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1 Introduction

A deceptively simple way to modify general relativity in the infrared is to give the graviton

a small mass. Massive gravity is a subject with a long history, and a most recent wave of

interest comes from a possibility that it may provide a technically natural solution to the

cosmological constant problem, see e.g. [1] and references therein. The theory is, however,

plagued by many difficulties. One of them is that generical non-linear completions of the

Fierz-Pauli linear theory propagate an additional scalar degree of freedom with various

pathologies, the so called Boulware-Deser ghost [2]. Perturbatively, the ghost manifests

itself as a scalar field with a wrong sign kinetic term. Despite this, the ghost was argued [3]

to play a role in the Vainshtein mechanism [4] of alleviating the so-called van Dam-Veltman-

Zakharov discontinuity [5]. A related difficulty with massive gravity is that the theory

becomes strongly coupled at a very low energy scales [6].

Recently de Rham, Gabadadze and Tolley [7–9] suggested that a certain non-linear

completion of the Fierz-Pauli theory is free from the ghost degree of freedom. Moreover, it
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was argued that the Vainshtein mechanism is still at play, and that the cut-off is raised to a

much larger energy scale, so that the ghost free massive gravity can in particular be trusted

in the Vainshtein mechanism region.1 A non-perturbative formulation of the action was

given in [11–14], including its natural description as a sector of a bi-metric theory of gravity,

with the action being the sum of two Einstein-Hilbert actions for the two metrics, g+µν and

g−µν , plus a local interaction V (g+µρg−ρν) between them. Linear combinations of the metric

perturbations describe a massless and a massive spin-2 particle. Consequently, a number of

papers have studied the proposed interaction [15–26]. One of the key goals of these works

was to establish the ghost-freeness non-perturbatively, by means of canonical analysis.

However, the latter turns out to be rather cumbersome, both in the single massive gravity

and in the bi-gravity frameworks, owing to the complicated expression of the potentials

V argued to give a ghost-free theory. In particular, the potentials include square roots of

metrics and did not seem to be natural from any geometric point of view.

A new insight came from the work [27] (see also [16, 28]) where it was pointed out that

these potentials take a much simpler form in the tetrad formalism. The tetrad is a set of

four one-forms eI = eIµdx
µ, related to the metric by

gµν = eIµe
J
ν ηIJ . (1.1)

The bi-gravity ghost-free interactions, rewritten in terms of the tetrads eI+ and eI− for the

two metrics, reduce to the following 4-forms

ǫIJKLe
I
+ ∧ eJ+ ∧ eK+ ∧ eL−, ǫIJKLe

I
+ ∧ eJ+ ∧ eK− ∧ eL−, ǫIJKLe

I
+ ∧ eJ− ∧ eK− ∧ eL−. (1.2)

This is an important advance, which in particular shows that the ghost-free theory is not

an artificial monstrosity, but a rather natural theory, once the correct set of variables is

identified. The actual equivalence between this formulation and the original one in terms

of metric variables is not exact, but depends on the vanishing of a certain antisymmetric

contraction of the tetrads. This was shown in [27] to happen always at the linearized

level, where the condition amounts to a gauge fixing. However, it is not true in general.

Conditions for its validity were recently spelled out in [29].

Modulo the above discrepancy, the tetrad (or more generally vielbein) formulation also

makes it completely transparent how the primary constraint responsible for removing the

ghost degree of freedom arises. Indeed, as pointed out in [27], the interaction terms (1.2)

are all linear in the lapse and shift functions of both metrics (due to the wedge product

used in constructing them). Varying with respect to these lapse and shift functions, one

gets the set of primary constraints. A part of this set is expected to be first class, and

realize the algebra of diffeomorphisms of the bi-metric theory. Another part is expected

to be second class. In particular, the constraints that are supposedly removing the ghost

degree of freedom are a second class pair, with one of these constraints arising as primary

and one as a conjugate secondary constraint. Unfortunately, the analysis quickly becomes

rather messy, even in the simpler vielbein formulation of [27]. In the metric formalism, the

(difficult) computation of the secondary constraint was carried out only recently in [14] and

1See, however, a recent paper [10] for a reevaluation of the strong coupling issue.
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in the Stückelberg formulation in [30]. The first of these papers also gives an argument as

to why the stabilization procedure of requiring the preservation of the secondary constraint

by the time evolution just fixes one of the Lagrange multipliers and does not produce any

new constraints.

However, to the best of our knowledge, the complete Hamiltonian analysis has never

been carried out in the first order formalism. Given that this is the formalism where the

primary second-class constraints are immediate to see, one could possibly expect also some

simplifications in the structure of the elusive secondary constraint. The aims of the present

paper are to carry out such first order formulation analysis, for a model closely related to

the one in [27], as well as to put the ghost-free massive gravity in the framework of the

so-called Plebanski chiral formalism.

Thus, in this paper we study a version of the ghost-free massive gravity using what

can be called a “chiral” description, based on the chiral splitting of the local Lorentz

gauge group. Such a chiral description is well-known in the case of pure gravity (with

or without cosmological constant), and goes under the name of Plebanski formulation

of general relativity [31–33]. It can be seen as a generalization of the tetrad formalism,

where the fundamental fields are an SU(2) connection A and a two-form B valued in the

su(2) chiral subalgebra of the Lorentz algebra. The SU(2) connection replaces the spin

connection, and B replaces the tetrad one-form of the tetrad description. The metric is

then constructed via the so-called Urbantke formula [34],

√−ggµν =
1

12
ǫijk ǫ̃

αβγδBi
µαB

j
νβB

k
γδ, (1.3)

where the epsilon symbol with an overtilde stands for the densitized anti-symmetric tensor,

that does not need a metric for its definition. Much like the tetrad is a “square root” of

the metric, the two-form here is its “cubic root”. This apparent complication brings in

several advantages. First, the phase space of general relativity can now be described in

the same way as an SU(2) gauge theory, with the “triad” field for the spatial metric being

canonically conjugate to the spatial part of the SU(2) gauge field. This simplifies the

canonical analysis tremendously. Calculations can be performed very efficiently, and one is

able to work out the complete constraint algebra with much less effort than in the metric (or

vielbein) formulation. Secondly, it allows to automatically take into account the extension

of the theory to a first order framework, where the connection is an independent field, like

in the Palatini formulation of general relativity.

The theory we consider in this paper is given by two copies of chiral Plebanski actions,

coupled together in essentially the same way as was advocated in [27] in the context of the

vielbein formulation. More precisely, the interaction we consider is induced by the term

δijB
+i ∧ B−j , where B+ and B− are the two-form fields for the two copies of Plebanski

gravity. We study the canonical structure of the theory, and in particular, we explicitly

compute the algebra of primary constraints and the resulting secondary constraint, and

show that the system has seven degrees of freedom so that it is free of the Boulware-Deser

ghost. We also prove that the stabilization procedure closes (under some assumptions to be

clarified below). Thus, the results of this paper provide an independent proof of the absence
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of the ghost and moreover generalize it to the first order formalism. As an illustration of

the power of our formalism, we use it to compute the Poisson brackets of two (complete,

with all second-class constraints taken into account) smeared Hamiltonians. This is a

useful exercise, as it computes the quantity that is known to have the interpretation of

the physical spatial metric. As far as we are aware, such a computation has never been

performed in any other formalism.

The price to pay for the advantages of the chiral formulation is that, in the Lorentzian

signature, one has to work with complex valued two-forms, and at some point supplement

the theory with appropriate reality conditions. For the chiral description of pure general

relativity these reality conditions are well-understood. However, new issues arise after two

copies of general relativity are coupled together, and for the interacting theory the problem

of reality conditions has to be solved essentially from scratch. This is not attempted in the

present work, see, however, some comments on this issue in the main text. In particular,

an interesting observation is that the problem of finding suitable reality conditions seems

to be related to the discrepancy between tetrad and metric formulations mentioned above.

With this question lying open, our results and proofs apply to Euclidean signature bi-

metric gravity.

As will be shown below, the interaction term we consider corresponds to the second

term in (1.2), whereas the first and third ones cannot be obtained in our formalism. On

the other hand, the use of the 2-form chiral formalism opens a door to an infinite class of

interactions leading to ghost-free bi-gravity theories, as opposed to the only three terms of

(1.2). This comes from the possibility to modify the dynamics described by the Plebanski

action without introducing extra degrees of freedom, see e.g. [35] for a reference. As we

will argue at the end of the paper, such modifications can be incorporated in the coupled

system and are also free from the Boulware-Deser ghost. While we will not study these

theories here in any details, it is interesting to note their existence.

The organization of this paper is as follows. In the next section we introduce the chiral

Plebanski formulation of general relativity and demonstrate how simple is its canonical

analysis. In section 3, we define the theory to be analyzed and discuss its relation to the

metric formalism. Section 4 is the main part of the paper where we present the canonical

analysis of the interacting system. The resulting canonical structure is summarized in sub-

section 4.5, whereas in subsection 4.6 we discuss an infinite parameter generalization which

appears to preserve this structure. The final section 5 is devoted to conclusions. A number

of appendices present some more technical results, and in particular the computation of

the secondary constraint and the Poisson bracket of two smeared Hamiltonians.

