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2-Dimensional Wavelet Packet Spectrum for
Texture Analysis

Abdourrahmane M. ATTO1, Yannick BERTHOUMIEU2, Philippe BOLON3,

Abstract—The paper derives a 2-Dimensional spectrum es-
timator from some recent results on the statistical properties
of wavelet packet coefficients of random processes. It provides
an analysis of the bias of this estimator with respect to the
wavelet order. The paper also discusses the performance of this
wavelet based estimator, in comparison with the conventional
2-D Fourier-based spectrum estimator on texture analysis and
content based image retrieval. It highlights the effectiveness of
the wavelet based spectrum estimation.

Keywords – 2-D Wavelet packet transforms; Random
fields; Spectral analysis, Spectrum estimation, Similarity
measurements.

I. INTRODUCTION

WAVELET transforms have become appealing alterna-
tives to the Fourier transform for image analysis and

processing. Indeed, the availability of wavelet atoms with
different shapes and different characteristics (vanishing
moments, compact support, symmetric or non-symmetric,
etc), as well as the wavelet multi-scale decomposition
scheme make wavelets enough flexible for concise/sparse
description of a wide class of images. In this respect,
wavelet transforms are, at present time, extensively used
for the description and the retrieval of image features, in
many imaging systems such as those involved in machine
vision, medical imaging, biometrics, radar and geoscience
applications, etc.

In contrast with this extensive use of wavelets as a repre-
sentation tool, spectral analysis by using wavelet transforms
has not received much interest in the literature whereas
spectral analysis plays a crucial role for characterizing and
understanding textures and natural images.

Spectrum analysis is strongly connected to the distribu-
tion of variances in the frequency domain. In this respect,
references [1], [2], [3], [4] have considered the wavelet
framework in order to derive wavelet based spectra from
subband variances computed at different scales. This yields
a wavelet spectrum definition that can differ from the con-
ventional definition of the Fourier based spectral density
function. Indeed, most wavelet functions have their Fourier
frequency supports spreading over large size supports so
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that a large amount of frequencies contributes in the
corresponding wavelet variances.

The present paper investigates the capability of 2-D
wavelet packets to yield an accurate Power Spectral Density
(PSD) estimator for characterizing second order statistical
properties of random fields. In this paper, we consider
the standard Fourier spectrum as benchmark and seek for
estimating this spectrum by using suitable wavelets. This
positions the Shannon wavelet at the focus of the paper:
as the decomposition level tends to infinity, the bias of the
Shannon wavelet spectrum estimator tends to 0. The bias
of an arbitrary wavelet spectrum estimator then relates to
the closeness of the wavelet under consideration to the
Shannon wavelet. This closeness is measured through a
parameter called wavelet order.

The results derived in the paper are in continuation of
[5] which introduces PSD estimation by using the statistical
properties of the wavelet packet coefficients of random
processes. The paper focuses on presenting the specificities
that follow by dimensionality increasing from [5]:

• the analytic form of the wavelet packet based PSD,
• the singular paths of fractional Brownian fields (Section

III),
• the 2-D wavelet packet PSD estimator (Section IV).

Furthermore, for textured image analysis, the paper pro-
vides experimental results for evaluating the relevance of
spectrum estimation by 1) comparing PSD estimated from
Fourier and wavelet packet methods and 2) performing con-
tent based image retrieval associated with spectral similarity
measurements in the Fourier and wavelet packet domains
(Section V).

II. 2-D WAVELET PACKETS

This section provides a brief introduction to 2-D wavelet
packet transforms. Advanced concepts and algorithms con-
cerning 1D and 2-D wavelet packet analysis can be found in
[6], [7], [8]. The reader is also invited to refer to [9], [10], [11],
[12], [13] (wavelets) and [5], [14] (wavelet packets) for more
details on the statistical properties of wavelet transforms,
when the decomposition relates to a random process.

A. Introduction on 2-D wavelet packets

We consider the 2-D separable wavelet packet decom-
position in a continuous time signal setting for presenting
theoretical results (see [7] for the connection between the
continuous and the discrete wavelet transforms). In this
decomposition, the wavelet paraunitary filters H0 (low-pass,
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scaling filter) and H1 (high-pass, wavelet filter) are used
to split the input functional space U = W0,0 ⊂ L2(R2) into
orthogonal subspaces (subbands):

W0,0 = W1,[0,0] ⊕W1,[1,0] ⊕W1,[0,1] ⊕W1,[1,1],

W j ,[n1,n2]= W j+1,[2n1,2n2] ⊕W j+1,[2n1+1,2n2] ⊕ . . .

⊕W j+1,[2n1,2n2+1] ⊕W j+1,[2n1+1,2n2+1]

for j > 1. The subbands involved in this quad-tree splitting
trick follow from a separable product W j ,[n1,n2] = W j ,n1 ⊗
W j ,n2 of 1D wavelet packet subspaces W j ,n1 and W j ,n2 . We
assume that U is the subspace spanned by an orthonormal
system

{
τ[k1,k2]Φ : (k1,k2) ∈Z2

}
with Φ ∈ L2(R2) and where τ

is the shift operator: τ[k1,k2] f (t1, t2) = f (t1 −k1, t2 −k2).
Denote F f , the Fourier transform of f ∈ L1(R2)∪L2(R2),

with

F f (ω1,ω2) =
∫
R2

f (t1, t2)e−i (ω1t1+ω2t2) dt1 dt2.

