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Nonlinear analysis with resurgent functions

David Sauzin

December 18, 2012

Abstract

We provide estimates for the convolution product of an arbitrary number of resurgent
functions, more precisely of Ω-continuable germs, where Ω is a closed discrete subset of the
complex plane which is stable under addition. Such estimates are needed to perform nonlin-
ear operations like substitution in a convergent series, composition or functional inversion
with resurgent functions; they also yield implicitly defined resurgent functions.

1 Introduction

In the 1980s, to deal with local analytic problems of classification of dynamical systems, J. Écalle
started to develop his theory of resurgent functions [Eca81], [Eca84], [Eca93], which is an efficient
tool for dealing with divergent series arising from complex dynamical systems or WKB expan-
sions, analytic invariants of differential or difference equations, linear and nonlinear Stokes phe-
nomena [Mal82], [Mal85], [Eca92], [CNP93], [DP99], [GS01], [OSS03], [Sau06], [Cos09], [Sau10],
[LRR11], [FS11], [Ram12], [DS12].

The starting point is the definition of certain subalgebras of the algebra of formal power
series by means of the formal Borel transform

B : ϕ̃(z) =

∞
∑

n=0

anz
−n−1 ∈ z−1C[[z−1]] 7→ ϕ̂(ζ) =

∞
∑

n=0

an
ζn

n!
∈ C[[ζ]] (1)

(using negative power expansions in the left-hand side and changing the name of the indetermi-
nate from z to ζ are just convenient conventions); it turns out that, for a lot of interesting func-
tional equations, one can find divergent formal solutions whose Borel transforms have positive
radius of convergence and define germs of holomorphic function at 0 with particular properties
of analytic continuation. The simplest examples are the Euler series [CNP93], [Ram12], which
can be written ϕ̃E(z) =

∑∞
n=0 n!z

−n−1 and solves a first-order linear non-homogeneous differ-
ential equation, and the Stirling series [Eca81, Vol. 3] ϕ̃S(z) =

∑∞
k=1

B2k
2k(2k−1)z

−2k+1, solution of
a linear non-homogeneous difference equation derived from the functional equation for Euler’s
Gamma function by taking logarithms. In both examples the Borel transform gives rise to
convergent series with a meromorphic extension to the ζ-plane, namely (1− ζ)−1 for the Euler

series and ζ−2
(

ζ
2 coth

ζ
2 − 1

)

for the Stirling series, but in more complicated situations the ana-

lytic continuation is no longer single-valued (due to nonlinearities); the property which persists
in many interesting situations is rather the possibility of following the analytic continuation
without encountering natural barriers.

One is thus led to distinguish certain subspaces R̂ of C{ζ}, characterized by properties which
ensure a locally discrete set of singularities for each of its members (and which do not exclude
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multiple-valuedness of the analytic continuation), and to consider

R̃ := C⊕ B−1(R̂) ⊂ C[[z−1]].

Typically one has the strict inclusion C{z−1} ( R̃ but the divergent series in R̃ can be
“summed” by means of Borel-Laplace summation. The formal series in R̃ as well as the holo-
morphic functions whose germ at 0 belongs to R̂ are termed “resurgent”.

Later we shall be more specific about the definition of R̂. This article is concerned with
the convolution of resurgent functions: the convolution in C{ζ} is the commutative associative
product defined by

ϕ̂1 ∗ ϕ̂2(ζ) =

∫ ζ

0
ϕ̂1(ζ1)ϕ̂2(ζ − ζ1) dζ1 for |ζ| small enough, (2)

for any ϕ̂1, ϕ̂2 ∈ C{ζ}, which reflects the Cauchy product of formal series via the formal Borel
transform:

Bϕ̃1 = ϕ̂1 and Bϕ̃2 = ϕ̂2 =⇒ B(ϕ̃1ϕ̃2) = ϕ̂1 ∗ ϕ̂2.

Since the theory was designed to deal with nonlinear problems, it is of fundamental importance
to control the convolution product of resurgent functions; however, this requires to follow the
analytic continuation of the function defined by (2), which turns out not to be an easy task.
In fact, probably the greatest difficulties in understanding and applying resurgence theory are
connected with the problem of controlling the analytic continuation of functions defined by such
integrals or by analogous multiple integrals. Even the mere stability under convolution of the
spaces R̂ is not obvious [Eca81], [CNP93], [Ou10], [Sau12].

We thus need to estimate the convolution product of two or more resurgent functions, both
for concrete manipulations of resurgent functions in nonlinear contexts and for the foundations
of the resurgence theory. For instance, such estimates will allow us to check that, when we come
back to the resurgent series via B, the exponential of a resurgent series is resurgent and that
more generally one can substitute resurgent series in convergent power expansions, or define
implicitly a resurgent series. They will also show that the group of “formal tangent-to-identity
diffeomorphisms at ∞”, i.e. the group (for the composition law) z + C[[z−1]], admits z + R̃
as a subgroup, which is particularly useful for the study of holomorphic tangent-to-identity
diffeomorphisms f (in this problem of local holomorphic dynamics, the Fatou coordinates have
the same resurgent asymptotic expansion, the so-called direct iterator f∗ ∈ z + R̃ of [Eca81];
thus its inverse, the inverse iterator, also belongs to z + R̃, and its exponential appears in the
Bridge equation which is connected with the “horn maps”—see [Sau06] or [DS12]).

Such results of stability of the algebra of resurgent series under nonlinear operations are
mentioned in Écalle’s works, however the arguments there are quite sketchy and it seemed
desirable to fill the gaps. This was one of the tasks undertaken in [CNP93] but, despite its merits,
one cannot say that this book clearly settled this particular issue: the proof of the estimates for
the convolution is obscure and certainly contains at least one mistake (see Remark 1.1).

In this article, we shall deal with a particular case of resurgence called Ω-continuability or
Ω-resurgence, which means that we fix in advance a discrete subset Ω of C and restrict ourselves
to those resurgent functions whose analytic continuation has no singular points outside of Ω.
An outline is as follows:

– In Section 2, we recall the precise definition of the corresponding algebras of resurgent func-
tions, denoted by R̂Ω, and state Theorem 1, which is our main result on the control of the
convolution product of an arbitrary number of Ω-continuable functions.
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– In Section 3, we give applications to the construction of a Fréchet algebra structure on R̃Ω

(Theorem 2) and to the stability of Ω-resurgent series under substitution (Theorem 3), im-
plicit function (Theorem 4) and composition (Theorem 5); we also mention other possible
applications.

– The proof of Theorem 1 is given in Sections 4–7.

– Finally, there is an appendix on a few facts of the theory of currents which are used in the
proof of the main theorem.

Our method arose as attempt to understand a rather sketchy appendix of the seminal book
[CNP93]. The point is to represent the analytic continuation of a convolution product as the
integral of a holomorphic n-form on a singular n-simplex obtained as a suitable deformation
of the standard n-simplex; we explain in Sections 4–5 what kind of deformations (“adapted
origin-fixing isotopies” of the identity) are licit in order to provide the analytic continuation
and how to produce them. We found the theory of currents very convenient to deal with our
integrals of holomorphic forms, because it allowed us to content ourselves with little regularity:
the deformations we use are only Lipschitz continuous, because they are built from the flow of
non-autonomous Lipschitz vector fields—see Section 6. Section 7 contains the last part of the
proof, which consists in providing appropriate estimates.

Remark 1.1. As far as we understand, there is a mistake in [CNP93], in the final argument
given to bound a determinant analogous to our formula (32): roughly speaking, these authors
produce a deformation of the standard n-simplex through the flow of an autonomous vector field
in Cn (the definition of which is not clear to us) and then use the linear differential equation
satisfied by the Jacobian determinant of the flow; however, they overlook the fact that, since
their vector field is not holomorphic, the Jacobian determinant which can be controlled this
way is the real one, corresponding to the identification Cn ≃ R2n, whereas the determinant
which appears when computing the integral and that one needs to bound is a complex linear
combination of the n× n minors of the 2n × 2n real Jacobian matrix.

2 The convolution of Ω-continuable germs

Notation 2.1. For any R > 0 and ζ0 ∈ C we use the notations D(ζ0, R) := { ζ ∈ C | |ζ − ζ0| <
R } and

DR := D(0, R), D∗
R := DR \ {0}.

We call “path” any continuous piecewise C1 function γ : J → C, where J = [a, b] is a compact
interval of R.

Let Ω be a closed, discrete subset of C containing 0. We set

ρ(Ω) := min
{

|ω|, ω ∈ Ω \ {0}
}

.

Recall [Sau12] that the space R̂Ω of all Ω-continuable germs is the subspace of C{ζ} which can
be defined by the fact that, for arbitrary ζ0 ∈ Dρ(Ω),

ϕ̂ ∈ R̂Ω ⇐⇒
∣

∣

∣

∣

∣

ϕ̂ germ of holomorphic function of Dρ(Ω) admitting analytic continuation

along any path γ : [0, 1] → C such that γ(0) = ζ0 and γ
(

(0, 1]
)

⊂ C \Ω.
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For example, for the Euler series, resp. the Stirling series, the Borel transform belongs to R̂Ω

as soon as 1 ∈ Ω, resp. 2πiZ∗ ⊂ Ω.
It is convenient to rephrase the property of Ω-continuability as holomorphy on a certain

Riemann surface.

Definition 2.2. Consider the set PΩ of all paths γ : [0, 1] → C such that either γ
(

[0, 1]
)

= {0}
or γ(0) = 0 and γ

(

(0, 1]
)

⊂ C\Ω. We denote by SΩ the set of all equivalence classes of PΩ for
the relation of homotopy with fixed endpoints. The map γ ∈ PΩ 7→ γ(1) ∈ {0} ∪C \Ω passes to
the quotient and defines the “projection”

πΩ : ζ ∈ SΩ →
•

ζ ∈ {0} ∪ C \Ω. (3)

We equip SΩ with the unique structure of Riemann surface which turns πΩ into a local biholo-
morphism. The equivalence class of the trivial path γ(t) ≡ 0 is denoted by 0Ω and called the
origin of SΩ.

We obtain a connected, simply connected Riemann surface SΩ, which is somewhat analogous
to the universal cover of C \Ω except for the special role played by 0 and 0Ω: since we assumed
0 ∈ Ω, the origin of SΩ is the only point which projects onto 0. It belongs to the principal sheet
of SΩ, which is defined as the set of all points ζ which can be represented by a line segment,

i.e. such that the path t ∈ [0, 1] 7→ t
•

ζ belongs to PΩ and represents ζ.
Any holomorphic function of SΩ identifies itself with a convergent germ at the origin of C

which admits analytic continuation along all the paths of PΩ, so that

R̂Ω ≃ O(SΩ)

(see [Eca81], [Sau06]). Usually, we shall use the same symbol ϕ̂ for a function of O(SΩ) or the
corresponding germ of holomorphic function at 0 (i.e. its Taylor series).