2 Summary of the chiral Plebanski formulation

2.1 Plebanski formulation of general relativity

The chiral Plebanski formulation of general relativity is described by the following ac-

tion [31]

S[B,A,Ψ] =

∫
[

Bi ∧ F i − 1

2
(Ψij − λδij)Bi ∧Bj

]

. (2.1)
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The indices2 i, j = 1, 2, 3 are suC(2) ∼ so(3,C) ∼ sl(2,C) Lie algebra ones, with the Lie

algebra viewed as a vector space of complex dimension 3. The field Ai is the connection

one form, F i = dAi+ 1
2 ǫ

ijkAj ∧Ak is its curvature, and the field Bi is a Lie algebra-valued

two-form. λ is a multiple of the cosmological constant, and the Lagrange multiplier field

Ψij is required to be traceless. Its variation enforces the so-called metricity (or simplicity)

constraints

Bi ∧Bj =
1

3
δij Bk ∧Bk. (2.2)

A solution to these constraints can be conveniently written using tetrad one-forms valued

in so(4,C) as

Bi = P± 0i
IJ

(

eI ∧ eJ
)

, (2.3)

where I = 0, i and P±KL
IJ are two chiral projectors defined in terms of the internal Hodge

star ⋆ as

P±KL
IJ :=

1

2
(1± σ⋆)IJ

KL =
1

4

(

δKI δ
L
J − δLI δ

K
J ± σǫIJ

KL
)

. (2.4)

Here σ = i for the Lorentzian signature, and σ = 1 for Euclidean. Plugging the solu-

tion (2.3) back into the action (2.1), one obtains the Einstein-Cartan action plus a bound-

ary term. The equivalence with the Einstein-Hilbert action then follows as in the Palatini

formalism: one varies with respect to the independent connection, obtaining an equation

that identifies it in terms of the unique torsion-free Levi-Civita connection.

The action given above uses complex fields and therefore describes complexified general

relativity. To get a real theory, one has to impose appropriate reality conditions. These

are easiest to state by saying that the metric (1.3) should be a real metric of the required

signature. Such conditions can be given directly in terms of the fields that appear in the

Lagrangian. For metrics of Euclidean signature the reality condition is simply that all

fields are real, and thus the connection and the B field are so(3,R)-valued. For Lorentzian

signature the conditions are quadratic in the fields, and can be stated as

Bi ∧ (Bj)∗ = 0, Re(Bi ∧Bi) = 0. (2.5)

First, one requires that the complex conjugate of any of the 3 Bj ’s is wedge-orthogonal to

any other Bi (or to itself) which gives nine real equations. In addition, one demands the

4-form obtained as the trace of the wedge product of the B’s be purely imaginary. The

reason for these conditions is clear from (2.3): when the Bi are constructed as the self-

dual part of the two-form eI ∧ eJ , with eI a real Lorentzian signature tetrad, its complex

conjugate is the anti-self-dual part, and both conditions in (2.5) hold.3

The reality conditions for Bi also induce reality conditions on the connection Ai. These

are obtained from the field equation for the connection that follows from (2.1). The field

equation can be solved for Ai in terms of Bi, and then the reality condition (2.5) implies

a reality condition on the connection. Alternatively, one can state the reality condition on

Ai by passing to the Hamiltonian formulation, as shown below.

2Since the su(2) indices are raised and lowered with the unit metric, we do not strictly follow the rule that

the indices one sums over should be in opposite positions. All repeated indices are assumed to be summed.
3When describing the Lorentzian theory, it is also convenient to put an imaginary unit factor i in front

of the action, as to get precisely the Einstein-Cartan action in the end.
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2.2 Canonical analysis

As a preparation for a more complicated canonical analysis of a bi-gravity model, we recall

here the canonical analysis of the chiral Plebanski formulation (2.1). It starts with the

usual 3 + 1 decomposition of the action which leads to the following Lagrangian

L =
1

2
ǫ̃abc

(

Bi
0aF

i
bc +Bi

bcF
i
0a − (Ψij − λδij)Bi

0aB
j
bc

)

. (2.6)

It contains only one term with time derivatives, thus the phase space of the theory is

parametrized by the spatial components of the connection Aia, with conjugate momentum4

∼

Eai :=
∂L

∂(∂0Aia)
=

1

2
ǫ̃abcBi

bc. (2.7)

The remaining fields Ai0, B
i
0a,Ψ

ij are non-dynamical. Since they enter the Lagrangian (2.6)

linearly, they are Lagrange multipliers generating constraints. To simplify the analysis, it

is convenient to decompose Bi
0a as

Bi
0a =

(

∼
Nδij + ǫijk

∼
bk +

∼
bij
)

∼

Eja, (2.8)

where
∼
N,

∼
bi,

∼
bij describe its trace, antisymmetric, and tracefree (bii = 0) parts, respectively,

and we assumed the invertibility of
∼

Eai denoting by

∼

Eia =
1

2 ∼
ǫabcǫ

ijk ∼

Ebj
∼

Eck (2.9)

its (densitized) inverse. Invertibility of the triad is a necessary condition to reproduce gen-

eral relativity, perfectly analogous to the invertibility of the metric. After the decomposi-

tion (2.8), the constraints obtained by varying the action with respect to Ψij simply imply

∼
bij = 0. (2.10)

Thus, these components of the Bi
0a field can be omitted from now on. In terms of the

remaining fields and using the notation

Na :=
∼
bi

∼

Eai , (2.11)

the above Lagrangian can be rewritten as

L =
∼

Eai ∂0A
i
a +Ai0Da

∼

Eai +Na ∼

EbiF
i
ab + ∼

N

2
ǫijk

(

∼

Eai
∼

EbjF
k
ab + λ

∼
ǫabc

∼

Eai
∼

Ebj
∼

Eck

)

, (2.12)

where Da is the covariant derivative defined by the connection Aia as DaX
i = ∂aX

i +

ǫijkAjaXk, and we omitted a total derivative term. This representation identifies
∼

Eai as the

densitized triad determining the spatial metric, with the last term in the Hamiltonian being

the cosmological term, cubic in the triad and thus giving the volume form of the metric.

Notice also that the covariant expression (2.3) is recovered from (2.7) and (2.8) upon using

4The tilde above the symbol keeps track of the density weight of this pseudotensor. We will also use a

tilde under the symbol to characterized negative weight pseudotensors.

– 6 –



J
H
E
P
0
6
(
2
0
1
3
)
0
6
8

the constraint (2.10), definition (2.11) and the standard ADM decomposition of tetrad. In

particular,
∼
N and Na are identified as the usual lapse and shift functions, respectively.

The resulting Lagrangian identifies the symplectic structure to be given by the Pois-

son bracket

{Aia(x),
∼

Ebj (y)} = δbaδ
i
j δ̃

3(x− y). (2.13)

This is the same phase space of an SU(2) gauge theory, which is the main advantage

of this formulation, and also the basis for Ashtekar’s approach and loop quantum grav-

ity [36, 37]. The constraints arising by varying with respect to Ai0, ∼N,N
a are the Gauss,

Hamiltonian and diffeomorphism constraints, correspondingly. They are first class since

they form a closed algebra under (2.13). To write the algebra explicitly, we define the

smeared constraints

Gφ :=

∫

d3xφiDa

∼

Eai ,

D ~N
:=

∫

d3xNa ∼

EbiF iab − GNaAa
=

∫

d3xNa
(

∼

Ebi∂aA
i
b − ∂b(

∼

EbiAia)
)

, (2.14)

HN :=
1

2

∫

d3x
∼
Nǫijk

(

∼

Eai
∼

EbjF
k
ab + λ

∼
ǫabc

∼

Eai
∼

Ebj
∼

Eck

)

.

Notice that we have shifted the initial constraint coming from Na by a term proportional

to the Gauss constraint. This is convenient because the resulting constraint precisely

coincides with the generator of spatial diffeomorphisms. Then it is straightforward to

verify the following relations

{Gφ1 ,Gφ2} = Gφ1×φ2 , {D ~N
,Gφ} = GNa∂aφ, {Gφ,HN} = 0,

{D ~N
,D ~M

} = D~L( ~N, ~M), {D ~N
,HN} = H

L( ~N,N), {HN ,HM} = D ~N(N,M) + GNa(N,M)Ai
a
,

(2.15)

where we used notations

(a× b)i := ǫijkajbk,

La( ~N, ~M) :=N b∂bM
a −M b∂bN

a,

L( ~N,N) :=Na∂a
∼
N −

∼
N∂aN

a,

Na(N,M) :=
∼

Eai
∼

Ebi (∼N∂b ∼
M −

∼
M∂b

∼
N) .

(2.16)

The above algebra5 ensures that all constraints are preserved under the evolution generated

by the Hamiltonian

Htot = −GA0+NaAa
−D ~N

−HN , (2.17)

which is given by a linear combination of first class constraints, as it should be in any

diffeomorphism invariant theory.

5The constraint algebra offers a direct way of confirming the triad interpretation of
∼

Ea
i . Indeed, as

nicely explained in [38], the spatial metric can be read off the right-hand-side of the Poisson bracket of

two Hamiltonian constraints. Namely, it should appear in the function multiplying the diffeomorphism

constraint. From the last line of (2.16), we observe that this quantity is given by
∼

Ea
i

∼

Eb
i , which makes clear

that the spatial metric is constructed from
∼

Ea
i as a triad.

– 7 –
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As a result, the constraints generate 3 + 3 + 1 = 7 gauge symmetries which reduce

9 + 9 = 18 dimensional phase space to a 4-dimensional one which describes two degrees

of freedom of a massless graviton. It is worth stressing how much simpler is the above

Hamiltonian analysis as compared to the usual metric ADM analysis, or to an analogous

analysis using tetrads. It is this simplicity that we would like to take advantage of, and

write a similar “chiral” model of the ghost-free bi-metric gravity.

Finally, we briefly discuss the reality conditions in the canonical picture. In the case

of the Euclidean signature, everything is real. For the Lorentzian case, the spatial triad
∼

Eai
is taken to be real, which ensures the reality of the spatial metric and can be seen to be a

part of the reality condition (2.5) discussed above. The remainder of the condition (2.5)

becomes the requirement that the lapse
∼
N is purely imaginary and the shift Na is real.