Since U does not necessarily depend on the wavelet filters,
we assume in the following that U is the space of functions
having their Fourier transforms with supports in [−π,π]×
[−π,π]. In this respect, Φ is the sinc function:

Φ(t1, t2) = sinc(t1, t2) = sin(πt1)sin(πt2)

π2t1t2
.

The wavelet packet subband W j ,[n1,n2] is, by construc-
tion, the closure of the L2(R2) subspace spanned by the
orthornormal system of wavelet packet functions:{

τ[2 j k1,2 j k2]W j ,[n1,n2] : (k1,k2) ∈Z2} .

Due to separability, the wavelet packet function W j ,[n1,n2]

satisfies:

FW j ,[n1,n2](ω1,ω2) =FW j ,n1 (ω1)FW j ,n2 (ω2). (1)

By decomposing the frequency indices n1,n2 in the form

n1 =
j∑

`=1
ε1
`2 j−`, n2 =

j∑
`=1

ε2
`2 j−`, (2)

with (ε1
`

,ε2
`

) ∈ {0,1}2 for every ` ∈ {1,2, . . . , j }, we have

FW j ,[n1,n2] = H j ,[n1,n2]FΦ, (3)

where the multiscale wavelet packet filter H j ,[n1,n2] applied
to obtain the subband ( j ,n) wavelet packet coefficients is

H j ,[n1,n2](ω1,ω2) =
2∏

i=1
H j ,ni (ωi )

with

H j ,ni (ω) = 2 j /2

[
j∏

`=1
Hεi

`
(2`−1ω)

]
(4)

for εi
`
∈ {0,1}, i = 1,2, where H0 and H1 are the scaling and

the wavelet filter introduced above.
Assume that the scaling filter is with order r : H0 ≡ H r

0 ,
where r is the largest non-negative integer such that [15]

H r
0 (ω) =

(
1+e−iω

2

)r

Q(e iω) (5)

and Q is a polynomial, with the following equality holding
almost everywhere (a.e.):

lim
r→∞H r

0 (ω)
a.e.= HS

0 (ω), (6)

filter HS
0 denoting the scaling filter associated with the

Shannon wavelet. Then the 1D multiscale filters
(
Hr

j ,ni

)
i=1,2

have very tight supports when r is large (see [14, Figure 1]
for illustration). These multiscale filters tend to the Shannon
ideal filters HS

j ,[n1,n2] when r increases (see Eq. (4) and Eq.
(6)). The consequence is that the spectrum of the input
random field is analyzed within a frequency window with
small size. Indeed, the restriction of the support of HS

j ,[n1,n2]

to [−π,π]×[−π,π] is with size 2− j ×2− j . This makes possible
a local analysis of the spectrum, as performed in Section
IV below.

B. Wavelet packet paths

This section presents a specific wavelet packet path
description derived from the binary sequence approach of
[16] for representing nested wavelet packet subspaces. This
description is suitable for establishing asymptotic proper-
ties of 2-D wavelet packets with respect to the increase of
the decomposition level.

For the sake of simplifying notation, 2-D wavelet packets
are commonly presented through a quad-tree structure
where a pair [n1,n2] ∈ {

0,1, . . . ,2 j −1
}2

of frequency indices
is set in a one to one correspondence with an index
n ∈ {

0,1, . . . ,4 j −1
}
. This correspondence leads to a single

frequency indexing of the wavelet packet subbands.
More precisely, this correspondence follows by associat-

ing a quaternary index µ ∈ {0,1,2,3}

µ= 2ε1 +ε2 =


0 if (ε1,ε2) = (0,0)
1 if (ε1,ε2) = (0,1)
2 if (ε1,ε2) = (1,0)
3 if (ε1,ε2) = (1,1)

(7)

to the binary indices (ε1,ε2) ∈ {0,1}2 and by defining:

n = n( j ) =
j∑

`=1
µ`4 j−`. (8)

The above change of variable is a univoque correspon-
dence between (n1,n2) ∈ {

0,1, . . . ,2 j −1
}2

defined by Eq. (2)
and n ∈ {

0,1, . . . ,4 j −1
}

defined by Eq. (8). This correspon-
dence makes it possible to characterize the 4-band tree
structure of the 2-D wavelet packet decomposition with a
single shift parameter n, instead of the more intricate tree
description with double indexed frequency indices.

This characterization also makes it possible to use
a straightforward path based description of the wavelet
packet tree by associating an infinite quaternary sequence
µ = (

µ1,µ2,µ3, . . .
)

to a wavelet packet path P ≡ Pµ and
vice versa or, equivalently, an infinite sequence of frequency
indices n = (n(1),n(2),n(3), . . .), those associated with µ to
P ≡Pn from Eq. (8).

Let (ε1
k )k∈N and (ε2

k )k∈N be the binary sequences as-
sociated with µ from the correspondence given by Eq.
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(7). Then, by taking into account Eq. (2), frequency index
nP ( j ) is also associated with a pair of frequency indices
(n1[P ]( j ),n2[P ]( j )).

In the rest of the paper, we will use notation n,nP ( j ) in
general whereas notation n1,n2,n1[P ]( j ),n2[P ]( j ) will be
used to specify the spatial location of the frequency support
of the wavelet packet subband under consideration.

To end this section, it is worth mentioning that some
specific paths will present singular behavior, depending on
the input random field: the wavelet coefficients of certain
non-stationary random fields on the subbands associated
with these singular paths will remain non-stationary. As a
matter of example,

• The separable fractional Brownian field analyzed in
Section III-B1 admits frequency indices n( j ) such that
n1( j ) = 0 (resp. n2( j ) = 0) for every j as singular
frequency indices. The set of (singular) paths associ-
ated with these frequency indices will be denoted by
Pn/n1=0 (resp. Pn/n2=0).