From now on we assume that Ω is stable under addition. According to [Sau12], this ensures
that R̂Ω is stable under convolution. Our aim is to provide explicit bounds for the analytic
continuation of a convolution product of two or more factors belonging to R̂Ω.

It is well-known that, if U ⊂ {0}∪ (C\Ω) is open and star-shaped with respect to 0 and two
function ϕ̂1, ϕ̂2 are holomorphic in U , then their convolution product has an analytic continua-
tion to U which is given by the very same formula (2); by induction, one gets a representation
of a product of n factors ϕ̂j ∈ O(U) as an iterated integral, which eventually leads to

|ϕ̂1 ∗ · · · ∗ ϕ̂n(ζ)| ≤
|ζ|n
n!

max
[0,ζ]

|ϕ̂1| · · ·max
[0,ζ]

|ϕ̂n|, ζ ∈ U. (4)

This allows one to control convolution products in the principal sheet of SΩ but, to reach the
other sheets, formula (2) must be replaced by something else, as explained e.g. in [Sau12]. What
about the bounds a product of n factors then? To state our main result, we introduce

Notation 2.3. The function RΩ : SΩ → (0,+∞) is defined by

ζ ∈ SΩ 7→ RΩ(ζ) :=







dist
(•

ζ,Ω \ {0}
)

if ζ belongs to the principal sheet of SΩ

dist
(•

ζ,Ω
)

if not

(5)
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(where
•

ζ is the shorthand for πΩ(ζ) defined by (3)). For δ, L > 0, we set

Kδ,L(Ω) :=
{

ζ ∈ SΩ | ∃ a path γ of SΩ with endpoints 0Ω and ζ, of length ≤ L,

such that RΩ(γ(t)) ≥ δ for all t }. (6)

Informally, Kδ,L(Ω) consists of the points of SΩ which can be joined to 0Ω by a path of
length ≤ L “staying at distance ≥ δ from the boundary”. Observe that

(

Kδ,L(Ω)
)

δ,L>0
is an

exhaustion of SΩ by compact subsets. If L+ δ < ρ(Ω), then Kδ,L(Ω) is just the lift of the closed
disc DL in the principal sheet of SΩ.

Theorem 1. Let Ω ⊂ C be closed, discrete, stable under addition, with 0 ∈ Ω. Let δ, L > 0
with δ < ρ(Ω) and

C := ρ(Ω) e3+6L/δ , δ′ :=
1

2
ρ(Ω) e−2−4L/δ , L′ := L+

δ

2
. (7)

Then, for any n ≥ 1 and ϕ̂1, . . . , ϕ̂n ∈ R̂Ω,

max
Kδ,L(Ω)

|ϕ̂1 ∗ · · · ∗ ϕ̂n| ≤
2

δ
· C

n

n!
· max
Kδ′,L′ (Ω)

|ϕ̂1| · · · max
Kδ′,L′ (Ω)

|ϕ̂n|. (8)

The proof of Theorem 1 will start in Section 4. We emphasize that δ, δ′, L, L′, C do not
depend on n, which is important in applications.

3 Application to nonlinear operations with Ω-resurgent series

3.1 Fréchet algebra structure on R̃Ω

Recall that Ω is a closed discrete subset of C which contains 0 and is stable under addition. The
space of Ω-resurgent series is

R̃Ω = C⊕ B−1(R̂Ω).

As a vector space, it is isomorphic to C× O(SΩ). We now define seminorms on R̃Ω which will
ease the exposition.

Definition 3.1. Let K ⊂ SΩ be compact. We define the seminorm ‖ · ‖K : R̃Ω → R+ by

φ̃ ∈ R̃Ω 7→ ‖φ̃‖K := max
{

|c|,max
K

|ϕ̂|
}

,

where φ̃ = c+ B−1ϕ̂, c ∈ C, ϕ̂ ∈ R̂Ω.

Choosing KN = KδN ,LN
(Ω), N ∈ N∗, with any pair of sequences δN ↓ 0 and LN ↑ ∞ (so that

SΩ is the increasing union of the compact sets KN ), we get a countable family of seminorms
which defines a structure of Fréchet space on R̃Ω. A direct consequence of Theorem 1 is the
continuity of the Cauchy product for this Fréchet structure. More precisely:

Theorem 2. For any K there exist K ′ ⊃ K and C > 0 such that, for any n ≥ r ≥ 0,

‖φ̃1 · · · φ̃n‖K ≤ Cn

r!
‖φ̃1‖K ′ · · · ‖φ̃n‖K ′ (9)

for every sequence (φ̃1, . . . , φ̃n) of Ω-resurgent series, r of which have no constant term.
In particular, R̃Ω is a Fréchet algebra.
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Proof. Let us fix K compact and choose δ, L > 0 so that K ⊂ Kδ,L(Ω). Let δ′, L′ be as in (7)
and K ′ := Kδ′,L′(Ω). According to Theorem 2, we can choose C0 > 0 large enough so that for

any m ≥ 1 and ϕ̃1, . . . , ϕ̃m ∈ B−1(R̂Ω),

‖ϕ̃1 · · · ϕ̃m‖K ≤ Cm
0

m!
‖ϕ̃1‖K ′ · · · ‖ϕ̃m‖K ′ . (10)

Let n ≥ r and and s := n − r. Given n resurgent series among which r have no constant
term, we can label them so that

φ̃1 = c1 + ϕ̃1, . . . , φ̃s = cs + ϕ̃s, φ̃s+1 = ϕ̃s+1, . . . , φ̃n = ϕ̃n,

with c1, . . . , cs ∈ C and ϕ̃1, . . . , ϕ̃n ∈ B−1(R̂Ω). Then

φ̃1 · · · φ̃n =
∑

I

ci1 · · · cipϕ̃j1 · · · ϕ̃jq ϕ̃s+1 · · · ϕ̃n,

where the summation is over all subsets I = {i1, . . . , ip} of {1, . . . , s} (of any cardinality p),
with {j1, . . . , jq} := {1, . . . , s} \ I. Using inequality (10), we get ‖φ̃1 · · · φ̃n‖K ≤

∑

I

Cq+r
0

(q + r)!
|ci1 · · · cip | ‖ϕ̃j1‖K ′ · · · ‖ϕ̃jq‖K ′‖ϕ̃s+1‖K ′ · · · ‖ϕ̃n‖K ′ ≤ A ‖φ̃1‖K ′ · · · ‖φ̃n‖K ′,

with

A =

s
∑

q=0

Cq+r
0

(q + r)!

(

s

q

)

≤ Cr
0

r!

s
∑

q=0

Cq
0

q!

(

s

q

)

≤ Cr
0

r!
(C0 + 1)s,

whence (9) follows with C := C0 + 1.
The continuity of the multiplication in R̃Ω follows, as a particular case when n = 2.

Remark 3.2. R̃Ω is even a differential Fréchet algebra since d
dz induces a continuous derivation

of R̃Ω. Indeed, the very definition of B in (1) shows that

φ̃ = c+ B−1ϕ̂ =⇒ dφ̃

dz
= B−1ψ̂ with ψ̂(ζ) = −ζϕ̂(ζ),

whence ‖dφ̃
dz ‖K ≤ D(K)‖φ̃‖K with D(K) = maxζ∈K |ζ|.

3.2 Substitution and implicit resurgent functions

Definition 3.3. For any r ∈ N∗, we define R̃Ω{w1, . . . , wr} as the subspace of R̃Ω[[w1, . . . , wr]]
consisting of all formal power series

H̃ =
∑

k=(k1,...,kr)∈Nr

H̃k(z)w
k1
1 · · ·wkr

r

with coefficients H̃k = H̃k(z) ∈ R̃Ω such that, for every compact K ⊂ SΩ, there exist positive
numbers AK , BK such that

‖H̃k‖K ≤ AK B
|k|
K (11)

for all k ∈ Nr (with the notation |k| = k1 + · · ·+ kr).
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The idea is to consider formal series “resurgent in z and convergent in w1, . . . , wr”. We
now show that one can substitute resurgent series in such a convergent series. Observe that
R̃Ω{w1, . . . , wr} can be considered as a subspace of C[[z−1, w1, . . . , wr]].

Theorem 3. The space R̃Ω{w1, . . . , wr} is a subalgebra of C[[z−1, w1, . . . , wr]].
Suppose that ϕ̃1, . . . , ϕ̃r ∈ R̃Ω have no constant term. Then for any H̃ =

∑

H̃k w
k1
1 · · ·wkr

r ∈
R̃Ω{w1, . . . , wr}, the series

H̃(ϕ̃1, . . . , ϕ̃r) :=
∑

k∈Nr

H̃k ϕ̃
k1
1 · · · ϕ̃kr

r

is convergent in R̃Ω and, for every compact K ⊂ SΩ, there exist a compact K ′ ⊃ K and a
constant C > 0 so that

‖H̃(ϕ̃1, . . . , ϕ̃r)‖K ≤ CAK ′ eCBK′

(

‖ϕ̃1‖K′+···+‖ϕ̃r‖K′

)

(with notations similar to those of Definition 3.3 for AK ′ , BK ′).
Moreover, the map H̃ ∈ R̃Ω{w1, . . . , wr} 7→ H̃(ϕ̃1, . . . , ϕ̃r) ∈ R̃Ω is an algebra homomor-

phism.

Proof. The proof of the first statement is left as an exercise. Observe that the series of formal
series

χ̃ =
∑

k∈Nr

H̃k ϕ̃
k1
1 · · · ϕ̃kr

r

is formally convergent1 in C[[z−1]], because H̃k ϕ̃
k1
1 · · · ϕ̃kr

r has order ≥ |k|; this is in fact a
particular case of composition of formal series and the fact that the map

H̃ ∈ C̃[[z−1, w1, . . . , wr]] 7→ H̃(ϕ̃1, . . . , ϕ̃r) ∈ C[[z−1]]

is an algebra homomorphism is well-known. The last statement will thus follow from the second
one.

Let us fix K ⊂ SΩ compact. We first choose K ′ and C as in Theorem 2, and then A = AK ′ ,
B = BK ′ so that (11) holds relatively to K ′. For each k ∈ Nr, inequality (9) yields

‖H̃k ϕ̃
k1
1 · · · ϕ̃kr

r ‖K ≤ C |k|+1

|k|! ‖H̃k‖K ′‖ϕ̃1‖k1K ′ · · · ‖ϕ̃r‖krK ′ ≤ CA
(CB)|k|

|k|! ‖ϕ̃1‖k1K ′ · · · ‖ϕ̃r‖krK ′

and the conclusion follows easily.

As an illustration, for φ̃ = c+ ϕ̃ with c ∈ C and ϕ̃ ∈ B−1(R̂Ω), we have

exp(φ̃) = ec
∑

n≥0

1

n!
ϕ̃n ∈ R̃Ω

and, if moreover c 6= 0,

1/φ̃ =
∑

n≥0

(−1)nc−n−1ϕ̃n ∈ R̃Ω.