The reality condition for the connection can then be obtained by requiring that the reality

of
∼

Eai is preserved by the time evolution (generated by the constraints). This fixes Aia to

be of the schematic form Aia = Γia + iKi
a, where Γia is the connection compatible with the

triad, and Ki
a is the extrinsic curvature of the spatial slice embedded in 4-geometry. For

more details on this, the reader can consult [36].

3 A chiral bi-gravity model

A bi-gravity theory is a model represented by two copies of general relativity coupled by a

certain interaction term. Our idea is to use the chiral description of general relativity given

by the Plebanski action (2.1). The simplest interaction then leads to the following action,

S[B±, A±,Ψ±] =

∫
[

B+i ∧ F+i +B−i ∧ F−i − 1

2
(Ψ+ij − λ+δij)B+i ∧B+j

−1

2
(Ψ−ij − λ−δij)B−i ∧B−j + 2αB+i ∧B−i

]

,

(3.1)

where the indices ± distinguish the fields from the two sectors. The coupling constant α

will later on get related to the mass of the second graviton.

In absence of the interaction term, i.e. for α = 0, the gauge group of the theory is

given by the direct product of the symmetries of each of the copies of Plebanski theory,

which include diffeomorphisms and local gauge rotations. The interaction breaks the total

group Diff + × SO+(3) × Diff − × SO−(3) to its diagonal subgroup, and it is this fact

that is responsible for a larger number of propagating modes in (3.1) as compared to the

non-interacting theory.

Our model can easily be reformulated in terms of the tetrads instead of the two-forms

B±. Indeed, in each ±-sector the variation with respect to the Lagrange multipliers Ψ±ij

imposes the simplicity constraints (2.2), which imply that B± are the self-dual projections6

of the two-forms eI± ∧ eJ± as in (2.3). Thus, each Plebanski term reduces to the Einstein-

Cartan action for the tetrad with its own cosmological term. At the same time, the

6In (2.3) the indices ± denote the chirality and should not be confused with the indices ± of this section

which distinguish the two Plebanski sectors.
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interaction term takes the following form

σ

2
ǫIJKLe

I
+ ∧ eJ+ ∧ eK− ∧ eL− + eI+ ∧ eJ+ ∧ e−I ∧ e−J . (3.2)

The first contribution is exactly the symmetric interaction term in (1.2) which has been

argued to generate a ghost-free massive gravity [27]. This is why we take (3.1) as our

starting point. Notice also the presence of the second contribution, not of the type (1.2)

considered in [27]. It is consistent with all symmetries of the theory, except it is parity-odd,

unlike the rest of the Lagrangian.

On the other hand, the relation of our model to the metric formulation is more subtle.

The reason for this is that the equivalence between the polynomials (1.2), and the ghost-

free interactions between two metrics originally proposed in [7, 11] and related references,

holds only if the tetrads satisfy the symmetry property

eI+[µe−ν]I = 0. (3.3)

In [27] it was shown that this condition can always be realized in perturbation theory, where

it basically amounts to a choice of gauge. However, as it was recently pointed out in [29], it

does not hold true in general. Hence, already the tetrad formulation turns out to be slightly

different from the metric formulation. Our model introduces a further difference due to the

presence of the second contribution in (3.2). In our formulation, this term simply cannot

be discarded, as the whole structure (3.2) comes at once. It is interesting to note that this

contribution vanishes provided the condition (3.3) holds. This fact puts our formulation

of the ghost-free bi-gravity theory on the same footing as the tetrad formulation as both

of them coincide with the one originally proposed in [7, 11] only for the configurations

satisfying (3.3). We further comment on these issues below.

Let us also make a few comments about reality conditions. In the case of Euclidean

signature, as in the usual Plebanski theory, all fields can be taken to be real and one finds

real Euclidean bi-metric gravity. In contrast, in Lorentzian signature, the situation with

the reality conditions in the presence of the interaction term becomes more intricate than

in the single gravity case. The simplest idea is to impose the same reality conditions which

have been discussed in section 2.1 in each of the two sectors. This renders each metric

real and ensures also that each of the Plebanski actions is real modulo a surface term [39]

provided one multiplies the whole action by a factor of i. As for the interaction term (3.2),

the extra i cancels the factor of σ = i in the first term in (3.2) and makes it real as well.

However, the second term in (3.2) then becomes purely imaginary, thus the total action

is not real. This implies that for Lorentzian signature the standard reality conditions of

Plebanski theory are not appropriate and should be modified to deal with the bi-gravity

case. While it is possible that there is some more sophisticated choice, we do not consider

this issue any further in the present paper, and content ourselves to perform the analysis for

the Euclidean signature when all the fields are real (or, equivalently, for the complexified

theory, when all fields are complex). Nevertheless, let us note that, as pointed out in the

previous paragraph, the term spoiling the reality of the action vanishes on configurations

satisfying (3.3). As a result, we come to an interesting observation that the condition of the

– 9 –
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reality of the action (for the standard reality conditions on the fields) precisely coincides

with the condition for the equivalence with the metric formulation. However, just like it

is not obvious how to include that restriction from the start in the tetrad formalism, it is

also not obvious how to achieve the reality of (3.1) in a simple geometric way.

4 Canonical analysis and ghost-freeness

In this section we perform a careful canonical analysis of the model (3.1), obtain explicit

expressions for all constraints, including the secondary constraint responsible for the ab-

sence of the Boulware-Deser ghost, and compute their algebra. The results of this analysis

are summarized below in subsection 4.5.

4.1 3 + 1 decomposition and field redefinition

The Hamiltonian analysis of the action (3.1) can be done in the same way as in section 2.2.

The first step is to perform the 3 + 1 decomposition which gives rise to two actions of the

form (2.6) for the ±-fields, plus the term coupling the two sectors

Lint = α
(

B+i
0aB

−i
bc +B−i

0aB
+i
bc

)

ǫ̃abc. (4.1)

In both sectors we can introduce the fields
∼

E,
∼
N and Na as before in (2.7) and (2.8). The

two traceless components b±ij are again constrained to vanish by the simplicity constraints

generated by Ψ±ij . In terms of the remaining components, the interaction term (4.1) takes

the following form

Lint =α
(

∼
N+

∼
ǫabcǫ

ijk ∼

E+b
j

∼

E+c
k + 2

∼
ǫabcN

+b ∼

E+ci
)

∼

E−a
i

+ α
(

∼
N−

∼
ǫabcǫ

ijk ∼

E−b
j

∼

E−c
k + 2

∼
ǫabcN

−b ∼

E−ci
)

∼

E+a
i .

(4.2)

The canonical form of the action is then the sum of two copies of (2.12) plus the above

interaction. Being linear in lapse and shift, the interaction term directly contributes to the

constraints already present in the ±-sectors. As will be shown below, these contributions

break the “off-diagonal” part of the gauge symmetry of the non-interacting theory, leaving

only its “diagonal” part as the symmetry of the full theory. For this reason it is desirable

to introduce variables that will be adapted to this pattern. Motivated by this, we do the

following field redefinition:

∼

Eai :=
∼

E+a
i +

∼

E−a
i ,

∼

Ha
i :=

∼

E+a
i − ∼

E−a
i ,

Aia =
(

A+i
a +A−i

a

)

/2, ηia := (A+i
a −A−i

a )/2.
(4.3a)

Of course, only the variable Aia remains a connection, with the field ηia transforming as a

matter field under the diagonal SO(3). The curvatures F± decompose as

F±i
ab (A

±i
a ) = F iab(A

i
a)± 2D[aη

i
b] + ǫijkηjaη

k
b ,

– 10 –
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where Da is the covariant derivative with respect to the connection Aa. Performing a

similar redefinition for the Lagrange multipliers

φi := (A+i
0 +A−i

0 )/2, ψi :=
(

A+i
0 −A−i

0

)

/2,

Na := (N+a +N−a)/2, Ga := (N+a −N−a) /2,

∼
N := (

∼
N+ +

∼
N−)/4,

∼
G := (

∼
N+ −

∼
N−) /4,

(4.3b)

allows to disentangle the diagonal and off-diagonal sectors, thereby making the diagonal

symmetries manifest. Distinguishing the diagonal and off-diagonal constraints by putting a

hat on the latter, the total action after the change of variables takes the following canonical

form

S =

∫

dt d3x
(

∼

Eai∂0A
i
a +

∼

Hai∂0η
i
a + φiGi + ψiĜi +NaCa +GaĈa +

∼
NH+

∼
GĤ

)

. (4.4)

Before we give the explicit form of the constraints, it is useful to contrast the above

change of variables with what is usually done in the metric formalism. There one keeps

the original metrics as fundamental variables, and mixes only the Lagrange multipliers

(using “geometric averages” rather than algebraic ones as above), see e.g. [40]. However,

upon linearization the mass eigenstates turn out to be the sums and differences of the

(perturbations of the) two initial metrics, h+µν ±h−µν . Extending this redefinition to the full

theory, one may work with

gµν = g+µν + g−µν , qµν = g+µν − g−µν . (4.5)

This is morally what we are doing here. In particular, we expect that perturbations of
∼

Eai
describe the degrees of freedom of a massless graviton, and those of

∼

Ha
i a massive spin 2

field. However, there is no reason to expect that the linear transformation (4.3) or (4.5)

decouples the physical metric and the massive field beyond the linearized theory. In fact,

even without discussing the coupling with matter, the physical metric can be identified

by computing the Poisson bracket of two smeared Hamiltonian constraints, as explained

in footnote 5. For our model this calculation is performed in appendix C and shows that

the physical spatial metric is a non-trivial function in phase space, and does not coincide

neither with gab defined by
∼

Eai , nor with the ones defined in (4.5). The same situation arises

in the metric formalism, see e.g. [41]. Thus, disentangling the relation between the physical

spatial metric (as appears in the algebra of diffeomorphisms) and the phase space variables

is a complicated task, whatever formulation is used. Despite the redefinition (4.3) does not

fulfil this task, it does disentangle the constraint algebra and therefore is very convenient.