• The isotropic fractional Brownian field analyzed in
Section III-B2 admits a unique singular path: the ap-
proximation path denoted by P0 and associated with
frequency indices nP0 ( j ) = 0 for every j .

III. 2-D WAVELET PACKETS OF SECOND ORDER RANDOM

FIELDS

A. The case of stationary random fields

Let X = X (t1, t2) be a second-order zero-mean real valued
WSS random field. We assume that X is continuous in
quadratic mean.

The autocorrelation function of X is R(t1, t2, s1, s2) =
E [X (t1, t2)X (s1, s2)]. We assume that R satisfies∫

R4
R(t1, t2, s1, s2)τ[2 j k1,2 j k2]W j ,n(t1, t2)

τ[2 j k1,2 j k2]W j ,n(s1, s2)dt1 dt2 ds1 ds2 <∞.

Under WSS assumption, this autocorrelation function
reduces to a two variable function by using the convention:

R(t1, t2, s1, s2) ≡ R(t1 − s1, t2 − s2) = R(ρ1,ρ2)

where ρi = ti − si for i = 1,2.
We assume that γ=FR exists,

γ(ω1,ω2) =
∫
R2

R(ρ1,ρ2)e−i (ω1ρ1+ω2ρ2) dρ1 dρ2. (9)

Function γ is the PSD of the WSS random field X .
Under assumptions mentioned above, the coefficients of

X on subband W j ,n define a discrete second order random
field

c j ,n[k1,k2]=
∫
R2

X (t1, t2)τ2 j [k1,k2]W j ,n(t1, t2)dt1 dt2. (10)

Random field c j ,n inherits the WSS property of X : the
autocorrelation function R j ,n of c j ,n ,

R j ,n[k1,k2,`1,`2] =
∫
R4

R(t1, t2, s1, s2)τ2 j [k1,k2]W j ,n(t1, t2)

τ2 j [`1,`2]W j ,n(s1, s2)dt1 dt2 ds1 ds2
(11)

reduces to R j ,n[k1,k2,`1,`2] = R j ,n[k1 − `1,k2 − `2] =
R j ,n[m1,m2]. Moreover, if we assume that PSD γ of X
is bounded on the support of FW j ,n , then function
R j ,n[m1,m2] has the form

R j ,n[m1,m2] = 1

4π2

∫
R2
γ(ω1,ω2)|FW j ,n(ω1,ω2)|2

e i 2 j (m1ω1+m2ω2) dω1 dω2.
(12)

B. The case of non-stationary random fields: application to
separable and isotropic fractional Brownian fields

Associating a wavelet packet based PSD to a non-WSS
random field involves finding the WSS subbands (if any)
associated with the decomposition of this field. Specifically,
we consider in this section, the wavelet packet decompo-
sitions of some separable and isotropic constructions of
random fields from the 1D fractional Brownian motion.
Such a random field is called a fractional Brownian field
(fBf).

1) Separable fractional Brownian field: This fBf, hereafter
denoted by X s

α = X s
α(t1, t2), where α is the Hurst parameter,

follows from a separable 2-D extension (cartesian product)
of a 1D fractional Brownian motion. Its autocorrelation
function is

Rs(t1, t2, s1, s2) = σ2

4

(|t1|2α+|s1|2α−|t1 − s1|2α
)

×(|t2|2α+|s2|2α−|t2 − s2|2α
)

where σ is a constant that can be tuned so as to control
the variance of the fBf at a specific spatial coordinates.

Assume that the wavelet function W j ,n = W j ,n(t1, t2) is
with compact support and has (at least) one vanishing-
moment in each variable t1, t2. This assumption is satisfied
for the frequency indices n such that n1 6= 0 and n2 6= 0. The
corresponding subbands (4 j −2 j+1 +1 subbands at decom-
position level j ) are hereafter called detail wavelet packet
subbands since their generating functions have vanishing
moments in each direction.

The following Proposition 1 thus concerns the 4 j −2 j+1+1
detail wavelet packet subbands. In these subbands, the
wavelet packet moments vanish and the autocorrelation
function Rs

j ,n of csj ,n reduces to

Rs
j ,n[k1,k2,`1,`2] =
σ2

4

∫
R4

|t1 − s1|2α|t2 − s2|2ατ[2 j k1,2 j k2]W j ,n(t1, t2)

τ[2 j `1,2 j `2]W j ,n(s1, s2)dt1 dt2 ds1 ds2.

(13)

Assume furthermore that function W j ,n is with compact
support or has sufficiently fast decay, and that the Fourier
transform of W j ,n has a bounded derivative in the neigh-
borhood of the origin, then we can state the following
Proposition 1.

Proposition 1: The discrete random field csj ,n represent-
ing the coefficients of X s

α on W j ,n is WSS when the
frequency index n is such that n1 6= 0 and n2 6= 0. Its
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autocorrelation function Rs
j ,n[k1,k2,`1,`2] = Rs

j ,n[k1−`1,k2−
`2] = Rs

j ,n[m1,m2], is:

Rs
j ,n[m1,m2] =

1

4π2

∫
R2
γs(ω1,ω2)|FW j ,n(ω1,ω2)|2

e i 2 j (m1ω1+m2ω2) dω1 dω2,

(14)

where

γs(ω1,ω2) = σ2Γ2(2α+1)sin2(πα)

|ω1|2α+1 ×|ω2|2α+1 (15)

and the Gamma function is defined by Γ(u) =∫
R+ xu−1e−x dx.

