - 5) is well-defined. Either

¢ does not lie in the principal sheet of .7, then dist(& ,€) > ¢ implies dist (o(¢), Q) > §/2 and,
by concatenating v and o, we see that holds; or ¢ is in the principal sheet and then we
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can choose 7 contained in the principal sheet and we have at least dist (o(¢), 2\ {0}) > §/2;
if moreover & € Dy then also o is contained in the principal sheet, with Rgq (a(t)) > §/2,

whereas if& & Do) then dist (o(t),{0}) > p(Q) — 6/2 > 6/2, hence again Rqo(o(t)) > 6/2,
thus holds in all cases.
Thus, by Theorem [I],

n

max |[1xQq%---%x0,] < — max |P1]--- max [P
zg(mé/g)‘ #1 #nl < n! /ca,,L,(Q)km' icéfyL,(Q)‘SO”|

with §' = %p(Q) e 4'/% and C == p(Q)eSL'/9, which are precisely the values indicated in ().
The conclusion follows from the Cauchy inequalities. O

Remark 7.3. As far as we understand, there is a mistake in [CNP93], in the final argument
given to bound a determinant analogous to our formula : roughly speaking, these authors
produce a deformation of the standard n-simplex through the flow of an autonomous vector field
in C" (the definition of which is not clear to us) and then use the linear differential equation
satisfied by the Jacobian determinant of the flow; however, they overlook the fact that, since
their vector field is not holomorphic, the Jacobian determinant which can be controlled this
way is the real one, corresponding to the identification C* ~ R?"  whereas the determinant
which appears when computing the integral and that one needs to bound is a complex linear
combination of the n x n minors of the 2n x 2n real Jacobian matrix.

A Appendix: a class of rectifiable currents and their Lipschitz
push-forwards

In this appendix, we single out a few facts from Geometric Measure Theory which are useful
in the proof of our main result. Among the standard references on the subject one can quote
[Fed69], [Sim83], [AKOQ], [Mor09].

For a differentiable manifold M and an integer m > 0, we denote by &, (M) the space of all
m-~dimensional currents with compact support, viewed as linear functionals on the space of all
C*° differential m-forms (with complex-valued coefficients) which are continuous for the usual
family of seminorms (defined by considering the partial derivatives of the coefficients of forms in
compact subsets of charts). In fact, by taking real and imaginary parts, the situation is reduced
to that of real-valued forms and real-valued currents. For us, M = RN or M = S, but in the
latter case, as far as currents are concerned, the local biholomorphism W%” makes the difference
between ./ and C" immaterial, and the complex structure plays no role, so that one loses
nothing when replacing M with R?".

Integration currents associated with oriented compact rectifiable sets

Let m, N € N*. We denote by ™ the m-dimensional Hausdorff measure in RY. A basic
example of m-dimensional current in RY is obtained as follows:

Definition A.1. Let S be an oriented compact m-dimensional rectifiable subset of RN (i.e. S
is compact, F"-almost all of S is contained in the union of the images of countably many
Lipschitz maps from R™ to RN and we are given a measurable orientation of the approzimate
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tangent m—planeéﬁ to S) and, for ™ -a.e. x € S, let T(x) be a unit m-vector orienting the
tangent m-plane at x; then the formula

[S]: o m-form on RY /S<T(.’L’),Oé($)>d%m($) (41)

defines a current [S] € &,(RY), the support of which is S.

This example belongs to the class of integer rectifiable currents, for which the right-hand
side of more generally assumes the form

/S (r(2), o)) A (),

where p is a multiplicity function, i.e. an ™ -integrable function p: S — N*.

One must keep in mind that a rectifiable current is determined by a triple (S, 7, 1) where
the orienting m-vector 7 is tangent to the support S (at .7#™-almost every point); this is
of fundamental importance in what follows (taking an m-vector field 7 which is not tangent
to S almost everywhere would lead to very different behaviours when applying the boundary
operator). In this appendix we shall content ourselves with the case = 1.

An elementary example is [Ax] € &v(RY), with the standard N-dimensional simplex Ay C
RY of Notation oriented by 7 = 371 /AR 6aaTN‘

Push-forward by smooth and Lipschitz maps

The push-forward of a current T € &,(RY) by a smooth map ®: RV — RN is classically
defined by dualizing the pullback of differential forms:

4T () == T(#P), 3 any m-form on R,

which yields @47 € &,(RY").

For an integration current T = [S] as in (41]), we observe that the smoothness of « is
not necessary for the definition of [S](«) to make sense: it suffices that o be defined .727"-
almost everywhere on S, bounded and J#"-measurable. Therefore, in the top-dimensional case
m = N, we can associate with the current [S] € En(RY) a push-forward ¢4[S] € En(RN') by
any Lipschitz map ¢: S — RN, by means of the formula

¢418)(8) = [S|(¢7B), B any N-form on RV (42)

Indeed, Rademacher’s theorem ensures that ¢ is differentiable .7#V-almost everywhere (£
is the Lebesgue measure), with bounded partial derivatives, hence the pullback form OF B is
defined almost everywhere as

ﬁ:ZgIdyll/\.../\dyIN e
I

1 N 0¢"
7B = ;(91 o) dplt Ao AdelV = Z(gl o ¢) det |:(9:L‘j

} N
T 1<ij<N

dat Ao A2V,

8 Recall that, at #™-almost every point of S, the cone of approximate tangent vectors is an m-plane [Fed69,
3.2.19], [Mor09, 3.12]).
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where the sums are over all I = {1 < I} < --- < IN < N'}, the coordinates in RY are
denoted by (y',...,y"') and those in RN by (z',...,z"). The pullback form a = ¢#J has its
coefficients in L>°(RY), hence we can define ¢4[S ]( ) [S](a) by (41).