Let us now discuss the two Hamiltonian constraints which read as

H =
1

2
ǫijk(

∼

Eai
∼

Ebj +
∼

Hai ∼Hbj)(F kab + ǫklmηlaη
m
b ) + ǫijk

∼

Eai
∼

Hbj(Daη
k
b −Dbη

k
a)

+
1

2
ǫijk

∼
ǫabc

[(

α+
λ

2

)

∼

Eai
∼

Ebj
∼

Eck + 3β
∼

Eai
∼

Ebj
∼

Hc
k

+

(

3λ

2
− α

)

∼

Eai
∼

Hb
j

∼

Hc
k +

β

2

∼

Ha
i

∼

Hb
j

∼

Hc
k

]

(4.6)
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and

Ĥ = ǫijk
∼

Eai
∼

Hbj(F kab + ǫklmηlaη
m
b ) + ǫijk(

∼

Eai
∼

Ebj +
∼

Hai ∼Hbj)Daη
k
b

+
1

2
ǫijk

∼
ǫabc

[

β

2

∼

Eai
∼

Ebj
∼

Eck +

(

α+
3λ

2

)

∼

Eai
∼

Ebj
∼

Hc
k

+
3β

2

∼

Eai
∼

Hb
j

∼

Hc
k +

(

λ

2
− α

)

∼

Ha
i

∼

Hb
j

∼

Hc
k

]

,

(4.7)

where we denoted

λ =
1

2

(

λ+ + λ−
)

, β =
1

2

(

λ+ − λ−
)

. (4.8)

These expressions, and the subsequent analysis, can be significantly simplified by restricting

the parameters as

λ = −2α, β = 0. (4.9)

These restrictions can be justified as follows. First, the combination α+ λ/2 can be iden-

tified with the effective cosmological constant of the combined system. Since the presence

of the cosmological constant has a very little effect on the constraint algebra, we can safely

set it to zero. The second restriction arises from the observation that it removes from

the Hamiltonian constraint H the term linear in
∼

H whose presence would imply that the

Lagrangian for the massive field contains a tadpole and is not in its canonical form.

After we have made the choice (4.9), one remains with only one free parameter α, which

can be identified with the mass of the
∼

H field. The full set of simplified constraints resulting

from this choice can be found in (4.11) and will be discussed in the next subsection.

4.2 Primary constraints

The canonical form of the action (4.4) shows that the phase space of the theory is spanned

by the fields A,
∼

E, η,
∼

H and carries the (pre-)symplectic structure encoded in the following

canonical Poisson brackets

{Aia(x),
∼

Ebj (y)} = δbaδ
i
j δ̃

3(x− y), {ηia(x),
∼

Hb
j (y)} = δbaδ

i
j δ̃

3(x− y). (4.10)

The other variables introduced in (4.3b) are the Lagrange multipliers for the primary

constraints which have the following (smeared) expressions

Gφ :=

∫

d3xφi
[

Da

∼

Eai + ǫijkη
j
a

∼

Hak
]

,

Ĝψ :=

∫

d3xψi
[

Da

∼

Ha
i + ǫijkη

j
a

∼

Eak
]

,

C ~N :=

∫

d3xNa
[

∼

Ebi (F
i
ab + ǫijkηjaη

k
b ) +

∼

Hb
i (Daη

i
b −Dbη

i
a)
]

,

Ĉ ~G :=

∫

d3xGa
[

∼

Ebi (Daη
i
b −Dbη

i
a) +

∼

Hb
i (F

i
ab + ǫijkηjaη

k
b )− 2α

∼
ǫabc

∼

Ebi
∼

Hc
i

]

,

HN :=

∫

d3x
∼
N

[

1

2
ǫijk(

∼

Eai
∼

Ebj +
∼

Ha
i

∼

Hb
j )(F

k
ab + ǫklmηlaη

m
b ) + ǫijk

∼

Eai
∼

Hb
j (Daη

k
b −Dbη

k
a)

−2αǫijk
∼
ǫabc

∼

Eai
∼

Hb
j

∼

Hc
k

]

,
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ĤG :=

∫

d3x
∼
G
[

ǫijk
∼

Eai
∼

Hb
j (F

k
ab + ǫklmηlaη

m
b ) + ǫijk(

∼

Eai
∼

Ebj +
∼

Ha
i

∼

Hb
j )Daη

k
b

−αǫijk
∼
ǫabc

(

∼

Eai
∼

Ebj
∼

Hc
k +

∼

Ha
i

∼

Hb
j

∼

Hc
k

)]

. (4.11)

In complete analogy with the single copy of Plebanski theory, it is convenient to shift the

constraints C ~N and Ĉ ~G by a linear combination of the two Gauss constraints. Namely, we

define

D ~N
:= C ~N − GNaAa

− ĜNaηa

=

∫

d3xNa
[

∼

Ebi ∂aA
i
b − ∂b

(

∼

EbiA
i
a

)

+
∼

Hb
i ∂aη

i
b − ∂b

(

∼

Hb
i η
i
a

)]

,

D̂ ~N
:= Ĉ ~N − GNaηa − ĜNaAa

=

∫

d3xNa
[

∼

Ebi ∂aη
i
b − ∂b

(

∼

Ebi η
i
a

)

+
∼

Hb
i ∂aA

i
b − ∂b

(

∼

Hb
iA

i
a

)]

(4.12)

−2α

∫

d3xNa
[

∼
ǫabc

∼

Ebi
∼

Hc
i

]

.

It is now a straightforward although tedious exercise to compute the algebra of the

primary constraints. In contrast to the case of pure gravity, it is not anymore first class:

some of the commutators acquire contributions which are non-vanishing on the constraint

surface. The first class part of the algebra is as follows,

{Gφ1 ,Gφ2} = Gφ1×φ2 , {Gφ, Ĝψ} = Ĝφ×ψ, {Ĝψ1
, Ĝψ2

} = Gψ1×ψ2
,

{D ~N
,Gφ} = GNa∂aφ, {D ~N

, Ĝψ} = ĜNa∂aψ, {D̂ ~G
,Gφ} = ĜGa∂aφ,

{Gφ,HN} = 0, {Gφ, ĤG} = 0, {D ~N
,D ~M

} = D~L( ~N, ~M),

{D ~N
,HN} = H~L( ~N,N), {D ~N

, ĤG} = Ĥ~L( ~N,G), {D ~N
, D̂ ~G

} = D̂~L( ~N, ~G),

(4.13a)

and

{HN ,HM} = D~V (N,M) + D̂~U(N,M) + GV a(N,M)Aa+Ua(N,M)ηa + ĜV a(N,M)ηa+Ua(N,M)Aa
,

{ĤG, ĤF } = D~V (G,F ) + D̂~U(G,F ) + GV a(G,F )Aa+Ua(G,F )ηa + ĜV a(G,F )ηa+Ua(G,F )Aa
,

(4.13b)

where we used the notations introduced in (2.16) as well as

V a(N,M) :=
(

∼

Eai
∼

Ebi +
∼

Ha
i

∼

Hb
i

)

(
∼
N∂b

∼
M −

∼
M∂b

∼
N) ,

Ua(N,M) :=
(

∼

Eai
∼

Hb
i +

∼

Ha
i

∼

Ebi

)

(
∼
N∂b

∼
M −

∼
M∂b

∼
N) .

The constraints Gφ and D ~N
weakly commute with all other constraints and form exactly

the same subalgebra as in (2.15). It is thus clear that they represent the generators of the

usual gauge and diffeomorphism transformations.

The remaining Poisson brackets are given by

{D̂ ~G
, Ĝψ} = GGa∂aψ + 2α

∫

d3xψiGa
∼
ǫabcǫ

ijk
(

∼

Ebj
∼

Eck −
∼

Hb
j

∼

Hc
k

)

,

{Ĝψ,HN} = −4α

∫

d3x
∼
Nψi

∼
ǫabc

∼

Eai
∼

Ebj
∼

Hc
j ,
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{Ĝψ, ĤG} = −4α

∫

d3x
∼
Gψi

∼
ǫabc

∼

Ha
i

∼

Ebj
∼

Hc
j ,

{D̂ ~G
, D̂~F

} = D~L( ~G, ~F ) + 4α

∫

d3x
∼
ǫabcG

aF b
(

∼

Eci ∂d
∼

Edi −
∼

Hc
i ∂d

∼

Hd
i

)

,

{D̂ ~G
,HN} = Ĥ

L( ~G,N) + αG
φ1(N,~G) − αĜ

φ2(N,~G) (4.13c)

+4α

∫

d3x
∼
N

∼
ǫabc

[

GdAid
∼

Eai
∼

Ebj
∼

Hc
j

+Gaηid

(

∼

Ebi

(

∼

Ecj
∼

Edj −
∼

Hc
j

∼

Hd
j

)

+
∼

Hd
i

∼

Ebj
∼

Hc
j

) ]

,

{D̂ ~G
, ĤG} = H

L( ~G,G) + αG
φ2(G,~G) − αĜ

φ1(G,~G)

+4α

∫

d3x
∼
G

∼
ǫabc

[

GdAid
∼

Ha
i

∼

Ebj
∼

Hc
j

+Gaηid

(

∼

Hb
i

(

∼

Ecj
∼

Edj −
∼

Hc
j

∼

Hd
j

)

+
∼

Edi
∼

Ebj
∼

Hc
j

) ]

,

{HN , ĤG} = −D~U(N,G) − D̂~V (N,G) − GUa(N,G)Aa+V a(N,G)ηa − ĜUa(N,G)ηa+V a(N,G)Aa

−2α

∫

d3x
∼
N

∼
Gǫabcǫ

ijk
(

∼

Eal
∼

Ebj
∼

Eck
∼

Edi +
∼

Ha
l

∼

Hb
j

∼

Hc
k

∼

Hd
i

− ∼

Eal
∼

Hb
j

∼

Hc
k

∼

Edi −
∼

Ha
l

∼

Ebj
∼

Eck
∼

Hd
i

)

ηld,

where

φi1(N,
~G) := 2

∼
NGaǫijk

∼
ǫabc

∼

Ebj
∼

Hc
k,

φi2(N, ~G) := ∼
NGaǫijk

∼
ǫabc

(

∼

Ebj
∼

Eck +
∼

Hb
j

∼

Hc
k

)

.
(4.14)

As is expected, all contributions non-vanishing at the constraint surface are proportional

to the mass parameter α.