1A family of formal series in C[[z−1]] is formally summable if it has only finitely many members of order ≤ N

for every N ∈ N. Notice that if a formally summable family is made up of Ω-resurgent series and is summable for
the semi-norms ‖·‖K , then the formal sum in C[[z−1]] and the sum in R̃Ω coincide (because the Borel transform

of the formal sum is nothing but the Taylor series at 0 of the Borel transform of the sum in R̃Ω).

7



For instance, one can take the exponential of the Stirling series ϕ̃S mentioned in the introduction:
we obtain the 2πiZ-resurgence of the divergent series exp(ϕ̃S) which, according to the refined

Stirling formula, is the asymptotic expansion of 1√
2π
z

1
2
−zez Γ(z).

Theorem 4. Let F (x, y) ∈ C[[x, y]] be such that F (0, 0) = 0 and ∂yF (0, 0) 6= 0, and call ϕ(x)
the unique solution in xC[[x]] of the equation

F
(

x, ϕ(x)
)

= 0. (12)

Let F̃ (z, y) := F (z−1, y) ∈ C[[z−1, y]] and ϕ̃(z) := ϕ(z−1) ∈ z−1C[[z−1]], so that ϕ̃ is implicitly
defined by the equation F̃

(

z, ϕ̃(z)
)

= 0. Then

F̃ (z, y) ∈ R̃Ω{y} =⇒ ϕ̃(z) ∈ R̃Ω.

Proof. Without loss of generality we can assume ∂yF (0, 0) = −1 and write

F (x, y) = −y + f(x) +R(x, y)

with f(x) = F (x, 0) ∈ xC[[x]] and a quadratic remainder

R(x, y) =
∑

n≥1

Rn(x)y
n, Rn(x) ∈ C[[x]], R1(0) = 0.

When viewed as formal transformation in y, the formal series θ(x, y) := y − R(x, y) is
invertible, with inverse given by the Lagrange reversion formula: the series

H(x, y) := y +
∑

k≥1

1

k!
∂k−1
y (Rk)(x, y)

is formally convergent (the order of ∂k−1
y (Rk) is at least k+1 because ord(R) ≥ 2) and satisfies

θ
(

x,H(x, y)
)

= y. Rewriting (12) as θ
(

x, ϕ(x)
)

= f(x), we get ϕ(x) = H
(

x, f(x)
)

.
Now, the y-expansion of H can be written

H(x, y) =
∑

m≥1

Hm(x)ym, Hm =
∑

k≥1

(m+ k − 1)!

m! k!

∑

n

Rn1 · · ·Rnk
,

where the last summation is over all k-tuples of integers n = (n1, . . . , nk) such that n1, . . . , nk ≥
1 and n1 + · · ·+ nk = m+ k− 1. If we group together the indices i such that ni = 1, we get an
expression of Hm as a formally convergent series in C[[x]]:

Hm =
∑

r≥0

∑

s≥0
r+s≥1

(m+ r + s− 1)!

m! r! s!

∑

j

Rr
1Rj1 · · ·Rjs , (13)

where the last summation is over all s-tuples of integers j = (j1, . . . , js) such that j1, . . . , js ≥ 2
and j1 + · · ·+ js = m+ s− 1, with an empty summation giving rise to a factor 1 when m = 1
(then we simply get H1 = (1 − R1)

−1). Observe that, if m ≥ 2, one must restrict oneself to

s ≤ m− 1 and that there are (m−2)!
(s−1)!(m−s)! summands in the j-summation.

Replacing x by z−1, we get
ϕ̃(z) = H̃

(

z, f̃(z)
)
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with f̃(z) := f(z−1) ∈ R̃Ω without constant term and H̃(z, y) :=
∑

H̃m(z)yn, H̃m(z) :=
Hm(z−1). In view of Theorem 3 it is thus sufficient to check that H̃ ∈ R̃Ω{y}.

Let K ⊂ SΩ be compact. Setting R̃n(z) := R(z−1) for all n ≥ 1, by Theorem 2 we can

find K ′ ⊃ K compact and C > 0 such that ‖R̃r
1R̃j1 · · · R̃js‖K ≤ Cr+s

r! ‖R̃1‖rK ′‖R̃j1‖K ′ · · · ‖R̃js‖K ′ .

Assuming F̃ (z, y) ∈ R̃Ω{y}, we can find A,B > 0 such that ‖R̃n‖K ′ ≤ ABn for all n ≥ 1.
Enlarging A if necessary, we can assume ABC ≥ 1/4. We then see that the series (13) is
convergent in R̃Ω:

‖H̃m‖K ≤
∑

r≥0

∑

0≤s≤m−1

(m+ r + s− 1)!

m! r! s!

(m− 2)!

(s − 1)!(m− s)!

Cr+s

r!
Ar+sBm+r+s−1

≤ 1

m

∑

r≥0

1

r!

∑

0≤s≤m−1

4m+r+s−1(CA)r+sBm+r+s−1

≤ (4B)m−1
∑

r≥0

1

r!
(4ABC)r+m−1 ≤ αβm,

with α = exp(4ABC) and β = 16AB2C, hence H̃ ∈ R̃Ω{y} as desired.

3.3 The group of resurgent tangent-to-identity diffeomorphisms

One of the first applications by J. Écalle of his resurgence theory was the iteration theory for
tangent-to-identity local analytic diffeomorphisms [Eca81, Vol. 2]. In the language of holomor-
phic dynamics, this corresponds to a parabolic fixed point in one complex variable, for which,
classically, one introduces the Fatou coordinates to describe the dynamics and to define the
“horn map” [Mil06]. In the resurgent approach, one places the variable at infinity and deals
with formal diffeomorphisms: starting from F (w) = w + O(w2) ∈ C{w} or C[[w]], one gets
f(z) := 1/F (1/z) = z +

∑∞
m=0 amz

−m ∈ z + C{z−1} or z + C[[z−1]]. The set

G̃ := z + C[[z−1]]

is a group for the composition law: this is the group of formal tangent-to-identity diffeomor-
phisms.

Convergent diffeomorphisms form a subgroup z+C{z−1}. In the simplest case, one is given
a specific dynamical system z 7→ f(z) = z + α + O(z−1) ∈ z + C{z−1} with α ∈ C∗ and
there is a formal conjugacy between f and the trivial dynamics z 7→ z + α, i.e. the equation
ṽ ◦ f = ṽ+α admits a solution ṽ ∈ G̃ (strictly speaking, an assumption is needed for this to be
true, without which one must enlarge slightly the theory to accept a logarithmic term in ṽ(z);
we omit the details here—see [Eca81], [Sau06]). One can give a direct proof [DS12] that ṽ(z)−z
is Ω-resurgent with Ω = 2πiα−1Z. The inverse of ṽ is a solution ũ of the difference equation
ũ(z + α) = f

(

ũ(z)
)

and the exponential of ṽ plays a role in Écalle’s “bridge equation”, which

is related to the Écalle-Voronin classification theorem and to the horn map (again, we refrain
from giving more details here).

This may serve as a motivation for the following

Theorem 5. Assume that Ω is a closed discrete subset of C which contains 0 and is stable
under addition. Then the Ω-resurgent tangent-to-identity diffeomorphisms make up a subgroup

G̃Ω := z + R̃Ω ⊂ G̃ ,

which contains z + C{z−1}.
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Proof. We must prove that, for arbitrary f̃(z) = z + φ̃(z), g̃(z) = z+ ψ̃(z) ∈ G̃Ω, both f̃ ◦ g̃ and
h̃ := f̃◦(−1) belong to R̃Ω.

We have f̃ ◦ g̃ = g̃ + φ̃ ◦ g̃, where the last term can be defined by the formally convergent
series

φ̃ ◦ g̃ = φ̃+
∑

n≥1

1

n!
ψ̃n

( d

dz

)n
φ̃. (14)

Let K ⊂ SΩ be compact, and let K ′ ⊃ K and C > 0 be as in Theorem 2. We have

‖ψ̃n
( d

dz

)n
φ̃‖K ≤ Cn+1‖ψ̃‖nK ′ ‖

( d

dz

)n
φ̃‖K ′ ≤ Cn+1D(K ′)n‖ψ̃‖nK ′ ‖φ̃‖K ′,

where D(K ′) := maxζ∈K ′|ζ| (by Remark 3.2), hence the series (14) is convergent in R̃Ω, and
‖φ̃ ◦ g̃‖K ≤ C‖φ̃‖K ′ exp

(

CD(K ′)‖ψ̃‖K ′

)

.

As for h̃, the Lagrange reversion formula yields it in the form of a formally convergent series

h̃ = z +

∞
∑

k=1

(−1)k

k!

( d

dz

)k−1
(φ̃k). (15)

We have

‖
( d

dz

)k−1
(φ̃k)‖K ≤ D(K)k−1‖φ̃k‖K ≤ D(K)k−1Ck‖φ̃‖kK ′

(again by Remark 3.2 and Theorem 2), hence the series (15) is convergent in R̃Ω, and ‖h̃−z‖K ≤
C‖φ̃‖K ′ exp

(

CD(K)‖φ̃‖K ′

)

.

Remark 3.4. One can easily deduce from the estimates obtained in the above proof that G̃Ω

is a topological group: composition and inversion are continuous if we transport the topology
of R̃Ω onto G̃Ω by the bijection φ̃ 7→ z + φ̃.

3.4 Other possible applications

In this article, we stick to the simplest case which presents itself in resurgence theory: for-
mal expansions in negative integer powers of z, whose Borel transforms converge and extend
analytically outside a set Ω fixed in advance, but

– the theory of “resurgent singularities” was developed by J. Écalle to deal with much more
general formal objects,

– the condition of Ω-continuability can be substituted with “continuability without a cut” or
“endless continuability” which allow for Riemann surfaces much more general than SΩ [Eca81,
Vol. 3], [CNP93].

The extension to more general Rieman surfaces is necessary in certain problems, particularly
those involving parametric resurgence or quantum resurgence (in relation with semi-classical
asymptotics). To make our method accomodate the notion of continuability without a cut,
one could for instance imitate the way [Ou12] deals with “discrete filtered sets”. The point is
that, when convolving germs in the ζ-plane, the singular points of the analytic continuation of
each factor may produce a singularity located at the sum of these singular points, but being
continuable without a cut means that the set of singular points is locally finite, thus one can
explore sequentially the Riemann surface of the convolution product, considering longer and
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longer paths of analytic continuation and saturating the corresponding Riemann surface by
removing at each step the (finitely many) sums of singular points already encountered.

The formalism of general resurgent singularities also can be accomodated. The reader is
referred to [Eca81] and [Sau06] for the corresponding extension of the definition of convolution.
In short, the formal Borel transform (1), which must be considered as a termwise inverse Laplace
transform, can be generalized by considering the action of the Laplace transform on monomials
like ζα(log ζ)m with m ∈ N and α ∈ C for instance. One is thus led to deal with holomorphic
functions of ζ defined for arbitrarily small nonzero |ζ| but not holomorphic at the origin: one
must rather work in subsets of the Riemann surface of the logarithm before considering their
analytic continuation for large values of |ζ|. If one restricts oneself to functions which are
integrable at 0, like the convergent expansions involving monomials ζα(log ζ)m with ℜeα > −1,
then formula (2) may still be used to define the convolution. To deal with general resurgent
singularities, one must replace it with the so-called convolution of majors. This should be the
subject of another article.