From Proposition 1, we derive that stationarity holds true
for the 4 j −2 j+1 +1 detail wavelet subbands. Let us focus
on the frequency axes, that is when n1 = 0 and n2 6= 0, or
vice versa. For such an index n, we have

Rs
j ,n[k1,k2,`1,`2] =Λs

j ,n[k1,k2,`1,`2]

+ 1

4π2

∫
R2
γs(ω1,ω2)|FW j ,n(ω1,ω2)|2

e i 2 j (m1ω1+m2ω2) dω1 dω2

(16)

where, as above, mi = ki −`i for i = 1,2 and

Λs
j ,n[k1,k2,`1,`2] =

{
M 2α

j ,0,k2
× 2Rs

j ,n2
[m2] if n1 = 0, n2 6= 0

M 2α
j ,0,`1

× 1Rs
j ,n1

[m1] if n2 = 0, n1 6= 0

and M 2α
j ,ni ,ki

is the 2α fractional moment of the 1D wavelet
function τ2 j ki

W j ,ni :

M 2α
j ,0,ki

=
∫
R
|t |2ατ2 j ki

W j ,0(t )dt , (17)

with 1Rs
j ,n1

(resp. 2Rs
j ,n2

) denoting the autocorrelation func-
tion of a 1D section of an fBf (thus a fractional Brownian
motion),

1Rs
j ,n1

[m1] = 1

2π

∫
R
γ∗(ω1)|FW j ,n1 (ω1)|2e i 2 j m1ω1 dω1

when n1 6= 0 and

2Rs
j ,n2

[m2] = 1

2π

∫
R
γ∗(ω2)|FW j ,n2 (ω2)|2e i 2 j m2ω2 dω2,

when n2 6= 0. In these equations, function γ∗ is given by

γ∗(ω) = σ2Γ(2α+1)sin(πα)

|ω|2α+1 . (18)

One can notice the presence of an additive nonstation-
ary term Λs

j ,n[k1,k2,`1,`2] in Eq. (16). This term is a 2α
centered fractional moment of the scaling function W j ,0.
This fractional moment is centered at −2 j k2 when n1 = 0
(resp. at −2 j`1 when n2 = 0). The height of this fractional
moment depends on the scaling function associated with
the wavelet packet decomposition.

Note also that when both n1 = n2 = 0, the nonstationarity
in wavelet coefficients is more intricate, mainly because the
analyzing function has no vanishing moments in neither of
the variables t1, t2.

2) Isotropic fractional Brownian field: This random field,
denoted by X i

α = X i
α(t1, t2) is such that any of its 1D section

by a line segment issued from the origin is a fractional
Brownian motion. Its autocorrelation function is defined
by

Ri(t1, t2, s1, s2) =σ
2

2

(
(t 2

1 + t 2
2 )α+ (s2

1 + s2
2)α

)
−σ

2

2

[
(t1 − s1)2 + (t2 − s2)2]α .

By following a reasoning analog to that of Section III-B1
above, we have

Ri
j ,n[k1,k2,`1,`2] =

−σ
2

2

∫
R4

[
(t1 − s1)2 + (t2 − s2)2]ατ[2 j k1,2 j k2]W j ,n(t1, t2)

τ[2 j `1,2 j `2]W j ,n(s1, s2)dt1 dt2 ds1 ds2
(19)

under integrability condition for the term
(t 2

1 + t 2
2 )αW j ,n(t1, t2) (compact support or sufficiently

fast decay for W j ,n) and provided that n 6= 0 (the wavelet
function W j ,n then have at least one vanishing moment in
some direction).

Furthermore, if FW j ,n(ω1,ω2)/(ω2
1+ω2

2)3/4 is bounded in
the neighborhood of the origin, then we have the following
result:

Proposition 2: The random field cij ,n =
(cij ,n[k1,k2])[k1,k2]∈Z×Z representing subband W j ,n coeffi-

cients of X i
α is WSS for n 6= 0, with autocorrelation function

Ri
j ,n[k1,k2,`1,`2] ≡ Ri

j ,n[k1 −`1,k2 −`2] = Ri
j ,n[m1,m2] given

by:

Ri
j ,n[m1,m2] = 1

4π2

∫
R2
γi(ω1,ω2)|FW j ,n(ω1,ω2)|2

e i 2 j (m1ω1+m2ω2) dω1 dω2,
(20)

where

γi(ω1,ω2) = 2−(2α+1)π2σ2

sin(πα)Γ2(1+α)

1(
ω2

1 +ω2
2

)α+1 . (21)

From Propositions 1 and 2, it follows that:

Remark 1: Except for a few frequency indices given in
Propositions 1 and 2, the autocorrelation function of the
wavelet packet coefficients of separable and isotropic fBfs
can be written in the integral form involved in Eq. (12).

From now on, when no confusion is possible, the auto-
correlation close form given by Eq. (12) will also be used
to denote the autocorrelation function of separable fBf (see
Eq. (14)) or isotropic fBf (see Eq. (20)).

More precisely, when the autocorrelation function of the
wavelet packet coefficients of an arbitrary, non-stationary
random field can be written in the form given by Eq. (12)
for a specific function γ, this function will be called the
spectrum of the random field under consideration.