4.3 Secondary constraint

Since the primary constraints do not form a closed algebra, the Dirac’s stabilization proce-

dure does not stop at the first step and we have to study the conditions ensuring that the

time evolution preserves the constraints. The evolution is generated by the total Hamilto-

nian given by a linear combination of the primary constraints

Htot = −Gφ̃ − Ĝψ̃ −D ~N
− D̂ ~G

−HN − ĤG, (4.15)

where we denoted φ̃ = φ+NaAa+G
aηa and ψ̃ = ψ+Naηa+G

aAa. Since Gi and Da weakly

commute with all primary constraints, the requirement of their stability under evolution

does not generate any conditions. For other constraints one finds

˙̂Gi ≈{D̂ ~G
, Ĝi}+ {HN , Ĝi}+ {ĤG, Ĝi} ≈ 0,

˙̂Da ≈{Ĝψ̃, D̂a}+ {D̂ ~G
, D̂a}+ {HN , D̂a}+ {ĤG, D̂a} ≈ 0,

Ḣ ≈ {Ĝψ̃,H}+ {D̂ ~G
,H}+ {ĤG,H} ≈ 0,

˙̂H ≈{Ĝψ̃, Ĥ}+ {D̂ ~G
, Ĥ}+ {HN , Ĥ} ≈ 0.

(4.16)
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The first two equations can be used to fix the Lagrange multipliers for the “off-diagonal”

Gauss and diffeomorphism constraints7

Ga =
(

∼
N{H, Ĝi}+

∼
G{Ĥ, Ĝi}

)

{Ĝi, D̂a}−1,

ψ̃i =
∼
N
(

{H, Ĝj}{Ĝj , D̂b}−1{D̂b, D̂a}+ {H, D̂a}
)

{D̂a, Ĝi}−1 (4.17)

+
∼
G
(

{Ĥ, Ĝj}{Ĝj , D̂b}−1{D̂b, D̂a}+ {Ĥ, D̂a}
)

{D̂a, Ĝi}−1.

Plugging these expressions into the third equation, one observes that the terms proportional

to
∼
N cancel and the whole expression is proportional to

∼
G. As a result, it leads to the

following secondary constraint

Ψ = {H, Ĥ}+ {H, Ĝi}{Ĝi, D̂a}−1{D̂a, Ĥ}+ {H, D̂a}{D̂a, Ĝi}−1{Ĝi, Ĥ}
+ {H, Ĝj}{Ĝj , D̂b}−1{D̂b, D̂a}{D̂a, Ĝi}−1{Ĝi, Ĥ}.

(4.18)

On the surface of this constraint, the last equation in (4.16) is satisfied automatically.

Thus, Ψ is the only secondary constraint arising at this stage of the Dirac’s procedure.

Having calculated in (4.13c) all non-vanishing Poisson brackets entering the expression

for Ψ, one can proceed evaluating this constraint explicitly. This is done in appendix A

where the following result is obtained:

Ψ = −4α
[(

e
(

∼

Eai −
∼

Ha
j ∼
Ejb

∼

Hb
i

)

+ h
(

∼

Ha
i − ∼

Eaj ∼
Hj
b

∼

Ebi

))

ηia +∆−1Υ
]

, (4.19)

where

∆ = (e− hT )e− (h− eT̂ )h,

e = det
∼

Eai , h = det
∼

Ha
i , T =

∼
H i
a

∼

Eai , T̂ =
∼
Eia

∼

Ha
i ,

(4.20)

and

Υ =
[

e
(

∼

Eak
∼

Ebk +
∼

Ha
k

∼

Hb
k

)

+ (h− eT̂ )
∼

Ha
k

∼

Ebk

]

∼
ǫbcd

× ∼

Ecl
∼

Hd
l ∼
ǫagfη

i
r

(

∼

Hg
i

(

∼

Efj
∼

Erj −
∼

Hf
j

∼

Hr
j

)

+
∼

Eri
∼

Egj
∼

Hf
j

)

−
[

h
(

∼

Eak
∼

Ebk +
∼

Ha
k

∼

Hb
k

)

+ (e− hT )
∼

Ha
k

∼

Ebk

]

∼
ǫbcd (4.21)

× ∼

Ecl
∼

Hd
l ∼
ǫagfη

i
r

(

∼

Egi

(

∼

Efj
∼

Erj −
∼

Hf
j

∼

Hr
j

)

+
∼

Hr
i

∼

Egj
∼

Hf
j

)

+ǫabrǫ
ijkηjs (

∼

Eri
∼

Hs
k −

∼

Hr
i

∼

Esk)∼ǫgcd
( ∼

Eak′
∼

Egk′ +
∼

Ha
k′

∼

Hg
k′

) ∼

Ecl
∼

Hd
l ∼
ǫfpq

∼

Hb
m

∼

Efm
∼

Epn
∼

Hq
n.

Although the result looks very complicated, the constraint features the simple properties

of being linear in the field η, and not containing any derivatives nor dependence on the

connection A. The expression (4.21) can be further manipulated using various identities

and eliminating the epsilon tensors, but the result contains a number of monomials and is

7In the following equation, the Poisson brackets with a slight abuse of notation denote the expressions

appearing under the integral in the part of the commutator non-vanishing on the constraint surface. In

other words, we consider the Poisson brackets of the non-smeared constraints dropping the distributional

δ-factor.
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not particularly enlightening. Finally, it is interesting to note that Υ is proportional to the

combination
∼
ǫabc

∼

Ebi
∼

Hc
i , analogous to the antisymmetric combination of the tetrads (3.3)

which must vanish for having agreement with the metric formulation. Therefore, on con-

figurations satisfying this condition, the secondary constraint crucially simplifies.

4.4 Stability condition for the secondary constraint

The next step is to study the stability of the secondary constraint Ψ. However, due to

its complicated expression, it is difficult to do this by a direct computation. Nevertheless,

some important conclusions can be made if one realizes that Ψ is given by a “partial Dirac

bracket” of the two Hamiltonian constraints. By partial Dirac bracket we mean here the

Dirac bracket constructed using the minimal set of non-commuting primary constraints.

Since generically this is just a subset of the full set of second class constraints of the theory,

it is not yet the final Dirac bracket. Nevertheless, it is a useful object since the final Dirac

bracket is obtained from it using the missing non-commuting constraints in the same way

as it is constructed from Poisson bracket using all second class constraints.

In our case, the minimal set of non-commuting primary constraints consists of Ĝ and

D̂. Their Dirac matrix and its inverse are given by

Dss′ =

(

0 {Ĝi, D̂b}
{D̂a, Ĝj} {D̂a, D̂b}

)

, D
ss′ =

(

−{Ĝi, D̂a}−1{D̂a, D̂b}{D̂b, Ĝj}−1 −{Ĝi, D̂b}−1

−{D̂a, Ĝj}−1 0

)

.

The partial Dirac bracket is the standard Dirac’s formula

{A,B}′D = {A,B} − {A,Cs}Dss
′{Cs′ , B}, (4.22)

where Cs = (Ĝi, D̂a). It is immediate to see that the expression (4.18) for the secondary

constraint is equivalent to

Ψ = {H1, Ĥ}′D, (4.23)

where we smeared the Hamiltonian constraint H with the trivial smearing function 1 just

to remove the δ-function factor from the right-hand-side. Besides, it is useful to note that

the total Hamiltonian, after plugging in the expressions (4.17) for the Lagrange multipliers

conjugate to the constraints Cs, can be written as

Htot = −Gφ̃ −D ~N
−H′

N − Ĥ′

G, (4.24)

where H′, Ĥ′ are the two Hamiltonian constraints corrected by Cs such that they weakly

Poisson commute with all other primary constraints. Due to this, the stability condition

for Ψ takes the following form

Ψ̇ = {HN ,Ψ}′D + {ĤG,Ψ}′D ≈ 0, (4.25)

where we used the fact that Ψ weakly commutes with Gi and Da as well as that under the

partial Dirac bracket H′ and Ĥ′ can be replaced by the original constraints.

The stability procedure ends if (4.25) can be interpreted as an equation fixing one of

the Lagrange multipliers. A necessary condition for this is that it should be algebraic in
∼
N
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and
∼
G, i.e. it should not contain their spatial derivatives. It turns out that this property

follows just from the fact that Ψ is well defined, i.e. that {HN , ĤG}′D does not contain

derivatives of the smearing functions. Indeed, let us write the most general form of the

commutator

{HN , {H1, Ĥ}′D}′D = X a∂a
∼
N +

∼
NY, (4.26)

where X a and Y are functions on the phase space. Then, using Jacobi identity, one obtains

{HN ,Ψ}′D = {H1, {HN , Ĥ}′D}′D + {Ĥ, {H1,HN}′D}′D ≈
∼
N (X a∂a1 + Y) =

∼
NY, (4.27)

where at the second step we used (4.26) in the first term and the fact that any Dirac

bracket with a second class constraint vanishes to remove the second contribution. A sim-

ilar computation can be done for the second term in (4.25) if one notice that (4.23) can

be equivalently rewritten as Ψ = {H, Ĥ1}′D. Thus, we proved that the stability condi-

tion (4.25) for the secondary constraint does not contain derivatives of
∼
N and

∼
G, and it is

of the form

∼
NY +

∼
GŶ = 0. (4.28)

For generic configurations in phase space, the functions Y, Ŷ are non-vanishing, hence

the stability condition (4.28) of the secondary constraint is a linear algebraic relation

between the Lagrange multipliers
∼
N and

∼
G. As a result, the Dirac’s procedure stops

at this point, there are no tertiary constraints, and the secondary constraint Ψ is second

class conjugate to one of the two Hamiltonian constraints. This provides the complete

description of the canonical structure of our model in generic case.