As another possible application, it would be worth trying to adapt our method to the
weighted convolution products which appear in [Eca94]. Their definition is as follows: given a
sequence of pairs B1 = (ω1, b1), B2 = (ω2, b2), etc. with ωn ∈ C and bn ∈ C{ζ} and assuming
that

ω̌n = ω1 + · · ·+ ωn 6= 0, n ∈ N∗,

one defines a sequence ŜB1 , ŜB1,B2 , . . . ∈ C{ζ} by the formulas

ŜB1(ζ) :=
1

ω1
b1

( ζ

ω1

)

, ŜB1,B2(ζ) :=
1

ω1

∫ ζ/ω̌2

0
b1

(ζ − ω2ξ2
ω1

)

b2(ξ2) dξ2,

ŜB1,B2,B3(ζ) :=
1

ω1

∫ ζ/ω̌3

0
dξ3

∫ (ζ−ω3ξ3)/ω̌2

ξ3

dξ2 b1

(ζ − ω2ξ2 − ω3ξ3
ω1

)

b2(ξ2)b3(ξ3), etc.

The general formula is ŜB1,...,Bn(ζ) :=
1

ω1

∫

dξn · · · dξ2 b1(ξ1)b2(ξ2) · · · bn(ξn), where the integral
is taken over

ξn ∈
[

0,
ζ

ω̌n

]

, ξi ∈
[

ξi+1,
ζ − (ωi+1ξi+1 + · · ·+ ωnξn)

ω̌i

]

for i = n− 1, n− 2, . . . , 2

and ξ1 :=
ζ − (ω2ξ2 + · · ·+ ωnξn)

ω̌1
. There is a relation with the ordinary convolution called

symmetrality: if B′ = Bi1 · · ·Bin and B′′ = Bj1 · · ·Bjm , then ŜB′ ∗ ŜB′′
is the sum

∑

ŜB over
all words B belonging to the shuffle of B′ and B′′, e.g.

ŜB1 ∗ ŜB2 = ŜB1,B2 + ŜB2,B1 , ŜB1,B2 ∗ ŜB3 = ŜB1,B2,B3 + ŜB1,B3,B2 + ŜB3,B1,B2 , etc.

It is argued in [Eca94] that the weighted convolutions ŜB1,...,Bn associated with endlessly continu-
able germs b1, b2, . . . are themselves endlessly continuable and constitute the “building blocks”
of the resurgent functions which appear in parametric resurgence or quantum resurgence prob-
lems (see [Sau95] for an example with ωi = 1 for all i). It would thus be interesting and natural
(because the weighted convolution products present themselves as multiple integrals not so dif-
ferent from the n-fold integrals (18) below) to try to deform the integration simplex, in a manner
similar to the one that will be employed for convolution products in Sections 4–7, in order to
control the analytic continuation of ŜB1,...,Br .
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4 The initial n-dimensional integration current

We now begin the proof of Theorem 1. Notice that convolution with the constant germ 1
amounts to integration from 0, according to (2), thus d

dζ (1 ∗ ϕ̂) = ϕ̂ and, by associativity of the
convolution,

ϕ̂1 ∗ · · · ∗ ϕ̂n =
d

dζ

(

1 ∗ ϕ̂1 ∗ · · · ∗ ϕ̂n

)

(16)

for any ϕ̂1, . . . , ϕ̂n ∈ C{ζ}.
We shall now dedicate ourselves to the proof of a statement similar to Theorem 1 for convo-

lution products of the form 1 ∗ ϕ̂1 ∗ · · · ∗ ϕ̂n, with ϕ̂1, . . . , ϕ̂n ∈ O(SΩ); this will be Theorem 1’
of Section 7. The proof of Theorem 1 itself will then follow by the Cauchy inequalities.

It turns out that, for ζ ∈ SΩ close to 0Ω, there is a natural way of representing 1 ∗ ϕ̂1 ∗
· · · ∗ ϕ̂n(ζ) as the integral of a holomorphic n-form over an n-dimensional chain of the complex
manifold S n

Ω ; this is formula (17) of Proposition 4.3, which will be our starting point for the
proof of Theorem 1’.

Notation 4.1. Given ζ ∈ SΩ, we denote by Lζ : DRΩ(ζ) → SΩ the holomorphic map defined
by

Lζ(ξ) := endpoint of the lift which starts at ζ of the path t ∈ [0, 1] 7→
•

ζ + tξ

(so that Lζ(ξ) can be thought of as “the lift of
•

ζ + ξ wich sits on the same sheet of SΩ as ζ”).
We shall often use the shorthand

ζ + ξ := Lζ(ξ)

(beware that, in the latter formula, ξ ∈ DRΩ(ζ) is a complex number but not ζ and ζ + ξ, which
are points of SΩ). If n ≥ 1 and ζ = (ζ1, . . . , ζn) ∈ S n

Ω , we also set

Sn(ζ) :=
•

ζ1 + · · · +
•

ζn ∈ C,

Lζ(ξ) := ζ + ξ :=
(

Lζ1(ξ1), . . . ,Lζn(ξn)
)

∈ S n
Ω

for ξ = (ξ1, . . . , ξn) ∈ Cn close enough to 0 (it suffices that |ξj| < RΩ(ζj); observe that Sn(ζ+ξ) =
Sn(ζ) + ξ1 + · · ·+ ξn).

Notation 4.2. For any n ≥ 1, we denote by ∆n the n-dimensional simplex

∆n := { (s1, . . . , sn) ∈ Rn | s1, . . . , sn ≥ 0 and s1 + · · ·+ sn ≤ 1 }

with the standard orientation, and by [∆n] ∈ En(R
n) the corresponding integration current:

[∆n] : α complex-valued smooth n-form on Rn 7→
∫

∆n

α ∈ C.

For every ζ ∈ Dρ(Ω), we consider the map

D(ζ) : s = (s1, . . . , sn) 7→ D(ζ, s) := 0Ω + (s1ζ, . . . , snζ) ∈ S n
Ω ,

defined in a neighbourhood of ∆n in Rn, and denote by D(ζ)#[∆n] ∈ En(S
n
Ω ) the push-forward

of [∆n] by D(ζ):

D(ζ)#[∆n] : β smooth n-form on S n
Ω 7→ [∆n]

(

D(ζ)#β
)

.
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See Appendix A for our notations in relation with currents. Notice that the last formula
makes sense because D(ζ) is a smooth map, thus the pullback form D(ζ)#β is well-defined in
a neighbourhood of ∆n. The reason for using the language of currents and Geometric Measure
Theory is that later we shall require the push-forward of integration currents by Lipschitz maps
which are not smooth everywhere. The reader is referred to Appendix A for a survey of a few
facts of the theory which will be useful for us.

Proposition 4.3. For ϕ̂1, . . . , ϕ̂n ∈ R̂Ω and ζ ∈ Dρ(Ω), one has

1 ∗ ϕ̂1 ∗ · · · ∗ ϕ̂n(ζ) = D(ζ)#[∆n](β) with β = ϕ̂1(ζ1) · · · ϕ̂n(ζn) dζ1 ∧ · · · ∧ dζn, (17)

where we denote by dζ1 ∧ · · · ∧ dζn the pullback in S n
Ω by π⊗n

Ω : ζ ∈ S n
Ω 7→ ξ =

(•

ζ1, . . . ,
•

ζn
)

of
the n-form dξ1 ∧ · · · ∧ dξn of Cn.

Proof. Since (ζ1, . . . , ζn) ∈ Dn
ρ(Ω) 7→ 0Ω + (ζ1, . . . , ζn) ∈ S n

Ω is an analytic chart which covers a

neighbourhood of D(ζ)(∆n), we can write D(ζ)#β = ϕ̂1(s1ζ) · · · ϕ̂n(snζ)ds1 ∧ · · · ∧ dsn. Since

∆n = { (s1, . . . , sn) ∈ Rn | s1 ∈ [0, 1], s2 ∈ [0, 1− s1], . . . , sn ∈ [0, 1 − (s1 + · · · + sn−1)] }
with the standard orientation, the right-hand side of the identity stated in (17) can be rewritten

ζn
∫ 1

0
ds1

∫ 1−s1

0
ds2 . . .

∫ 1−(s1+···+sn−1)

0
dsn ϕ̂1(s1ζ) · · · ϕ̂n(snζ)

or
∫ ζ

0
dζ1

∫ ζ−ζ1

0
dζ2 . . .

∫ ζ−(ζ1+···+ζn−1)

0
dζn ϕ̂1(ζ1) · · · ϕ̂n(ζn). (18)

When n = 1, formula (17) is thus the very definition of 1 ∗ ϕ̂1(ζ). Writing

1 ∗ ϕ̂1 ∗ · · · ∗ ϕ̂n(ζ) =

∫ ζ

0
dζ1 ϕ̂1(ζ1)

(

1 ∗ ϕ̂2 ∗ · · · ∗ ϕ̂n

)

(ζ − ζ1),

we get the general case by induction.

5 Deformation of the n-dimensional integration current in S n
Ω

In this section, we fix an interval J = [a, b] and a path γ : J 7→ C \ Ω such that γ(a) ∈ D∗
ρ(Ω);

we denote by γ̃ the lift of γ which starts in the principal sheet of SΩ. In order to obtain the
analytic continuation of formula (17), we shall deform the n-dimensional integration current
D(ζ)#[∆n] as indicated in Proposition 5.2 below.

Definition 5.1. Given n ≥ 1, for ζ ∈ C and j = 1, . . . , n, we set

N (ζ) := { ζ ∈ S n
Ω | Sn(ζ) = ζ }, Nj := { ζ = (ζ1, . . . , ζn) ∈ S n

Ω | ζj = 0Ω }.
We call γ-adapted origin-fixing isotopy in S n

Ω any family (Ψt)t∈J of homeomorphisms of S n
Ω

such that Ψa = Id, the map (t, ζ) ∈ J × S n
Ω 7→ Ψt(ζ) ∈ S n

Ω is locally Lipschitz,2 and for any
t ∈ J and j = 1, . . . , n,

ζ ∈ N
(

γ(a)
)

⇒ Ψt(ζ) ∈ N
(

γ(t)
)

,

ζ ∈ Nj ⇒ Ψt(ζ) ∈ Nj.

2By that, we mean that each point of S n
Ω admits an open neighbourhood U on which π⊗n

Ω : S n
Ω → Cn induces

a biholomorphism and such that the map (t, ξ) ∈ J × π⊗n
Ω (U ) 7→ π⊗n

Ω ◦Ψt ◦
(

(π⊗n
Ω )|U

)−1
(ξ) ∈ Cn is Lipschitz.
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Figure 1: Projections of
(

ξt1(s), . . . , ξ
t
n(s)

)

:= Ψt

(

s1γ(a), . . . , snγ(a)
)

= Ψt ◦ D
(

γ(a)
)

(s).