The following section addresses the estimation of spec-
trum γ. The method proposed relies on the frequency
partitioning induced by the Shannon wavelet packets.
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IV. 2-D WAVELET PACKET BASED SPECTRUM ESTIMATION

The spectrum estimation method presented in this sec-
tion follows from the asymptotic analysis of the autocorre-
lation functions of the 2-D wavelet packet coefficients. This
asymptotic analysis is performed with respect to the wavelet
order r and the wavelet decomposition level j . When r in-
creases, the asymptotic behavior of the sequence of wavelet
functions is driven by the Shannon wavelet functions (see
Eq. (6)). In this respect, we consider the Shannon wavelets
in Section IV-A below and derive asymptotic results with
respect to the wavelet decomposition level. The case of a
wavelet with order r will be considered as an approximation
of the Shannon limiting behavior when r is large enough.

A. Autocorrelation functions of the Shannon wavelet packets
and asymptotic analysis

When the Shannon ideal paraunitary filters are used, the
Fourier transform of the Shannon wavelet packet function
W S

j ,n satisfies:∣∣∣FW S
j ,n(ω1,ω2)

∣∣∣= 2 j 1l∆ j ,G(n1)×∆ j ,G(n2) (ω1,ω2), (22)

where 1lK denotes the indicator function of the set K and
∆ j ,G(n) =∆−

j ,G(n) ∪∆+
j ,G(n), with ∆−

j ,G(n) =−∆+
j ,G(n),

∆+
j ,G(n) =

[
G(n)π

2 j
,

(G(n)+1)π

2 j

]
. (23)

The function G in Eq. (23) is a permutation (see [6], [7] for
details) defined by G(0) = 0 and

G(2`+ε) = 3G(`)+ε−2

⌊
G(`)+ε

2

⌋
, (24)

where bzc is the largest integer less than or equal to z and
ε ∈ {0,1}.

From Eqs. (12), (15), (21), (22), the autocorrelation func-
tions of the Shannon wavelet packet coefficients of the
WSS random field described above, the separable fBf (with
n1 6= 0 and n2 6= 0 when separable fBf is considered) and the
isotropic fBf (assumes (n1,n2) 6= 0 for the isotropic fBf) can
be written in the form

RS
j ,n[m1,m2] = 22 j

π2

∫
∆+

j ,G(n1)×∆+
j ,G(n2)

cos(2 j m1ω1)cos(2 j m2ω2)

γ(ω1,ω2)dω1 dω2
(25)

where γ is the spectrum of the input random field: γ is
given by Eq. (9) for a WSS random field and γ is given by
Eq. (15) (resp. Eq. (21)) for the separable (resp. isotropic)
fBf.

The asymptotic analysis of these autocorrelations when
j tends to infinity is performed by considering a path P

of the 2-D wavelet packet decomposition tree. We assume
that

• P 6=P0 in the case of the isotropic fBf and
• P ∉ {

Pn/n1=0 ∪Pn/n2=0
}

in the case of the separable
fBf.

Thus, the sequence of autocorrelation functions(
RS

j ,nP ( j )

)
j>1

of Shannon wavelet packets in path P

is such that every RS
j ,nP ( j ), for j > 1, has the form given by

Eq. (25).
Let

ω1[P ] = lim
j→+∞

G(n1[P ]( j ))π

2 j
, (26)

ω2[P ] = lim
j→+∞

G(n2[P ]( j ))π

2 j
. (27)

Assume that (ω1[P ],ω2[P ]) is a continuity point of the
spectrum γ. Then, the sequence of autocorrelation func-

tions
(
RS

j ,nP ( j )

)
satisfies:

lim
j→+∞

RS
j ,n[m1,m2] = γ(ω1[P ],ω2[P ])δ[m1,m2] (28)

uniformly in (m1,m2) ∈Z2, where δ[·, ·] is defined by

δ[k1,k2] =
{

1 if k1 = k2 = 0,
0 otherwise.

B. 2-D Wavelet packet based spectrum estimation

The following provides a non-parametric method for
estimating spectrum γ of 2-D random fields on the basis
of the convergence criteria given by Eqs. (6) and (28).

From Eq. (28), it follows that γ(ω1[P ],ω2[P ]) =
lim j→+∞ RS

j ,n[0,0] so that the continuity points of spec-
trum γ can be estimated by subband variances (values{

RS
j ,n[0,0]

}
n

), provided that the Shannon wavelet is used
and j is large enough. Furthermore, we can derive from
the convergence criteria given by Eq. (6), several spectrum
estimators by considering wavelets with finite orders r
(Shannon wavelet corresponds to r =+∞≡ S), the accuracy
of the spectrum estimation being dependent on the wavelet
order as shown in Proposition 3 below.

Assuming a uniform sampling (regularly spaced fre-
quency plane tiling), the method applies upon the following
steps.

2-D Wavelet Packet Spectrum

1) Define a frequency grid composed with frequency
points ( p1π

2 j , p2π

2 j ) for p1, p2 ∈ {
0,1, . . . ,2 j −1

}
(natural

ordering).
2) Compute, from Eqs. (2), (7) and (8) the index n ∈{

0,1, . . . ,4 j −1
}

(corresponding to the wavelet packet
ordering) associated with (p1, p2).

3) Set, for any pair (p1, p2) given in step 1) and the
corresponding n obtained from step 2),

γ̂

(
p1π

2 j
,

p2π

2 j

)
= var[cr

j ,n]. (29)

From a practical point of view, the estimator of
γ

(
p1π

2 j , p2π

2 j

)
given by Eq. (29) assumes i ) approximating the

Shannon wavelet by a suitable wavelet and i i ) estimating
the variance of c j ,n .