One may consider however the possibility of having configurations in phase space for

which the two factors in (4.28) vanish simultaneously on the constraint surface,

Y = {H1,Ψ}′D ≈ 0, Ŷ = {Ĥ1,Ψ}′D ≈ 0. (4.29)

If this is the case, Ψ becomes weakly commuting with other constraints and thus first

class, further reducing the number of degrees of freedom. Although for a generic phase

space configuration this does not happen, there still can exist some subsectors where (4.29)

holds. In fact, in appendix B we show that such a possibility is indeed realized and

there are common solutions to the total set of constraints and the conditions (4.29). In

particular, we study a perturbative expansion around
∼

Ha = 0, evaluate explicitly the

secondary constraint in the quadratic approximation, and the stability condition to the

linear order in
∼

Ha. A common solution is shown to exist in the sector with
∼

Ha = 0 and

the connection Aa restricted to have a constant curvature set by the mass parameter α.

However, the subsectors thus found appear to be not stable under the evolution, which

makes impossible to interpret the conditions (4.29) as consistent additional constraints.

It is likely that they do not have a physical significance and arise due to our incomplete

understanding of the decoupling of the diagonal and off-diagonal degrees of freedom at the

non-linear level.
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4.5 Summary

Let us summarize what we have found so far. Generically the theory possesses 15 con-

straints. Among them there are 7 first class constraints: Gi, Da and H′

N + Ĥ′

G, with the

Lagrange multipliers
∼
N and

∼
G related by the condition (4.28). These constraints generate

the local symmetries of the chiral Plebanski formulation of general relativity: SU(2) gauge

transformations, spatial and time diffeomorphisms. The remaining 8 constraints are of

second class: Ĝi, D̂a, Ψ and either Ĥ or H depending which of them does not commute

with Ψ.8 Altogether these constraints fix 2× 7 + 8 = 22 variables in the initial 4× 9 = 36

dimensional phase space. As a result, the theory turns out to describe 7 degrees of freedom,

and it is free from the Boulware-Deser ghost.

Expanding around a bi-flat background, the degrees of freedom can be identified with

a massless and a massive spin-2 fields. Specifically, the massless graviton is encoded in the

“diagonal” (
∼

E,A) sector supplemented by 7 first class constraints, whereas the 5 degrees

of freedom of the massive one are carried by the traceless symmetric part of the “off-

diagonal” (
∼

H, η) sector, with the antisymmetric and trace parts being fixed by the second

class constraints (see appendix B). As anticipated, the identification of the physical fields

at the non-linear level is more complicated. An explicit calculation in appendix C shows

that the physical spatial metric identified by the Poisson bracket between two Hamiltonians

is quite a non-trivial function lacking a simple expression in terms of our basic variables.

It is interesting to compare the resulting canonical structure of this model with the

one of bi-metric gravity in the metric formalism. In the latter case, one starts with two

uncoupled copies of gravity, with the group of gauge symmetries being two copies of the

group of diffeomorphisms Diff , and as a result 2+2 propagating degrees of freedom. After

the two copies of gravity are coupled, the group of gauge symmetries is broken down to

the diagonal group of diffeomoprhisms. This removes 4 of the gauge symmetries of the

original uncoupled theory, and thus adds 4 propagating degrees of freedom. If, however,

the interaction term is tuned to be of a special form such that it is linear in the two lapse

functions, in addition one generates a couple of second class constraints (one primary and

one secondary) removing one degree of freedom corresponding to the Boulware-Deser ghost

and leaving us with 7 degrees of freedom.

A similar mechanism is at play in our model as well, but with some important differ-

ences. Like in the metric formulation, the group of gauge symmetries of the two uncoupled

copies of Plebanski theory is also broken down to the diagonal subgroup by the interaction

term. However, as (4.2) shows, the interaction term is linear in both, lapse and shift func-

tions. Thus, while the off-diagonal group of gauge transformations is broken, there are still

primary constraints corresponding to these transformations. The primary constraints for

off-diagonal spatial diffeomorphisms together with the primary constraints for off-diagonal

SO(3) rotations then turn out to form a second-class pair. Thus, even though by breaking

the spatial diffeomorphisms and SO(3) rotations we have removed 3+3 gauge symmetries,

we have only added 3 degrees of freedom. To say it differently, the interaction term just

8If they both do not commute with the secondary constraint, any of them can be chosen as second class.

This is because they can be related to each other by adding a first class constraint, which represents a

general ambiguity in the Dirac’s approach.
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converted the corresponding constraints from first class to second class. As a result, they

now remove a “half” of the configurational degree of freedom each, as compared to remov-

ing one when they are first class. On the other hand, the removal of the Boulware-Deser

ghost proceeds in the way analogous to the metric formulation and is based on the existence

of the additional second class pair. While very similar picture was outlined already in [27],

in this paper we have given its explicit realization for the first time.

As we have already remarked above, our model is equivalent to the metric formulation

only on the configurations satisfying the symmetry condition (3.3). The natural question

is then if one can impose this condition by hand, i.e. with the help of some Lagrange

multiplier terms added to the action. It is not hard to convince oneself that this is not

possible, because this condition cannot be rewritten in terms of the B fields. However,

as we already discussed in section 3, the condition (3.3) also appears if one requires the

reality of the action (3.1) once the standard reality conditions on the B fields are imposed.

It hints that (3.3) should arise in this case as a dynamical constraint. This expectation

indeed turns out to be true since the spatial part of (3.3) coincides then with the real part

of D̂. However, the full canonical analysis of the action (3.1) supplemented by the standard

reality conditions leads to a disappointing conclusion that such a system describes just two

massless gravitons coupled by a gauge fixing term. This happens because there are too

many constraints and the massive graviton modes disappear. The counting of degrees of

freedom in this case works as follows. The diagonal sector clearly describes two degrees

of freedom, so we discuss only the off-diagonal part. It is given by 2 × 2 × 9 = 36 real

dimensional phase space of complex fields (H, η) supplemented by 18 reality conditions

and by 2 × 8 = 16 constraints Ĝi, D̂a, Ĥ and Ψ. However, it can be checked that 5

of these constraints, namely Re Ĝi, Im Ĥ and ReΨ, coincide with the reality conditions

on the surface of other constraints. Moreover, one should take into account that in the

real theory not all of the above constraints are second class: Im D̂ is in fact first class.

As a result, after imposing all constraints, we get 36 − 18 − 8 − 2 × 3 = 4 dimensional

phase space corresponding to the degrees of freedom of a second massless graviton. Thus,

imposing the standard reality conditions, and generating the symmetry condition (3.3) as a

dynamical constraint, does not provide a way to relate our model to the metric formulation

of massive gravity. If such a relation exists, it should rely on a more sophisticated choice

of reality conditions.

Finally, we have also observed that there are sectors in phase space, characterized by

vanishing of the two (partial Dirac) brackets (4.29), where this classification of constraints

may fail, in particular, leading to fewer degrees of freedom. In fact, the existence of

special sectors in phase space with a drastically different canonical structure is not an

unusual situation. It happens, for example, in the first order tetrad formulation of general

relativity, and as well in the Plebanski formulation, where one can allow degenerate tetrads

with the vanishing determinant of the metric. For instance, the degenerate sector of the

non-chiral Plebanski formulation corresponds to a topological theory with no local degrees

of freedom [42]. In principle, something similar might happen in our case as well,9 but the

9Similar conclusions have been made in [22] for a model of non-linear massive gravity in Stückelberg

formalism.
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geometric interpretation of such subsectors is far from clear. In any case, they can lead

only to a reduction of degrees of freedom, and therefore our analysis ensures that the scalar

ghost has been removed throughout all the phase space.

4.6 Modified Plebanski theory

A striking property of the Plebanski formulation of general relativity is that it allows

an extension to an infinite class of actions all propagating only 2 degrees of freedom.

This should be compared with traditional modifications of general relativity like higher-

order f(R) theories, which typically have additional degrees of freedom. Such special

modification is achieved by turning the cosmological constant in (2.1) into an arbitrary

functional λ(Ψ) of the Lagrange multiplier Ψ. The resulting action describes a modified

theory of gravity propagating two degrees of freedom only [43]. It can be argued to be

related to an infinite sum of higher order curvature terms, organized as to not propagate

extra degrees of freedom [44]. The specific form of the infinite summation depends on the

specific choice of λ(Ψ).

Relying on these results, one can suggest a similar generalization of our model (3.1)

where the two cosmological constants are replaced by arbitrary functionals λ±(Ψ±). The

argument implying absence of extra degrees of freedom goes through for both sectors

of the coupled system, and the interaction does not appear to spoil it. Moreover, the

interaction term is still linear in both lapses and shifts, which indicates the presence of

the constraints responsible for the absence of the Boulware-Deser ghost. Therefore, even

without performing a detailed canonical analysis, we argue that there is in fact an infinite

class of ghost-free bi-metric gravities, characterized by the functionals λ±(Ψ±). This might

be particularly useful concerning phenomenological applications of the theory. We leave

the study of these issues for future research.