Proposition 5.2. Suppose that (Ψt)t∈J is a γ-adapted origin-fixing isotopy in S n
Ω . Then, for

any ϕ̂1, . . . , ϕ̂n ∈ R̂Ω, the analytic continuation of 1 ∗ ϕ̂1 ∗ · · · ∗ ϕ̂n along γ is given by

(

1 ∗ ϕ̂1 ∗ · · · ∗ ϕ̂n

)(

γ̃(t)
)

=
(

Ψt ◦ D(γ(a))
)

#
[∆n](β), t ∈ J, (19)

with β = ϕ̂1(ζ1) · · · ϕ̂n(ζn) dζ1 ∧ · · · ∧ dζn.

See Figure 1. Observe that, for each t ∈ J , the map Ψt ◦ D
(

γ(a)
)

: ∆n → S n
Ω is Lipschitz,

so that the push-forward
(

Ψt ◦ D(γ(a))
)

#
[∆n] is a well-defined n-dimensional current of S n

Ω

(see Appendix A). The proof of Proposition 5.2 relies on the following more general statement:

Notation 5.3. Given a map C = (C1, . . . , Cn) : J ×∆n → S n
Ω , for each t ∈ J we denote by

Ct : ∆n → S n
Ω the partial map defined by

s ∈ ∆n 7→ Ct(s) := C(t, s)

(not to be confused with the components Cj : J ×∆n → SΩ, j = 1, . . . , n).

Proposition 5.4. Let β be a holomorphic n-form on S n
Ω and

F : ζ ∈ Dρ(Ω) 7→ F (ζ) := D(ζ)#[∆n](β).

Then F is a holomorphic function in Dρ(Ω).
Let C : J ×∆n → S n

Ω be a Lipschitz map3 such that the partial map corresponding to t = a
satisfies

Ca = D
(

γ(a)
)

3in the sense that π⊗n
Ω ◦ C : J ×∆n → Cn is Lipschitz
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and that, for every t ∈ J , s = (s1, . . . , sn) ∈ ∆n and j = 1, . . . , n,

s1 + · · ·+ sn = 1 ⇒ C(t, s) ∈ N
(

γ(t)
)

sj = 0 ⇒ C(t, s) ∈ Nj.

Then F admits analytic continuation along γ and, for each t ∈ J ,

F
(

γ̃(t)
)

= (Ct)#[∆n](β). (20)

The proof of Proposition 5.4 requires the following consequence of the Cauchy-Poincaré
Theorem:

Lemma 5.5. Let M be a complex analytic manifold of dimension n and let N0, N1, . . . , Nn be
complex analytic hypersurfaces of M . Let H : [0, 1] × ∆n → M be a Lipschitz map such that,
for every τ ∈ [0, 1], s = (s1, . . . , sn) ∈ ∆n and j = 1, . . . , n,

s1 + · · · + sn = 1 ⇒ H(τ, s) ∈ N0

sj = 0 ⇒ H(τ, s) ∈ Nj .

Then the partial maps H0 and H1 corresponding to τ = 0 and τ = 1 satisfy

(H0)#[∆n](β) = (H1)#[∆n](β) (21)

for any holomorphic n-form β on M .

Proof of Lemma 5.5. Let β be a holomorphic n-form on M . Let us consider P := [0, 1] × ∆n

and the corresponding (n+1)-dimensional integration current [P ] ∈ En+1(R
n+1). Its boundary

can be written
∂[P ] = Q1 −Q0 +B0 + · · ·+Bn,

where each summand is an n-dimensional current with compact support:

sptQi = {i} ×∆n, sptBj = [0, 1] × Fj

with Fj := the face of ∂∆n defined by sj = 0 if j ≥ 1 or s1 + · · · + sn = 1 if j = 0. This
is a simple adaptation of formula (45) of Appendix A; in fact, Qi = [Ai(∆n)] with an affine
map Ai : x ∈ Rn 7→ (i, x) ∈ Rn+1 and Bj = ±[A∗

j (∆n)] with some other injective affine maps

A∗
j : Rn → Rn+1 mapping ∆n to [0, 1] × Fj . In this situation, according to Lemma A.3 and

formula (42), we have

∂H#[P ] = H#∂[P ], H#Qi = (H ◦ Ai)#[∆n], H#Bj = (H ◦A∗
j )#[∆n].

On the one hand, the Cauchy-Poincaré Theorem tells us that ∂H#[P ](β) = 0 (because dβ = 0),
and H ◦ Ai = Hi, thus

(H0)#[∆n](β)− (H1)#[∆n](β) = H#B0(β) + · · ·+H#Bn(β).

On the other hand sptH#Bj ⊂ Nj and the restriction of β to any complex hypersurface vanishes
identically (because it is a holomorphic form of maximal degree), thus H#Bj(β) = 0, and (21)
is proved.
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Proof of Proposition 5.4. Observe that the function RΩ defined by (5) is continuous, thus we
can define a positive number

R∗ := min
{

RΩ

(

Cj(t, s)
)

| t ∈ J, s ∈ ∆n, j = 1, . . . , n
}

and, for each t ∈ J and ζ ∈ D
(

γ(t), R∗), a Lipschitz map and a complex number

D t(ζ) : s ∈ ∆n 7→ C(t, s) +
(

ζ − γ(t)
)

s ∈ S n
Ω , Gt(ζ) := D t(ζ)#[∆n](β).

For ζ ∈ D
(

γ(a), R∗), we have Da(ζ) = D(ζ), hence Ga(ζ) = F (ζ). For t ∈ J , we have
D t

(

γ(t)
)

= Ct, hence
Gt

(

γ(t)
)

= (Ct)#[∆n](β).

Therefore it suffices to show that, for each t ∈ J ,

i) the function Gt is holomorphic in D
(

γ(t), R∗) (and Ga = F is even holomorphic in Dρ(Ω));

ii) for any t′ ∈ J close enough to t, the functions Gt and Gt′ coincide in a neighbourhood
of γ(t).

i) The case of Ga = F is easier because, for ζ ∈ Dρ(Ω)∪D
(

γ(a), R∗), the range of Da(ζ) = D(ζ)
entirely lies in a domain U = U1×· · ·Un, where each Uj is an open subset of SΩ in restriction
to which πΩ is injective, so that

χ = π⊗n
Ω : (ζ1, . . . , ζn) ∈ U 7→ (ξ1, . . . , ξn) =

(•

ζ1, . . . ,
•

ζn
)

(22)

is an analytic chart of S n
Ω ; we can write χ#β = f(ξ1, . . . , ξn) dξ1 ∧ · · · ∧ dξn with a holomorphic

function f and χ ◦ Da(ζ)(s) = (s1ζ, . . . , snζ), therefore

Ga(ζ) = F (ζ) = ζn
∫

∆n

f(s1ζ, . . . , snζ) ds1 · · · dsn

is holomorphic.
Given t ∈ J , by compactness, we can cover ∆n by simplices Q[m], 1 ≤ m ≤ M , so that any

intersection Q[m]∩Q[m′] is contained in an affine hyperplane of Rn and each Q[m] is small enough
for

⋃

ζ∈D(γ(t),R∗) D t(ζ)
(

Q[m]
)

to be contained in the domain U [m] of an analytic chart χ[m]

similar to (22) (i.e. U [m] is a product of factors on which πΩ is injective and χ[m] is defined by

the same formula as χ but on U [m]). For each m, we can write
(

χ[m]
)#
β = f [m](ξ1, . . . , ξn) dξ1∧

· · · ∧ dξn with a holomorphic function f [m] and χ[m] ◦ D t(ζ) =
(

ξ
[m]
1 (ζ, · ), . . . , ξ[m]

n (ζ, · )
)

with,
for each j = 1, . . . , n,

(ζ, s) ∈ D
(

γ(t), R∗)×Q[m] 7→ ξ
[m]
j (ζ, s) = πΩ ◦ Cj(t, s) + sj

(

ζ − γ(t)
)

.

These functions ξ
[m]
j are holomorphic in ζ; applying Rademacher’s theorem to s 7→ πΩ ◦Cj(t, s)

(recall that t is fixed), we see that, for almost every s, the partial derivatives of ξ
[m]
j exist and

are holomorphic in ζ, therefore

Gt(ζ) =
M
∑

m=1

∫

Q[m]

f [m]
(

ξ
[m]
1 (ζ, s), . . . , ξ[m]

n (ζ, s)
)

det

[

∂ξ
[m]
i

∂sj
(ζ, s)

]

1≤i,j≤n

ds1 · · · dsn
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is holomorphic for ζ ∈ D
(

γ(t), R∗).

ii) We now fix t ∈ J . By compactness, for t′ ∈ J close enough to t, we can write

C(t′, s) = C(t, s) + δ(s)

for all s ∈ ∆n, with

δj(s) := πΩ
(

Cj(t
′, s)− Cj(t, s)

)

∈ DR∗

2n
, j = 1, . . . , n.

Then γ(t′) ∈ D
(

γ(t), R∗/2
)

(because s1 + · · ·+ sn = 1 implies Sn ◦ δ(s) = γ(t′)− γ(t)) and, for
ζ ∈ D

(

γ(t′), R∗/2
)

, we have

Gt(ζ) := D t(ζ)#[∆n](β), Gt′(ζ) := D t′(ζ)#[∆n](β)

with

D t(ζ)(s) = C(t, s) +
(

ζ − γ(t)
)

s, D t′(ζ)(s) = C(t, s) + δ(s) +
(

ζ − γ(t′)
)

s.

Let us define a Lipschitz map H : [0, 1] ×∆n → S n
Ω by

H(τ, s) := C(t, s) + (1− τ)
(

ζ − γ(t)
)

s+ τ
(

δ(s) +
(

ζ − γ(t′)
)

s
)

.

An easy computation yields

s1 + · · ·+ sn = 1 ⇒ Sn ◦H(τ, s) = ζ

sj = 0 ⇒ Hj(τ, s) = 0Ω.

We can thus apply Lemma 5.5 with N0 = N (ζ) and Nj = Nj, and conclude that Gt ≡ Gt′ on
D
(

γ(t′), R∗/2
)

.

Proof of Proposition 5.4. In view of Proposition 4.3, we can apply Proposition 5.4 with β =
ϕ̂1(ζ1) · · · ϕ̂n(ζn) dζ1 ∧ · · · ∧ dζn and Ct = Ψt ◦ D

(

γ(a)
)

.

6 Construction of an adapted origin-fixing isotopy in S n
Ω

To prove Theorem 1, formula (16) tells us that it is sufficient to deal with the analytic continu-
ation of products of the form 1 ∗ ϕ̂1 ∗ · · · ∗ ϕ̂n instead of ϕ̂1 ∗ · · · ∗ ϕ̂n itself, and Proposition 5.2
tells us that, to do so, we only need to construct an explicit γ-adapted origin-fixing isotopy (Ψt)
and to provide estimates.