Having defined ¢4[S] € &n(RY) by formula ([{2), it is worth noticing that ¢4[S] can also

be obtained by a regularization process:

Lemma A.2. Let S be an oriented compact N-dimensional rectifiable subset of RV and let
¢: S — RY' be a Lipschitz map. Consider smooth Lipschitz maps ®;: RN — RN’ ¢ € N,
which have uniformly bounded Lipschitz constants and converge uniformly to ¢ on S as £ — oo.
Then

(D0)£1S1(B) R P [51(8), B any N-form on RN (43)
The proof relies on equicontinuity estimates derived from Reshetnyak’s theoremﬂ which
guarantees that in this situation, not only do we have the weak-* convergence in L>(RY) for
Iy I
the partial derivatives 8;% — %ﬁlﬁ , but also for the minors of the Jacobian matrix: det [?f’; ] -
j * j g *
det [gﬁ? ], whence (I)fﬁ - ¢# B componentwise in LOO(RN ) and follows.

Another case of interest is T = [A(A)] € &,(RY) with m < N, A an oriented compact
m-dimensional rectifiable subset of R™ and A: R™ — R an injective affine map (the unit
m-vector field orienting A(A) is chosen to be a positive multiple of the image of the unit m-
vector field orienting A by the m-linear extension of the linear part of A to A,,,R™). We have
[A(A)] = Ax[A], thus the natural definition of the push-forward of [A(A)] by a Lipschitz map
¢: A(A) = RY is clearly

P4 [A(A)] = (pa)x[A] € En_1(RY),  with ¢4 :=¢oA: A =RV, (44)

Indeed, one easily checks that when ¢ is the restriction to A(A) of a smooth map ®: RY — RV "
the above-defined push-forward ¢4[A(A)] coincides with the classical push-forward ®4[A(A)].
Moreover, also in this case is the regularization process possible: for any sequence of smooth
Lipschitz maps ®;: RN — RN, ¢ € N, which have uniformly bounded Lipschitz constants and
converge uniformly to ¢ on A(A) as ¢ — oo, we have

(@) #[A(A)](B) — dx[A(A)](B), B any N-form on RY' (45)

{—00
(simply because the left-hand side is (®y o A)x[A](f) and we can apply to the sequence
®y o A uniformly converging to ¢ o A on A).
The boundary operator and Stokes’s theorem

The boundary operator is defined by duality on all currents 7' € &, (RN):
IT(a) == T(de), o m-form on RY, (46)

The boundary of an integer rectifiable current 7" is not necessarily an integer rectifiable current; if
it happens to be, then T is called an integral current. An example is provided by oriented smooth
submanifolds M with boundary; Stokes’s theorem then relates the action of the boundary

9See [Evads], § 8.2.4, Lemma on the weak continuity of determinants.
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operator 0 on the corresponding integration currents with the action of the boundary operator 0
of homology: O[M] = [OM] € &p—1(RY).

Another example is provided by the standard simplex Ay C RY of Notation recall that
the orienting unit n-vector field is 7 := 371 A A Bax—N. Stokes’s Theorem yields

8[AN] = [Po] + -+ [FN} € fN_l(RN),

where
ANﬂ{x1+--~+xN:1} if j =0,

. =
7 Ann{z; =0} if 1 <j<n,

with orienting (N — 1)-vectors 7; defined by v; A 7; = 7, where v; is the outward-pointing
unit normal vector field for the piece I'; of 0Ay; with the notation e; = %, the result is
J

T = \/Lﬁ(eg —e1)Aez—e1) A--- A (en — e1) (because vy = (e1 + -+ +en)/V/N) and 7; =

. A
(—1)er A---ANejA---Nep for j > 1 (because v; = —e;).
Observe that one can write

A[AN] = [Ao(An—1)] = [AL(An-1)] + -+ (=DM [AN(An-1)] (47)
with an injective affine map A;: RN=1 RN for each j = 0,..., N (taking Ag(z1,...,on_1) =
(1 — X1 — " — TN-1,L1,y-. .,acN_l) and Aj(.%'l, .. .,xN_l) = (.%'1, .. .,xj_l,O,:Uj, . ,I‘N_l) for

j=1).

The commutation formula ¢40[P] = 0¢4[P]

For any T € &,,(RY) and any smooth map ®: RY — RY', the formula
4IT = 04T € &, 1 (RY) (48)

is a simple consequence of the identity d o ®# = & o d on differential forms. We can also try
to deal with a Lipschitz map ¢ when restricting ourselves to integral currents. The following is
used in the proof of the main result of this article:

Lemma A.3. Let N > 1 and let ¢: Ay — RN be Lipschitz; define px[AN] by means of
and ¢40[AN] by means of and (44). Then

0d4[AN] = ¢4 0[AN].

In fact, it is with P = [0,1] x A,, instead of Ay that this commutation formula is used in
Section moreover, the target space is ./} instead of RN but, as mentioned above, this makes
no difference (just take N’ = 2n). We leave it to the reader to adapt the proof.

Proof of Lemma[A.3. We shall use the notation T = [Ay] € &v(RY). Let 8 be a smooth
(N — 1)-form on RY" and let (®;)sen be any sequence of smooth maps from RY to RY" with
uniformly bounded Lipschitz constants which converges uniformly to ¢ on Ay as £ — oco. Then
the sequence

O(@0)4T(8) = (©0)4T(AB) — ¢4T(dB) = D64 T(B)
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by and . But, by , this sequence coincides with

(D) 40T (5

Mz

Aj(An-1)](B) — 1) ¢4[A;(AN_1)](B) = ¢x0T(B)
JZO ]:0

by and . O
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