5 Conclusions

In this paper we have presented a chiral model for ghost-free massive (bi-)gravity. The the-

ory we considered is given by two copies of the Plebanski action for general relativity, plus

an interaction term. On shell, the interaction corresponds to the sum of two terms (3.2),

one of which coincides with the symmetric interaction between tetrads considered in [27]

(second item of (1.2)) and the other features an alternative gauge-invariant contraction of

the tetrads. We performed a complete canonical analysis and proved that the theory only

propagates seven degrees of freedom, hence effectively removing the Boulware-Deser ghost

usually plaguing models of massive gravity. Thus, our results give an independent and ex-

plicit proof of the absence of the ghost for a special type of interaction terms [7, 8, 12, 13],

and furthermore extend it for the first time to a first order action of gravity, with indepen-

dent tetrad and connection variables.

It is instructive to compare and contrast the formulation of bi-metric gravity used here

with the other, more standard ones such as metric and tetrad formulations. The former is

the most economic one in terms of fields, as any gauge formulation introduces unphysical

redundancies, and both the tetrad and chiral Plebanski-type formulations have more of
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these. However, the interaction terms needed to remove the ghost are non-polynomial

in the metric framework, which makes computations increasingly complex. The tetrad

formulation converts these complicated interactions into simple polynomials, but at the

same time it introduces the additional gauge symmetry of local frame rotations without

really simplifying the Hamiltonian analysis. What we have considered in this paper is

a chiral model, which lies in between the pure metric and the tetrad formulations since

it brings only 3 local gauge rotations as compared to 6 in the tetrad formalism. The

reduction of the gauge group tremendously simplifies the canonical analysis, a fact that

can be exploited to perform a number of explicit calculations.

Our formalism does not allow us to incorporate the first and third terms in (1.2), hence

it may look more restricting, allowing de facto only the second term in the list. However, as

we discussed, the use of 2-forms as fundamental variables also opens the door to the possible

existence of an infinite class of ghost-free theories, by turning the cosmological constants

λ± into arbitrary functionals of the Lagrange multipliers Ψ±. These in turn introduce new

interactions for the metrics, and the procedure can be argued to not introduce extra degrees

of freedom. The existence of a more general class of ghost-free interaction is interesting,

and deserves to be further studied.10

The chiral formulation has a drawback in that the analysis of bi-metric theory holds,

strictly speaking, only for metrics with Euclidean signature. The calculations extend im-

mediately to the physical case of Lorentzian signature, however in this case one works

from the start with complex fields, to be supplemented by appropriate reality conditions.

The simplest possibility is to borrow the usual reality conditions for Lorentzian Plebanski

gravity and apply them independently to both sets of fields. This almost works: it induces

real and Lorentzian metrics, and the reality conditions are preserved by time evolution.

However, the total action is not made real by these conditions, unlike in the simple gravity

case. One imaginary term survives and spoils the theory, and this is precisely the parity-

odd extra term in (3.2). Interestingly, the term that makes the standard reality conditions

fail is the same that characterizes the difference between bi-gravity in the metric and tetrad

formulations. Hence, finding more non-trivial reality conditions could also be related to

finding a reformulation of the Plebanski version totally equivalent to the metric one.

A way to avoid the problem of reality conditions would be to start with the non-chiral

Plebanski theory based on the full Lorentz group [32, 47, 48], which is at the basis of

the spin foam quantization program to general relativity [49, 50]. However, its canonical

analysis is of the same difficulty as the one in the tetrad formulation, see [51, 52]. Further-

more, modifying the non-chiral Plebanski theory in a way similar to the one considered in

section 4.6, in contrast to the chiral case, one obtains a theory with generically 8 degrees

of freedom [53], that can be interpreted as those of a generic massive gravity including the

scalar ghost [54]. This suggests an interesting program of realizing the ghost-free massive

gravity as a particular subclass of modified (non-chiral) Plebanski theories. An investiga-

tion along these lines has appeared in [55].

10An infinite number of ghost-free theories can also be obtained if one considers Lorentz-breaking poten-

tials [45] (see also [46] for more on Lorentz-breaking massive gravity). Here instead it would be an infinite

class of Lorentz-invariant potentials.
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Another interesting open question concerns the existence of stable subsectors with

fewer degrees of freedom. Apart from the trivial cases of α = 0,∞ (corresponding re-

spectively to two decoupled gravity theories and a single one), our analysis allows us to

explicitly characterize such subsectors by analyzing the stability condition for the sec-

ondary constraint. They appear unstable at first sight, but a more complete study of their

dynamical properties and geometric interpretation is needed to arrive at a conclusive result.

Finally, it would be interesting to see whether quantization techniques, such as loop

quantization and spin foam approach, developed to deal with gauge formulations of gravity,

can be extended to the models describing massive (bi-)gravity.
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A Evaluation of the secondary constraint

In this appendix we evaluate the secondary constraint whose general form is given in (4.18).

The first term in this expression is just the Poisson bracket between the diagonal and off-

diagonal Hamiltonian constraints computed in (4.13c). It can be further simplified as

{H, Ĥ} = − 4α
[

e
(

∼

Eai −
∼

Ha
j ∼
Ejb

∼

Hb
i

)

+ h
(

∼

Ha
i − ∼

Eaj ∼
Hj
b

∼

Ebi

)]

ηia, (A.1)

where e = det
∼

Eai , h = det
∼

Ha
i , and thus reproduces the first term in (4.19). The second

term includes contributions of the remaining three terms in (4.18). To evaluate them, the

first step is to invert the matrix

∆i
a :=

1

4α
{D̂a, Ĝi} =

1

2
ǫijk

∼
ǫabc

(

∼

Ebj
∼

Eck −
∼

Hb
j

∼

Hc
k

)

= e
∼
Eia − h

∼
H i
a. (A.2)

Its inverse can be computed as follows

(

∆−1
)a

i
=

1

2∆
ǫijk

∼
ǫabc∆

j
b∆

k
c = ∆−1

[

e
∼

Eai + h
∼

Ha
i − 1

2

(

∼

Eai
∼

Ebj −
∼

Ebi
∼

Eaj

)

ǫjklǫbcd
∼

Hc
k

∼

Hd
l

]

,

(A.3)

where

∆ = det∆i
a = (e− hT )e− (h− eT̂ )h, (A.4)

and T =
∼
H i
a

∼

Eai , T̂ =
∼
Eia

∼

Ha
i . Using this result, one further computes

{H, Ĝi}{Ĝi, D̂a}−1 = −∆−1
[

e
(

∼

Eai
∼

Ebi +
∼

Ha
i

∼

Hb
i

)

+ (h− eT̂ )
∼

Ha
i

∼

Ebi

]

∼
ǫbcd

∼

Ecj
∼

Hd
j ,

{D̂a, Ĝi}−1{Ĝi, Ĥ} = −∆−1
[

h
(

∼

Eai
∼

Ebi +
∼

Ha
i

∼

Hb
i

)

+ (e− hT )
∼

Ha
i

∼

Ebi

]

∼
ǫbcd

∼

Ecj
∼

Hd
j ,

(A.5)

which allows to get the last term in (4.18) in the following form

{H, Ĝj}{Ĝj , D̂b}−1{D̂b, D̂a}{D̂a, Ĝi}−1{Ĝi, Ĥ}

= 4α∆−1
∼
ǫabr (

∼

Eri ∂s
∼

Esi −
∼

Hr
i ∂s

∼

Hs
i )∼ǫgcd

(

∼

Eaj
∼

Egj +
∼

Ha
j

∼

Hg
j

)

∼

Eck
∼

Hd
k∼
ǫfpq

∼

Hb
l

∼

Efl
∼

Epm
∼

Hq
m.

(A.6)
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This contribution can be combined with A-dependent terms from

{H, Ĝi}{Ĝi, D̂a}−1{D̂a, Ĥ}+ {H, D̂a}{D̂a, Ĝi}−1{Ĝi, Ĥ} (A.7)

= −4α∆−1
[(

e
(

∼

Eai
∼

Ebi +
∼

Ha
i

∼

Hb
i

)

+ (h− eT̂ )
∼

Ha
i

∼

Ebi

)

Aja
∼

Hr
j

−
(

h
(

∼

Eai
∼

Ebi +
∼

Ha
i

∼

Hb
i

)

+ (e− hT )
∼

Ha
i

∼

Ebi

)

Aja
∼

Erj

]

∼
ǫbcd

∼

Eck
∼

Hd
k∼
ǫrgf

∼

Egl
∼

Hf
l

+ terms linear in η.

One can check that these terms complete the derivatives in (A.6) to covariant ones, which

in turn can be replaced by the two Gauss constraints provided one subtracts the missing

terms linear in η. The contributions proportional to the Gauss constraints can be dropped,

whereas the terms linear in η are combined with similar ones from (A.7) producing the last

term in (4.19) explicitly given in (4.21).

B Perturbative analysis around H̃
a = 0

In this appendix we analyze in detail the secondary constraint and its stability condition

in a first few orders of a perturbative expansion around
∼

Ha = 0. It should be emphasized

that this analysis is more general than a linearization around a flat background. In partic-

ular, we will show that, in contrast to the later (under the assumption of non-degeneracy

of the physical metric), it allows for solutions of the conditions (4.29) for which the sta-

bility condition of the secondary constraint does not seem to impose a restriction on the

Lagrange multipliers.