This section aims at constructing (Ψt) (estimates are postponed to Section 7). Our method
is inspired by an appendix of [CNP93] and is a generalization of Section 6.2 of [Sau12].

Proposition 6.1. Let γ : J = [a, b] → C \ Ω be a path such that γ(a) ∈ D∗
ρ(Ω), and let η : C →

[0,+∞) be a locally Lipschitz function such that

{ ξ ∈ C | η(ξ) = 0 } = Ω.

Then the function

(t, ζ) ∈ J × S n
Ω 7→ D(t, ζ) := η(

•

ζ1) + · · ·+ η(
•

ζn) + η
(

γ(t)− Sn(ζ)
)

(23)
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is everywhere positive and the formula

X(t, ζ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X1 :=
η(

•

ζ1)

D(t, ζ)
γ′(t)

...

Xn :=
η(

•

ζn)

D(t, ζ)
γ′(t)

(24)

defines a non-autonomous vector field X(t, ζ) ∈ Tζ
(

S n
Ω

)

≃ Cn (using the canonical identification
between the tangent space of SΩ at any point and C provided by the tangent map of the local
biholomorphism πΩ) which admits a flow map Ψt between time a and time t for every t ∈ J and
induces a γ-adapted origin-fixing isotopy (Ψt)t∈J in S n

Ω .

An example of function which satisfies the assumptions of Proposition 6.1 is

η(ξ) := dist(ξ,Ω), ξ ∈ C.

Proof of Proposition 6.1. Let us denote by Jk = [tk, tk+1], k = 0, . . . , N−1, subintervals forming
a subdivision of J so that γ is C1 on each Jk.

a) Observe that D
(

t, (ζ1, . . . , ζn)
)

= D̃
(

t, (
•

ζ1, . . . ,
•

ζn)
)

with

(t, ξ) ∈ J × Cn 7→ D̃(t, ξ) := η(ξ1) + · · · + η(ξn) + η
(

γ(t)− S̃n(ξ)
)

(25)

and S̃n(ξ) := ξ1 + · · · + ξn for any ξ ∈ Cn. The function D̃ is everywhere positive: suppose
indeed D(t, ξ) = 0 with t ∈ J and ξ ∈ Cn, we would have

ξ1, . . . , ξn, γ(t)− S̃(ξ) ∈ Ω,

whence γ(t) ∈ Ω by the stability under addition of Ω, but this is contrary to the hypothesis
on γ.

Therefore D > 0, the vector field X is well-defined and in fact

X
(

t, (ζ1, . . . , ζn)
)

= X̃
(

t, (
•

ζ1, . . . ,
•

ζn)
)

with a non-autonomous vector field X̃ defined in J × Cn, the components of which are

X̃j(t, ξ) :=
η(ξj)

D̃(t, ξ)
γ′(t), j = 1, . . . , n. (26)

These functions are locally Lipschitz on Jk × Cn for each k. Therefore, the Cauchy-Lipschitz
theorem on the existence and uniqueness of solutions to differential equations applies to dξ/dt =

X̃(t, ξ) on each interval Jk: for every t∗ ∈ Jk and ξ ∈ Cn, there is a unique maximal solution

t 7→ Φ̃t∗,t(ξ) such that Φ̃t∗,t∗(ξ) = ξ. The fact that the vector field X̃ is bounded implies that

Φ̃t∗,t(ξ) is defined for all t ∈ Jk and the classical theory guarantees that (t∗, t, ξ) 7→ Φ̃t∗,t(ξ) is
locally Lipschitz on Jk × Jk × Cn.

b) For each ω ∈ Ω and j = 1, . . . , n, we set

Ñj(ω) := { ξ = (ξ1, . . . , ξn) ∈ Cn | ξj = ω }.

18



We have X̃j ≡ 0 on Jk × Ñj(ω), thus Φ̃
t∗,t leaves Ñj(ω) invariant for every (t∗, t) ∈ Jk × Jk. In

particular, since 0 ∈ Ω,
ξ ∈ Ñj(0) ⇒ Φ̃t∗,t(ξ) ∈ Ñj(0). (27)

The non-autonomous flow property Φ̃t,t∗ ◦ Φ̃t∗,t = Φ̃t∗,t ◦ Φ̃t,t∗ = Id implies that, for each
(t∗, t) ∈ Jk × Jk, Φ̃

t∗,t is a homeomorphism the inverse of which is Φ̃t,t∗ , which leaves Ñj(ω)
invariant, hence also

ξ ∈ Cn \ Ñj(ω) ⇒ Φ̃t∗,t(ξ) ∈ Cn \ Ñj(ω). (28)

Properties (27) and (28) show that the flow map between times t∗ and t for X is well-defined in
S n

Ω : for ζ ∈ S n
Ω , the solution t 7→ Φt∗,t(ζ) can be obtained as the lift starting at ζ of the path

t 7→ Φ̃t∗,t
(•

ζ1, . . . ,
•

ζn
)

(indeed, each component of this path has its range either reduced to {0}
or contained in C \ Ω). Moreover, if for each t ∈ J we define a homeomorphism of S n

Ω by

Ψt := Φtk ,t ◦ Φtk−1,tk ◦ · · · ◦ Φt0,t1 ,

where k is determined by the condition t ∈ Jk, we get

Ψt(Nj) ⊂ Nj.

Observe that Ψa = Id and (t, ζ) 7→ Ψt(ζ) is locally Lipschitz on J × S n
Ω .

c) It only remains to be proved that

Ψt

(

N (γ(a))
)

⊂ Ψt

(

N (γ(t))
)

(29)

for every t ∈ J .
For ζ ∈ S n

Ω fixed and k = 0, . . . , N − 1, let

ξ0 : t ∈ Jk 7→ γ(t)− Sn ◦Ψt(ζ).

This function is C1 on Jk and an easy computation yields its derivative in the form ξ′0(t) =
h(t)γ′(t)/d(t), with Lipschitz functions

h(t) := η
(

ξ0(t)
)

, d(t) := D
(

t,Ψt(ζ)
)

.

Since η is Lipschitz on the range of ξ0, say with Lipschitz constant K, the function h = η ◦ ξ0 is
Lipschitz on Jk, hence its derivative h′ exists almost everywhere on Jk; writing |h(t′)− h(t)| ≤
K|ξ0(t′)− ξ0(t)|, we see that

∣

∣h′(t)
∣

∣ ≤ K
∣

∣ξ′0(t)
∣

∣ ≤ Kh(t)max
Jk

|γ′

d | a.e., hence

g(t) :=
h′(t)
h(t)

exists a.e. and defines g ∈ L∞(Jk).

By the fundamental theorem of Lebesgue integral calculus, t 7→
∫ t
tk
g(τ) dτ is differentiable a.e.

and

h(t) = h(tk) exp
(

∫ t

tk

g(τ) dτ
)

, t ∈ Jk.

It follows that, for each t ∈ J , h(t) is the product of h(a) and a positive factor. Now, if
ζ ∈ N

(

γ(a)
)

, then ξ0(a) = 0, thus h(a) = 0, thus h ≡ 0 on J , thus ξ0(t) stays in Ω for all t ∈ J ,

thus ξ0 ≡ 0 on J , i.e. Ψt(ζ) ∈ N
(

γ(t)
)

.
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7 Estimates

We are now ready to prove

Theorem 1’. Let δ, L > 0 with δ < ρ(Ω)/2 and

δ′ :=
1

2
ρ(Ω) e−2L/δ . (30)

Then, for any n ≥ 1 and ϕ̂1, . . . , ϕ̂n ∈ R̂Ω,

max
Kδ,L(Ω)

|1 ∗ ϕ̂1 ∗ · · · ∗ ϕ̂n| ≤
1

n!

(

ρ(Ω) e3L/δ
)n

max
Kδ′,L(Ω)

|ϕ̂1| · · · max
Kδ′,L(Ω)

|ϕ̂n|. (31)

The proof of Theorem 1’ will follow from

Proposition 7.1. Let δ, L > 0. Let γ : J = [a, b] → C \ Ω be a path such that γ(a) ∈ D∗
ρ(Ω)/2,

|γ(a)| + b− a ≤ L and

∣

∣γ′(t)
∣

∣ = 1 and dist
(

γ(t),Ω
)

≥ δ, t ∈ J.

Consider the γ-adapted origin-fixing isotopy (Ψt)t∈J defined as in Proposition 6.1 by the flow of
the vector field (24) with the choice η(ξ) = dist(ξ,Ω). Then, for each t ∈ J ,

• the Lipschitz map Ψt ◦D
(

γ(a)
)

= (ξt1, . . . , ξ
t
1) maps ∆n in

(

Kδ′,L(Ω)
)n
, with δ′ as in (30),

• the almost everywhere defined partial derivatives
∂
•
ξti

∂sj
: ∆n → C satisfy

∣

∣

∣

∣

∣

det

[

∂
•

ξti
∂sj

(s)

]

1≤i,j≤n

∣

∣

∣

∣

∣

≤
(

ρ(Ω) e3L/δ
)n

for a.e. s ∈ ∆n. (32)

Proof of Proposition 7.1. We first fix s ∈ ∆n, omitting it in the notations, and study the solution

t ∈ J 7→ ξt := (ξt1, . . . , ξ
t
n) := Ψt

(

D
(

γ(a)
)

(s)
)

of the vector field X defined by (24), the components of the initial condition being ξ0i = 0Ω +
siγ(a).

a) We observe that d
•

ξti/dt = Xi(t, ξ
t) has modulus ≤ 1 for each i = 1, . . . , n, thus the path

t ∈ J 7→
•

ξti has length ≤ b− a and stays in DL.

b) The denominator (23) is
d(t) := D(t, ξt) ≥ δ, t ∈ J.

Indeed, we can write d(t) = η
(•

ξt0
)

+ η
(•

ξt1
)

+ · · · + η
(•

ξtn
)

with
•

ξt0 := γ(t) − Sn(ξ
t), and, since Ω

is stable under addition and
•

ξt0 +
•

ξt1 + · · ·+
•

ξtn = γ(t), the triangle inequality yields

d(t) =

n
∑

i=0

dist
(•

ξti,Ω
)

≥ dist
(

γ(t),Ω
)

,

which is ≥ δ by assumption.
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c) We now check that for t ∈ J and i = 1, . . . , n,

e−L/δ η
(•

ξai
)

≤ η
(•

ξti
)

≤ eL/δ η
(•

ξai
)

. (33)

Since η is 1-Lipschitz, the function hi := η ◦
•

ξti is Lipschitz on J and its derivative exists a.e.;

writing |hi(t′)− hi(t)| ≤ |
•

ξi(t
′) −

•

ξi(t)|, we see that a.e. |h′i(t)| ≤ |
•

ξ′i(t)| = hi(t)/d(t) hence

gi(t) :=
h′
i(t)

hi(t)
exists a.e. and defines gi ∈ L∞(J) with

|gi(t)| ≤ 1/δ for a.e. t ∈ J. (34)

By the fundamental theorem of Lebesgue integral calculus, t 7→
∫ t
a gi(τ) dτ is differentiable a.e.

and

hi(t) = hi(a) exp
(

∫ t

a
gi(τ) dτ

)

, t ∈ J,

whence (33) follows in view of (34).

d) Now, the fact that
•

ξai = siγ(a) ∈ Dρ(Ω)/2 implies that dist
(•

ξai ,Ω \ {0}
)

≥ ρ(Ω)/2, whence

η(
•

ξai ) = dist
(•

ξai ,Ω
)

= |
•

ξai | ≤ ρ(Ω)/2.