Approximating the Shannon wavelet can be performed by
using Daubechies wavelets, depending to the Daubechies
filter order r (see Eq. (5)), the larger the order, the more
relevant the approximation. In practice, Daubechies filters
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with r = 7,8 yield relevant approximations of the Shannon
filters.

Estimating the variance Var[c j ,n] of c j ,n can be performed
by using the standard unbiased variance estimator (also
called unbiased sample variance). In the Section dedicated
to the experimental results, var[c j ,n] will denote this unbi-
ased estimator when formula of Eq. (29) is under consid-
eration.

Assuming that an unbiased variance estimator is used,
the bias of the above sample spectrum estimator depends
on j , r and the spectrum γ shape. More precisely, we have:

Proposition 3: Let X be a zero-mean random field hav-
ing Shannon wavelet packet autocorrelation function of
the form given by Eq. (25). Let p1, p2 ∈ {

0,1, . . . ,2 j −1
}
.

Let n be the frequency index associated with p1, p2 in
the sense of the correspondence ( j ,n) ≡ ( j , [n1,n2]) =(

j , [G−1(p1),G−1(p2)]
)

given in Section II.
Assume that γ is continuous on ∆+

j ,p1
×∆+

j ,p2
and differ-

entiable on the interior of ∆+
j ,p1

×∆+
j ,p2

. Assume that the
standard unbiased estimator of variance is used in Eq. (29).
We have:∣∣∣∣Bias

[
γ̂

(
p1π

2 j
,

p2π

2 j

)]∣∣∣∣6πC∇γ
e

2 j
+ Cγ

4π2 ε
r
j ,n , (30)

where constants e = (p
2+ ln(1+p

2)
)

/3 < 1, C∇γ =
sup∆+

j ,p1
×∆+

j ,p2

∥∥∇γ∥∥, Cγ = sup∆+
j ,p1

×∆+
j ,p2

∣∣γ∣∣ and

εr
j ,n 6

∫
R2

∣∣∣|FW r
j ,n(ω1,ω2)|2 −|FW S

j ,n(ω1,ω2)|2
∣∣∣ dω1 dω2.

The proof sketch is the following.

Proof: The bias of the estimator given by Eq. (29) is:

Bias

[
γ̂

(
p1π

2 j
,

p2π

2 j

)]
= E

[
var[cr

j ,n]
]
−γ

(
p1π

2 j
,

p2π

2 j

)
= Bias

[
var[cr

j ,n]
]
+Var[cr

j ,n] −γ
(

p1π

2 j
,

p2π

2 j

)
. (31)

Thus, if we consider the standard unbiased estimator of
variance (Bias

[
var[cr

j ,n]
]
= 0), we obtain:∣∣∣∣Bias

[
γ̂

(
p1π

2 j
,

p2π

2 j

)]∣∣∣∣6∣∣∣Var
[

cr
j ,n

]
−Var

[
cSj ,n

]∣∣∣
+

∣∣∣∣Var[cSj ,n]−γ
(

p1π

2 j
,

p2π

2 j

)∣∣∣∣ . (32)

On one hand, we have∣∣∣Var[cr
j ,n]−Var[cSj ,n]

∣∣∣6 Cγ

4π2 ×∫
R2

∣∣∣|FW r
j ,n(ω1,ω2)|2 −|FW S

j ,n(ω1,ω2)|2
∣∣∣ dω1 dω2.(33)

On the other hand, we have∣∣∣∣Var[cSj ,n]−γ
(

p1π

2 j
,

p2π

2 j

)∣∣∣∣
= 22 j

π2

∣∣∣∣∣
∫
∆+

j ,p1
×∆+

j ,p2

[
γ(ω1,ω2)−γ

(
p1π

2 j
,

p2π

2 j

)]∣∣∣∣∣ dω1 dω2

6
22 j

π2

∫
∆+

j ,p1
×∆+

j ,p2

∣∣∣∣γ(ω1,ω2)−γ
(

p1π

2 j
,

p2π

2 j

)∣∣∣∣ dω1 dω2.(34)

Since γ is continuous on ∆+
j ,p1

×∆+
j ,p2

and differentiable on
the interior of ∆+

j ,p1
×∆+

j ,p2
, we have, from the mean value

theorem:∣∣∣∣γ(ω1,ω2)−γ
(

p1π

2 j
,

p2π

2 j

)∣∣∣∣6
sup

(u1,u2)∈∆+
j ,p1

×∆+
j ,p2

∥∥∇γ(u1,u2)
∥∥×

√(
ω1 − p1π

2 j

)2

+
(
ω2 − p2π

2 j

)2

(35)

for any (ω1,ω2) ∈∆+
j ,p1

×∆+
j ,p2

, with

∫
∆+

j ,p1
×∆+

j ,p2

√(
ω1 − p1π

2 j

)2

+
(
ω2 − p2π

2 j

)2

dω1 dω2 = e

(
π

2 j

)3

.

(36)
Proposition 3 then follows from Eqs. (32), (33), (34), (35)
and (36).

From Proposition 3, we derive that the bias of the estima-
tor given by Eq. (29) depends on the decomposition level
and wavelet order used. This bias tends to 0 when both j
and r tends to infinity. Notice that εr

j ,n tends to 0 as r tends
to infinity, ∀ j ,n, due to the convergence of the filter Hr

j ,n

to the Shannon filter HS
j ,n as r tends to infinity.