If |
•

ξai | < 1
2ρ(Ω) e

−L/δ , then the second inequality in (33) shows that η
(•

ξti) stays < 1
2ρ(Ω),

hence ξti stays in the lift of Dρ(Ω)/2 in the principal sheet and RΩ(ξ
t
i) stays ≥ 1

2ρ(Ω) > δ′.

If |
•

ξai | ≥ 1
2ρ(Ω) e

−L/δ , then the first inequality in (33) shows that η
(•

ξti) ≥ 1
2ρ(Ω) e

−2L/δ which
equals δ′, hence RΩ(ξ

t
i) stays ≥ δ′.

We infer that ξti ∈ Kδ′,L(Ω) for all t ∈ J in both cases (in view of point a, since ξti ∈ SΩ can
be represented by the the path Γs|t ∈ PΩ which is obtained by concatenation of [0, siγ(a)] and

τ ∈ [a, t] 7→
•

ξτi and has length ≤ |γ(a)|+ b− a ≤ L).

e) It only remains to study the partial derivatives
∂ξti
∂sj

(s) which, given t ∈ J , exist for almost

every s ∈ ∆n by virtue of Rademacher’s theorem. We first prove that for every t ∈ J , s, s′ ∈ ∆n,

n
∑

i=1

∣

∣

∣

•

ξti(s
′)−

•

ξti(s)
∣

∣

∣
≤ e3L/δ |γ(a)|

n
∑

i=1

∣

∣s′i − si
∣

∣. (35)

Lemma 7.2. Whenever the function η is 1-Lipschitz on C and |γ′(τ)| ≤ 1 for all τ ∈ J , the
vector field X defined by (23)–(24) satisfies

n
∑

i=1

∣

∣Xi(τ, ζ
′)−Xi(τ, ζ)

∣

∣ ≤ 3

D(τ, ζ ′)

n
∑

i=1

∣

∣

∣

•

ζ ′i −
•

ζ i

∣

∣

∣
(36)

for any τ ∈ J and ζ, ζ ′ ∈ S n
Ω .

Proof of Lemma 7.2. Let τ ∈ J and ζ, ζ ′ ∈ S n
Ω . For i = 1, . . . , n, we can write

Xi(τ, ζ
′)−Xi(τ, ζ) =

(

η
(•

ζ ′i
)

− η
(•

ζ i
)

−
(

D(τ, ζ ′)−D(τ, ζ)
) η

(•

ζ i
)

D(τ, ζ)

)

γ′(τ)

D(τ, ζ ′)
,
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with D(τ, ζ ′) − D(τ, ζ) =
∑n

j=0

(

η
(•

ζ ′j
)

− η
(•

ζj
))

, using the notations
•

ζ0 = γ(τ) − Sn(ζ),
•

ζ ′0 =

γ(τ) − Sn(ζ
′). Since η is 1-Lipschitz, we have |η

(•

ζ ′j
)

− η
(•

ζj
)

| ≤ |
•

ζ ′j −
•

ζj | for j = 0, . . . , n and

|
•

ζ ′0 −
•

ζ0| ≤
∑n

j=1|
•

ζ ′j −
•

ζj |, whence |D(τ, ζ ′)−D(τ, ζ)| ≤ ∑n
j=0|

•

ζ ′j −
•

ζj| ≤ 2
∑n

j=1|
•

ζ ′j −
•

ζj|. The
result follows because

∑n
i=1 η

(•

ζi
)

≤ D(τ, ζ).

Proof of inequality (35). Let us fix s, s′ ∈ ∆n and denote by ∆(t) the left-hand side of (35), i.e.

∆(t) =
n
∑

i=1

|∆i(t)|, ∆i(t) :=
•

ξti(s
′)−

•

ξti(s).

For every t ∈ J , we have

∆i(t) = ∆i(a) +

∫ t

a

(

Xi

(

τ, ξτ (s′)
)

−Xi

(

τ, ξτ (s)
)

)

dτ, i = 1, . . . , n.

By Lemma (7.2), we get

|∆(t)−∆(a)| ≤
n
∑

i=1

|∆i(t)−∆i(a)| ≤
∫ t

a

3

D
(

τ, ξτ (s′)
)∆(τ) dτ.

We have seen that D
(

τ, ξτ (s′)
)

stays ≥ δ (this was point b), thus |∆(t)−∆(a)| ≤ 3
δ

∫ t
a ∆(τ) dτ

for all t ∈ J . Gronwall’s lemma yields

|∆(t)| ≤ ∆(a) e3(t−a)/δ , t ∈ J,

and, in view of the initial conditions ∆i(a) = (s′i − si)γ(a), (35) is proved.

f) Let us fix t ∈ J . For any s ∈ ∆n at which (
•

ξt1, . . . ,
•

ξtn) is differentiable, because of (35), the

entries of the matrix J :=
[

∂
•
ξti

∂sj
(s)

]

1≤i,j≤n
satisfy

n
∑

i=1

∣

∣

∣

∣

∣

∂
•

ξti
∂sj

(s)

∣

∣

∣

∣

∣

≤ e3L/δ |γ(a)|, j = 1, . . . , n.

We conclude by observing that

|det(J )| ≤
(

n
∑

i=1

|Ji,1|
)

· · ·
(

n
∑

i=1

|Ji,n|
)

≤
(

e3L/δ |γ(a)|
)n

(because the left-hand side is bounded by the sum of the products
∣

∣Jσ(1),1 · · ·Jσ(n),n

∣

∣ over all
bijective maps σ : [1, n] → [1, n], while the middle expression is equal to the sum of the same
products over all maps σ : [1, n] → [1, n]).

Proof of Theorem 1’. Let δ, L > 0 with δ < ρ(Ω)/2 and ζ ∈ Kδ,L(Ω). We want to prove

|1 ∗ ϕ̂1 ∗ · · · ∗ ϕ̂n(ζ)| ≤
1

n!

(

ρ(Ω) e3L/δ
)n

max
Kδ′,L(Ω)

|ϕ̂1| · · · max
Kδ′,L(Ω)

|ϕ̂n|
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for any n ≥ 1 and ϕ̂1, . . . , ϕ̂n ∈ R̂Ω.
We may assume ζ 6∈ L0Ω(Dρ(Ω)) (since the behaviour of convolution products on the principal

sheet is already settled by (4) and ζ ∈ L0Ω(Dρ(Ω)) would imply |ζ|
n+1 < ρ(Ω) e3L/δ). We can then

choose a representative path of ζ in PΩ, the initial part of which is a line segment ending in
Dρ(Ω)/2 \ Dδ; since we prefer to parametrize our paths by arc-length, we take γ̃ : [ã, b] → C

piecewise C1 such that γ̃′(t) ≡ 1 and length(γ̃) = b− ã ≤ L, and a ∈ (ã, b) such that

• γ̃(a) ∈ Dρ(Ω)/2,

• γ̃(t) = t−ã
a−ã γ̃(a) for all t ∈ [ã, a],

• dist
(

γ̃(t),Ω
)

≥ δ for all t ∈ [a, b].

Now the restriction γ of γ̃ to [a, b] satisfies all the assumptions of Proposition 7.1, while for-
mula (19) of Proposition 5.2 for t = b can be interpreted as

1 ∗ ϕ̂1 ∗ · · · ∗ ϕ̂n(ζ) =

∫

∆n

ϕ̂1

(

ξb1(s)
)

· · · ϕ̂n

(

ξbn(s)
)

det

[

∂
•

ξbi
∂sj

(s)

]

1≤i,j≤n

ds1 · · · dsn. (37)

The conclusion follows immediately, since the Lebesgue measure of ∆n is 1/n!.

We can now prove the main result which was announced in Section 2.

Proof of Theorem 1. Let δ, L > 0 with δ < ρ(Ω), n ≥ 1 and ϕ̂1, . . . , ϕ̂n ∈ R̂Ω. Let ζ ∈ Kδ,L(Ω).
We must prove

|ϕ̂1 ∗ · · · ∗ ϕ̂n(ζ)| ≤
2

δ
· C

n

n!
· max
Kδ′,L′ (Ω)

|ϕ̂1| · · · max
Kδ′,L′ (Ω)

|ϕ̂n|.

One can check that any ζ ′ ∈ Lζ(Dδ/2) = { ζ + w | |w| < δ/2 } satisfies

ζ ′ ∈ Kδ/2,L′(Ω), where L′ := L+ δ/2. (38)

Indeed, ζ is the endpoint of a path γ starting from 0Ω, of length ≤ L, which has RΩ

(

γ(t)
)

≥ δ.

In particular RΩ(ζ) ≥ δ thus the path t ∈ [0, 1] 7→ σ(t) := ζ + t
(•

ζ ′ −
•

ζ
)

is well-defined. Either

ζ does not lie in the principal sheet of SΩ, then dist(
•

ζ,Ω) ≥ δ implies dist
(

σ(t),Ω
)

≥ δ/2 and,
by concatenating γ and σ, we see that (38) holds; or ζ is in the principal sheet and then we
can choose γ contained in the principal sheet and we have at least dist

(

σ(t),Ω \ {0}
)

≥ δ/2;

if moreover
•

ζ ∈ Dρ(Ω) then also σ is contained in the principal sheet, with RΩ

(

σ(t)
)

≥ δ/2,

whereas if
•

ζ 6∈ Dρ(Ω) then dist
(

σ(t), {0}
)

≥ ρ(Ω) − δ/2 ≥ δ/2, hence again RΩ

(

σ(t)
)

≥ δ/2,
thus (38) holds in all cases.

Thus, by Theorem 1’,

max
Lζ(Dδ/2)

|1 ∗ ϕ̂1 ∗ · · · ∗ ϕ̂n| ≤
Cn

n!
max

Kδ′,L′(Ω)
|ϕ̂1| · · · max

Kδ′,L′(Ω)
|ϕ̂n|

with δ′ := 1
2ρ(Ω) e

−4L′/δ and C := ρ(Ω) e6L
′/δ, which are precisely the values indicated in (7).

The conclusion follows from the Cauchy inequalities.
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A Appendix: a class of rectifiable currents and their Lipschitz

push-forwards

In this appendix, we single out a few facts from Geometric Measure Theory which are useful
in the proof of our main result. Among the standard references on the subject one can quote
[Fed69], [Sim83], [AK00], [Mor09].

For a differentiable manifold M and an integer m ≥ 0, we denote by Em(M) the space of all
m-dimensional currents with compact support, viewed as linear functionals on the space of all
C∞ differential m-forms (with complex-valued coefficients) which are continuous for the usual
family of seminorms (defined by considering the partial derivatives of the coefficients of forms in
compact subsets of charts). In fact, by taking real and imaginary parts, the situation is reduced
to that of real-valued forms and real-valued currents. For us, M = RN or M = S n

Ω , but in the
latter case, as far as currents are concerned, the local biholomorphism π⊗n

Ω makes the difference
between S n

Ω and Cn immaterial, and the complex structure plays no role, so that one loses
nothing when replacing M with R2n.

Integration currents associated with oriented compact rectifiable sets

Let m,N ∈ N∗. We denote by H m the m-dimensional Hausdorff measure in RN . A basic
example of m-dimensional current in RN is obtained as follows:

Definition A.1. Let S be an oriented compact m-dimensional rectifiable subset of RN (i.e. S
is compact, H m-almost all of S is contained in the union of the images of countably many
Lipschitz maps from Rm to RN and we are given a measurable orientation of the approximate
tangent m-planes4 to S) and, for H m-a.e. x ∈ S, let τ(x) be a unit m-vector orienting the
tangent m-plane at x; then the formula

[S] : α m-form on RN 7→
∫

S
〈τ(x), α(x)〉 dH m(x) (39)

defines a current [S] ∈ Em(RN ), the support of which is S.

This example belong to the class of integer rectifiable currents, for which the right-hand side
of (39) more generally assumes the form

∫

S
〈τ(x), α(x)〉µ(x) dH m(x),

where µ is a multiplicity function, i.e. an H m-integrable function µ : S → N∗.
One must keep in mind that a rectifiable current is determined by a triple (S, τ, µ) where

the orienting m-vector τ is tangent to the support S (at H m-almost every point); this is
of fundamental importance in what follows (taking an m-vector field τ which is not tangent
to S almost everywhere would lead to very different behaviours when applying the boundary
operator). In this appendix we shall content ourselves with the case µ ≡ 1.

An elementary example is [∆N ] ∈ EN (RN ), with the standard N -dimensional simplex ∆N ⊂
RN of Notation 4.2 oriented by τ = ∂

∂x1
∧ · · · ∧ ∂

∂xN
.

4Recall that, at H m-almost every point of S, the cone of approximate tangent vectors is an m-plane [Fed69,
3.2.19], [Mor09, 3.12]).
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Push-forward by smooth and Lipschitz maps

The push-forward of a current T ∈ Em(RN ) by a smooth map Φ: RN → RN ′
is classically

defined by dualizing the pullback of differential forms:

Φ#T (β) := T (Φ#β), β any m-form on RN ′
,

which yields Φ#T ∈ Em(RN ′
).

For an integration current T = [S] as in (39), we observe that the smoothness of α is
not necessary for the definition of [S](α) to make sense: it suffices that α be defined H m-
almost everywhere on S, bounded and H m-measurable. Therefore, in the top-dimensional case
m = N , we can associate with the current [S] ∈ EN (RN ) a push-forward φ#[S] ∈ EN (RN ′

) by
any Lipschitz map φ : S → RN ′

, by means of the formula

φ#[S](β) := [S](φ#β), β any N -form on RN ′
. (40)

Indeed, Rademacher’s theorem ensures that φ is differentiable H N -almost everywhere (H N

is the Lebesgue measure), with bounded partial derivatives, hence the pullback form φ#β is
defined almost everywhere as

β =
∑

I

gI dy
I1 ∧ · · · ∧ dyIN =⇒

φ#β =
∑

I

(gI ◦ φ) dφI1 ∧ · · · ∧ dφIN =
∑

I

(gI ◦ φ) det
[

∂φIi

∂xj

]

1≤i,j≤N

dx1 ∧ · · · ∧ xN ,

where the sums are over all I = {1 ≤ I1 < · · · < IN ≤ N ′}, the coordinates in RN ′
are

denoted by (y1, . . . , yN
′
) and those in RN by (x1, . . . , xN ). The pullback form α = φ#β has its

coefficients in L∞(RN ), hence we can define φ#[S](β) = [S](α) by (39).
Having defined φ#[S] ∈ EN (RN ′

) by formula (40), it is worth noticing that φ#[S] can also
be obtained by a regularization process:

Lemma A.2. Let S be an oriented compact N -dimensional rectifiable subset of RN and let
φ : S → RN ′

be a Lipschitz map. Consider smooth Lipschitz maps Φℓ : RN → RN ′
, ℓ ∈ N,

which have uniformly bounded Lipschitz constants and converge uniformly to φ on S as ℓ→ ∞.
Then

(Φℓ)#[S](β) −−−→
ℓ→∞

φ#[S](β), β any N -form on RN ′
. (41)

The proof relies on equicontinuity estimates derived from Reshetnyak’s theorem5 which
guarantees that in this situation, not only do we have the weak-∗ convergence in L∞(RN ) for

the partial derivatives
∂Φ

Ik
ℓ

∂xj
⇀
∗

∂φIk

∂xj
, but also for the minors of the Jacobian matrix: det

[∂φ
Ii
ℓ

∂xj

]

⇀
∗

det
[∂φIi

∂xj

]

, whence Φ#
ℓ β ⇀∗ φ#β componentwise in L∞(RN ) and (41) follows.

Another case of interest is T = [A(∆)] ∈ Em(RN ) with m ≤ N , ∆ an oriented compact
m-dimensional rectifiable subset of Rm and A : Rm → RN an injective affine map (the unit
m-vector field orienting A(∆) is chosen to be a positive multiple of the image of the unit m-
vector field orienting ∆ by the m-linear extension of the linear part of A to ΛmRm). We have

5See [Eva98], § 8.2.4, Lemma on the weak continuity of determinants.
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[A(∆)] = A#[∆], thus the natural definition of the push-forward of [A(∆)] by a Lipschitz map
φ : A(∆) → RN ′

is clearly

φ#[A(∆)] := (φA)#[∆] ∈ EN−1(R
N ′
), with φA := φ ◦ A : ∆ → RN ′

. (42)

Indeed, one easily checks that when φ is the restriction to A(∆) of a smooth map Φ: RN → RN ′
,

the above-defined push-forward φ#[A(∆)] coincides with the classical push-forward Φ#[A(∆)].
Moreover, also in this case is the regularization process possible: for any sequence of smooth
Lipschitz maps Φℓ : RN → RN ′

, ℓ ∈ N, which have uniformly bounded Lipschitz constants and
converge uniformly to φ on A(∆) as ℓ → ∞, we have

(Φℓ)#[A(∆)](β) −−−→
ℓ→∞

φ#[A(∆)](β), β any N -form on RN ′
(43)

(simply because the left-hand side is (Φℓ ◦ A)#[∆](β) and we can apply (41) to the sequence
Φℓ ◦ A uniformly converging to φ ◦ A on ∆).

The boundary operator and Stokes’s theorem

The boundary operator is defined by duality on all currents T ∈ Em(RN ):

∂T (α) := T (dα), α m-form on RN . (44)

The boundary of an integer rectifiable current T is not necessarily an integer rectifiable current; if
it happens to be, then T is called an integral current. An example is provided by oriented smooth
submanifolds M with boundary; Stokes’s theorem then relates the action of the boundary
operator ∂ on the corresponding integration currents with the action of the boundary operator ∂
of homology: ∂[M ] = [∂M ] ∈ Em−1(R

N ).
Another example is provided by the standard simplex ∆N ⊂ RN of Notation 4.2; recall that

the orienting unit n-vector field is τ := ∂
∂x1

∧ · · · ∧ ∂
∂xN

. Stokes’s Theorem yields

∂[∆N ] = [Γ0] + · · ·+ [ΓN ] ∈ EN−1(R
N ),

where

Γj =

∣

∣

∣

∣

∣

∣

∆N ∩ {x1 + · · · + xN = 1} if j = 0,

∆N ∩ {xj = 0} if 1 ≤ j ≤ n,

with orienting (N − 1)-vectors τj defined by νj ∧ τj = τ , where νj is the outward-pointing
unit normal vector field for the piece Γj of ∂∆N ; with the notation ej = ∂

∂xj
, the result is

τ0 = 1√
N
(e2 − e1) ∧ (e3 − e1) ∧ · · · ∧ (eN − e1) (because ν0 = (e1 + · · · + eN )/

√
N) and τj =

(−1)je1 ∧ · · · ∧ ∧
ej ∧ · · · ∧ eN for j ≥ 1 (because νj = −ej).

Observe that one can write

∂[∆N ] = [A0(∆N−1)]− [A1(∆N−1)] + · · ·+ (−1)N [AN (∆N−1)] (45)

with an injective affine map Aj : RN−1 → RN for each j = 0, . . . , N (taking A0(x1, . . . , xN−1) =
(1 − x1 − · · · − xN−1, x1, . . . , xN−1) and Aj(x1, . . . , xN−1) = (x1, . . . , xj−1, 0, xj , . . . , xN−1) for
j ≥ 1).
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The commutation formula φ#∂[P ] = ∂φ#[P ]

For any T ∈ Em(RN ) and any smooth map Φ: RN → RN ′
, the formula

Φ#∂T = ∂Φ#T ∈ Em−1(R
N ′
) (46)

is a simple consequence of the identity d ◦ Φ# = Φ# ◦ d on differential forms. We can also try
to deal with a Lipschitz map φ when restricting ourselves to integral currents. The following is
used in the proof of the main result of this article:

Lemma A.3. Let N ≥ 1 and let φ : ∆N → RN ′
be Lipschitz; define φ#[∆N ] by means of (40)

and φ#∂[∆N ] by means of (45) and (42). Then

∂φ#[∆N ] = φ#∂[∆N ].

In fact, it is with P = [0, 1] ×∆n instead of ∆N that this commutation formula is used in
Section 5; moreover, the target space is S n

Ω instead of RN ′
but, as mentioned above, this makes

no difference (just take N ′ = 2n). We leave it to the reader to adapt the proof.

Proof of Lemma A.3. We shall use the notation T = [∆N ] ∈ EN (RN ). Let β be a smooth
(N − 1)-form on RN ′

and let (Φℓ)ℓ∈N be any sequence of smooth maps from RN to RN ′
with

uniformly bounded Lipschitz constants which converges uniformly to φ on ∆N as ℓ→ ∞. Then
the sequence

∂(Φℓ)#T (β) = (Φℓ)#T (dβ) −−−→
ℓ→∞

φ#T (dβ) = ∂φ#T (β)

by (44) and (41). But, by (46), this sequence coincides with

(Φℓ)#∂T (β) =

N
∑

j=0

(−1)j(Φℓ)#[Aj(∆N−1)](β) −−−→
ℓ→∞

N
∑

j=0

(−1)jφ#[Aj(∆N−1)](β) = φ#∂T (β)

by (45) and (43).
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