V. EXPERIMENTAL RESULTS

This section provides experimental results on spectral
analysis of textures. Section V-A addresses the quality of
the wavelet packet spectrum estimator to capture textural
information. Section V-B provides quantitative evaluation
of the wavelet packet spectrum estimator in the framework
of content based image retrieval.

A. Spectral analysis and spectral texture contents

Wavelet packet spectra1 of some texture images are pro-
vided in Figures 1 and 2. The wavelet packet spectra have
been computed from the method given in Section IV-B,
where the decomposition level is 6 and the Daubechies
wavelet with order r = 7 is used. Spectra computed from
the Fourier transform are also given in this figure, for
comparison purpose.

From a visual analysis of images given in Figures 1 and
2 (by focusing on image interpretation without watching
spectra given in the same figures), one can remark that most
of these textures exhibit non-overlapping textons replicat-
ing repeatedly: thus, coarsely, we can distinguish several
frequencies having significant variance contributions (from
a theoretical consideration), when the texture does not
reduce to the replications of a single texton.

In addition, when these textons occupy approximately
the same spatial area (see for instance “Fabric” textures in
Figure 2), the frequencies with high variance contributions
(peak in the spectrum) are close in terms of their spatial
location (from a theoretical consideration).

1Colors represented in Figures 1 and 2 are simulated from a light source
in order to ease 3-D visualization: red color [value 1] corresponds to fully
illuminated shapes whereas blue color [value 0] is associated to shaded
areas, green color corresponds to value 0.5.
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FT-PSD “D3”

“D3” / Brodatz

WP-PSD “D3”

FT-PSD “D10”

“D10” / Brodatz

WP-PSD “D10”

FT-PSD “D17”

“D17” / Brodatz

WP-PSD “D17”

Fig. 1. Textures images and their spectra γ̂ computed by using discrete Fourier and wavelet packet transforms. Abscissa of the spectra images consist
of a regular grid over [0,π/2]× [0,π/2].

The above heuristics, issued from visual image analysis,
are confirmed by considering the wavelet packet spectra
(see for instance spectra of “Fabric” textures in Figure
2), whereas, in most cases, the two dimensional discrete
Fourier transform exhibits only one peak.

One can highlight that the poorness of the Fourier spectra
is not due to a lack of resolution in the sampling step of
the Fourier transform. This poorness can be explained by
noting that Fourier transform is sensitive to global spatial
regularity. In contrast wavelet packets can capture local
spatial regularity and lead to a more informative spectrum
estimator when several frequencies contribute in texture

variance distribution.

Remark 2: In the above experimental results, we have
considered a regular frequency grid over [0,π]× [0,π]. Con-
sequently, we have performed a uniform sampling of the
spectrum of the input texture.

Note that when we have some a priori on the spectrum
shape, we can apply a non-uniform sampling scheme by
simply focusing on the particular tree structure associ-
ated with the subbands-of-interest. These subbands are
those associated with wavelet packet functions having tight
Fourier transform support across the frequencies where the
spectrum exhibits sharp components.
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FT-PSD “D87”

“D87” / Brodatz

WP-PSD “D87”

FT-PSD “Fabric.09”

“Fabric.09” / VisTeX

WP-PSD “Fabric.09”

FT-PSD “Fabric.11”

“Fabric.11” / VisTeX

WP-PSD “Fabric.11”

Fig. 2. Textures images and their spectra γ̂ computed by using discrete Fourier and wavelet packet transforms. Abscissa of the spectra images consist
of a regular grid over [0,π/2]× [0,π/2].

As a matter of example: by considering the spectrum of
texture “D87” (see Figure 2), we can estimate accurately
this spectrum by using a large amount of samples in
[0,π/4] × [0,π/4] and very few samples in [0,π] × [0,π] \
[0,π/4] × [0,π/4]. The corresponding wavelet packet de-
composition concerns fewer subbands than a full wavelet
packet decomposition and is thus with less computational
complexity.

B. Content based image retrieval by using spectral texture
features

Section V-A have shown qualitatively that wavelet packets
are relevant in analyzing textures with rich spectral content.
In this section, we evaluate the contribution of wavelet
packets in Content Based Image Retrieval (CBIR) from a
database composed with such textures.

The database under consideration is composed with
M = 94 images associated with the 6 texture classes given
in Figures 1 and 2. These M images are obtained from
the splitting of every ‘large’ texture image into 16 non-
overlapping images. An image from the database thus has
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160 × 160 pixels when it pertains to one of the classes
“D3”, “D10”, “D17” or “D87” and 128×128 pixels for classes
“Fabric.09” and “Fabric.11” (the larger images have 640×640
pixels in the Brodatz album and 512 × 512 pixels in the
VisTeX album).

In order to compare a query image Iq with an arbitrary
image I`, 16 q,`6 M , we use the Log-Spectral distance and
the symmetric version of the Kullback-Leibler divergence.
For images I1, I2 with sample spectra γ1,γ2, their Log-
Spectral distance is given by

LS(γ1,γ2) ∝
(∑

q,`
log

(
γ2

1(ωq ,ω`)

γ2
2(ωq ,ω`)

))1/2

(37)

and their symmetric Kullback-Leibler divergence is defined
by

K L(γ1,γ2) = K L(γ1||γ2)+K L(γ2||γ1) (38)

where

K L(γ1||γ2) ∝∑
q,`
γ1(ωq ,ω`) log

(
γ1(ωq ,ω`)

γ2(ωq ,ω`)

)
Table I provides the CBIR retrieval rates per texture and

the average CBIR retrieval rate over the 6 texture classes.
In this table, the above spectral similarity measurements
are computed upon discrete Fourier, wavelet and wavelet
packet spectra. The Daubechies wavelet of order r = 7 and
j = 4 have been used to compute wavelet and wavelet
packet spectra from Eq. (29).

This table emphasizes

• the suitability of wavelet based approaches, in com-
parison with the Fourier approach,

• the sensitivity of the wavelet transform to the similar-
ity measures considered, which may follow from the
coarse-irregular spectrum sampling induced by using
wavelet method.

• the good performance of the wavelet packet spectral
analysis for the Log-Spectral and Kullback-Leibler sim-
ilarity measurements.

One can note that the wavelet transform is a particular
case of the wavelet packet transform so that the wavelet
spectrum can be seen through the wavelet packet spectrum
by zooming on the neighborhood of the zero frequency.
This wavelet spectrum thus follows from a non-uniform
sub-sampling of the wavelet packet spectrum (non-regular
frequency grid). From similarity evaluations, this sampling
scheme can be interpreted as a binary sparse weighting,
where the non-zero values are concentrated in low fre-
quencies. This sampling scheme consequently penalizes
highly medium and high frequencies. This strategy is suit-
able for textures with spectral supports localized in the
neighborhood of zero (up to 90 % of textures from natural
images). However, this strategy can justify the contrasted
results obtained by using the wavelet transform for the
tests performed upon the database of Table I: the spectral
content of these textures is not restricted to low frequencies.

In addition to the above binary weighting regarding
spectra sample points, the log function involved in Log-
Spectral and Kullback-Leibler measures impacts differently

the sample spectra γ1(ωq ,ω`),γ2(ωq ,ω`) under compari-
son. Indeed, for large values of γ1(ωq ,ω`)/γ2(ωq ,ω`), the
log function imposes a higher penalty in Kullback-Leibler
measurements than in Log-Spectral measurements.

TABLE I
RETRIEVAL RESULTS PER TEXTURE AND AVERAGE RETRIEVAL RESULTS FOR THE

6 TEXTURE CLASSES GIVEN IN FIGURES 1 AND 2. EXPERIMENTAL RESULTS ARE

PERFORMED WITH THE LOG-SPECTRAL SPECTRAL DISTANCE AND THE

KULLBACK-LEIBLER DIVERGENCE. SPECIFICALLY, FT, WT AND WPT
DESIGNATE THE DISCRETE FOURIER, WAVELET AND WAVELET PACKET

TRANSFORMS, RESPECTIVELY.

Measure: Log-Spectral Kullback-Leibler
Texture
D3
D10
D17
D87
Fabr.09
Fabr.11

FT
44.5
71.5
93.0
77.3
84.4
69.5

WT
88.7
82.8
100
100
100

95.7

WPT
99.2
90.2
99.6
96.1
83.6
77.0

FT
39.5
90.6
100

87.9
82.8
74.6

WT
58.2
58.2
99.6
87.5
80.5
73.4

WPT
91.0
85.6
100

99.2
98.1
97.3

VI. CONCLUSION

Two issues are addresses in the paper: (i ) associating a
PSD to the wavelet packet coefficients of random fields and
(i i ) estimating this PSD from the statistical properties of the
wavelet packet coefficients.

Issue (i ) has been addressed for stationary random fields
and some non-stationary fractional Brownian fields. Issue
(i i ) has been tackled from asymptotic properties of the
Shannon wavelet packets and the spectrum estimation
method proposed is more effective for wavelet filters with
large order.

The PSD estimation method derived in the paper has
shown relevancy in estimating the PSD of texture images.
This method outperforms Fourier based spectral estimation
when the textures under consideration have substantial
spectral content (when spectrum do not reduces to a peak
at single frequency).

Prospects regarding this work may concern:

(p1) The extension of the method to adaptive sampling
of the PSD: a best basis can be derived in order
to achieve an efficient strategy. Indeed, the experi-
mental results have shown that for many textures,
a large frequency domain is unoccupied whereas
estimating several spectrum sample points in this
domain could increase estimation errors due to
the decimation step involved by the wavelet packet
decomposition.

(p2) The extension of the method with respect to non-
orthogonal wavelet packet transforms: the redun-
dancy of these transforms will probably benefit to
the spectrum estimation. Note that the spectrum
needs to be defined with respect to the transform
and its estimation cannot reduce to variances per
subbands unless any given subband has been
processed accordingly.

Some applications of the method are:

(a1) Hurst parameter estimation for self-similar medi-
cal images, see for instance [2].
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(a2) texture modeling by using Wold decompositions
[17], [18]: estimation the poles of the spectrum is
necessary to determine the spectral singularities
involved in the deterministic texture contribution.
These poles are associated with peaks of the spec-
trum and their number, as well as their location
determines the accuracy of the modeling.

(a3) Spread-spectrum image watermarking [19], [20],
[21], [22], [23], textural change detection by using
spectral distances [24], among other references.

We conclude by noting that the wavelet packet decompo-
sition tree can be chosen adaptively with respect to the
spectrum shape in order to makes possible non-uniform
sampling schemes: the analysis performed in the paper
suggests estimating the spectrum from 1) a full wavelet
packet decomposition especially for applications involving
images with rich spectral contents (for instance when the
input image has many spectral singularity points, as in
the case of the multifractional brownian fields) and 2) a
sub-tree of the full wavelet packet tree, this sub-tree being
deleafed in frequency domains associated with less spectral
information (in particular, a wavelet spectrum follows from
a non-uniform sampling grid associated with a tree that
expands mainly in low frequencies).
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