First, let us compute the secondary constraint Ψ up to quadratic terms in
∼

Ha. Taking

into account that

∆ = e2 +O(
∼

H2), (B.1)

from the explicit expression (4.19) together with (4.21) one can show that the constraint

can be written as

Ψ ≈ − 4αe
[

(

1 +O(
∼

H2)
) ∼

Eai η
i
a+ ηia

∼

Ha
i ∼
Ejb

∼

Hb
j− ηia

∼

Hb
i ∼
Ejb

∼

Ha
j − ηia

∼

Hc
i

∼

Eaj
∼

Hb
j (∼E∼

E)bc

]

+O(
∼

H3),

(B.2)

where the constraint Ĝi has been extensively used. As a result, dividing by the prefactor

of the first term, one concludes that in our approximation it is sufficient to consider

Ψ̂ =
∼

Eai η
i
a + Ψ̂(2), Ψ̂(2) = ηia

∼

Ha
i ∼
Ejb

∼

Hb
j − ηia

∼

Hb
i ∼
Ejb

∼

Ha
j − ηia

∼

Hc
i

∼

Eaj
∼

Hb
j (∼E∼

E)bc. (B.3)

In particular, we observe that at the leading order the secondary constraint ensures the

vanishing of the trace part of the η field. Similarly, using (4.11), one can interpret the “off-

diagonal” Hamiltonian constraint Ĥ as a restriction on the trace part of
∼

H (since the last

term gives α
∼
Eia

∼

Ha
i ), whereas Ĝi and D̂a can be viewed as restrictions on the antisymmetric

parts of η and
∼

H, respectively. This observation is already sufficient to conclude that in

the (
∼

H, η) sector we can have at most 5 propagating degrees of freedom, contained in the
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symmetric traceless parts of the fields, which are expected to correspond to the degrees of

freedom of a massive graviton. The ghost scalar carried by the trace part is removed by

the constraints Ĥ and Ψ.

Next, let us analyze the stability condition of the secondary constraint which requires

the vanishing of the Poisson bracket {Ψ̂, Htot}. We will compute it keeping only terms

which are at most linear in
∼

Ha. To this end, using (4.17) and (A.5), on the constraint

surface we obtain

Ga = − e−1
∼
N

∼

Eai
∼

Ebi∼ǫbcd
∼

Ecj
∼

Hd
j +O(

∼

H2),

ψ̃i ≈
∼
N
(

Da

∼

Ha
i − e−1

∼
ǫabcA

i
d

∼

Edj
∼

Eaj
∼

Ebk
∼

Hc
k

)

+ e−1
∼
G

∼
ǫabc

∼

Eai
∼

Ebjη
k
d

(

∼

Hc
k

∼

Edj −
∼

Hc
j

∼

Edk

)

+O(
∼

H2).

(B.4)

Given the above results, a direct computation gives

{

Ψ̂, Htot

}

≈
{

Ĝψ̃ + D̂ ~G
+HN + ĤG,

∼

Eai η
i
a

}

+
δ(HN + ĤG)

δηia

∂Ψ̂(2)

∂
∼

Ha
i

+O(
∼

H2)

≈
∼
N

[

2ǫijk
∼

Eai
∼

Hb
j ǫ
klmηlaη

m
b + 3αǫijk

∼
ǫabc

∼

Eai
∼

Ebj
∼

Hc
k + ǫijk

∼

Eai
∼

Ebjǫ
klmηmb

∂Ψ̂(2)

∂
∼

Ha
l

]

+

[

−
∼
Gǫijk

∼

Eai
∼

Ebj

(

F kab − α
∼
ǫabc

∼

Eck

)

+Db

(

∼
Gǫijk

∼

Eai
∼

Ebj

) ∂Ψ̂(2)

∂
∼

Ha
k

+∂a

(

∼
Gǫijk

∼

Eai

(

∼

Ebj ∼E
k
c

∼

Hc
l η
l
b −

∼

Hb
jη
k
b

))

]

+O(
∼

H2). (B.5)

Using (B.3) and the constraint H in the second term, on the constraint surface (including

Ψ̂) this can be further simplified as

{

Ψ̂, Htot

}

≈
∼
N
((

6αe− ∼

Eai η
i
b

∼

Ebjη
j
a

)

∼
Ekc

∼

Hc
k + 2

∼

Eai η
i
b

∼

Hb
jη
j
a

)

+
∼
G
(

6αe− ∼

Eai η
i
b

∼

Ebjη
j
a +WH

)

+O(
∼

H2),
(B.6)

where

WH =2ǫijk
∼

Eai
∼

Hb
j

(

Daη
k
b −Dbη

k
a

)

− ǫijk
∼

Eai

(

ηld
∼

Hd
l ∼
EkbDa

∼

Ebj −
∼

Ebj ∼E
l
d

∼

Hd
l Daη

k
b

+
∼
Ejd

∼

Hd
l η

l
bDa

∼

Ebk + 2
∼

Ebj
∼

Edkη
l
d

∼

Hc
l ∼
Emc Da

∼
Emb +

∼

EbjDa(η
k
d ∼
Elb

∼

Hd
l ) +Da(η

k
d

∼

Edl
∼

Hc
l ∼
Ejc )

)

.

(B.7)

In particular, all terms with derivatives of the Lagrange multipliers cancel in agreement

with the general conclusion of section 4.4.

Both coefficients, in front of
∼
N and

∼
G, appear to be non-trivial functions on the phase

space. If at least one of them is non-vanishing, the equation {Ψ̂, Htot} = 0 can be considered

as an equation for the corresponding Lagrange multiplier. Then the Dirac’s procedure is

completed and Ψ together with one of the Hamiltonian constraints is of second class.

Let us now analyze the situation where both coefficients in (B.6) simultaneously van-

ish. One might expect that in this case the constraint structure changes drastically. In

particular, there is a chance that both Hamiltonian constraints and Ψ become first class.
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In such situation, although the ghost degree of freedom is still removed, it would happen

due to an additional gauge symmetry, rather than by means of constraints which are of

second class. The perturbative expansion presented in this appendix provides a framework

to explicitly address these issues.

First, we need to understand whether it is really possible to have both coefficients

vanishing. Explicitly this requires

Y :=
(

6αe− ∼

Eai η
i
b

∼

Ebjη
j
a

)

∼
Ekc

∼

Hc
k + 2

∼

Eai η
i
b

∼

Hb
jη
j
a = 0,

Ŷ := 6αe− ∼

Eai η
i
b

∼

Ebjη
j
a +WH = 0.

(B.8)

To start with, we consider a linearization around a flat background which can be described

by
∼

Eai = δai and Aia = 0. Using the flatness of the connection, from the Hamiltonian

constraint H (4.11) one finds that

∼

Eai η
i
b

∼

Ebjη
j
a = O(

∼

H). (B.9)

Combined with Ŷ in (B.8), this leads to 6α = O(H) which is inconsistent with our as-

sumption of
∼

Ha being infinitesimally small. Thus, near a flat background Ŷ 6= 0 so that Ĥ
forms a second class system with the secondary constraint Ψ, and the model describes one

massless and one massive graviton, consistently with previous findings [27].

The above consideration suggests that one should look for a common solution to (B.8)

and all other constraints in the sector with a constant curvature set by the mass parameter

α, rather than the flat one. Let us do this setting for simplicity
∼

Ha = 0 which automatically

ensures Y = 0. In the sector with vanishing
∼

Ha the constraints become

Ψ̂ =
∼

Eai η
i
a, Gi = Da

∼

Eai , Ĝi = ǫijkη
j
a

∼

Eak,

Ca =
∼

Ebi (F
i
ab + ǫijkηjaη

k
b ), Ĉa =

∼

Ebi (Daη
i
b −Dbη

i
a),

H =
1

2
ǫijk

∼

Eai
∼

Ebj (F
k
ab + ǫklmηlaη

m
b ), Ĥ = ǫijk

∼

Eai
∼

EbjDaη
k
b .

(B.10)

Introducing ηij = ηia
∼

Eaj , and requiring that it is symmetric and traceless, solves Ĝi and Ψ

so that we remain with the following equations

ǫ̃abc
∼
EiaF

i
bc = 6α, Da

∼

Eai = 0,

∼

EbiF
i
ab = 0,

∼

Ebi η
ij(Da

∼
Ejb −Db

∼
Eja)−

∼

Ebi ∼E
j
aDbη

ij = 0,

ηijηij = 6α, ηij ǫ̃abc
∼
EicDa

∼
Ejb = 0.

(B.11)

The first two of these equations require the connection to be consistent with the triad and

to have a constant curvature, whereas the fifth equation fixes the “norm” of the field ηij .

Then we remain with 5 differential equations on 9 components of
∼

Eai . It is natural to expect

that they can be simultaneously solved which shows that the space of common solutions

to the conditions (B.8) (or more generally to (4.29)) and the constraints is not empty.
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The next step is to study the stability of the additional constraints (B.8). Our ap-

proximation allows to compute the commutators in the zeroth order in
∼

Ha. Explicitly,

one finds

{Y, Htot} ≈{HN + ĤG,Y}+O(
∼

H)

≈ − 2
∼
Nηijη

j
kη
k
i + 2

∼
Gǫijk

∼

Eai
∼

Ebjηklη
lmDa

∼
Emb +O(

∼

H),

{Ŷ, Htot} ≈{HN + ĤG, Ŷ}+O(
∼

H)

≈ 2
∼
Nǫijk

∼

Eai
∼

Ebjηklη
lmDa

∼
Emb

+
∼
G

[

2ǫijk
∼

Eai η
l
j

∼

Ebl F
k
ab −

{
∫

d3y ǫijkDa(
∼

Eai
∼

Ebj )η
k
b ,WH

}]

+O(
∼

H),

(B.12)

All terms here appear to be non-vanishing. As a result, the stability of Y and Ŷ cannot

be achieved unless both Lagrange multipliers
∼
N and

∼
G simultaneously vanish. However,

we are not interested in such situation as it corresponds to degenerate metrics. Therefore,

the sector defined by (B.8) does not seem to possess an interesting dynamics and probably

does not have any physical significance.11

C Commutator of two Hamiltonian constraints

Let us consider the commutator of the two first class constraints playing the role of the

Hamiltonian constraint. Such constraint can be obtained by collecting all terms in the

total Hamiltonian (4.15) which are proportional to the “diagonal” lapse function
∼
N after

plugging in all solutions for the Lagrange multipliers fixed by the stability conditions. Thus,

it is given by

Hf.c.
N = HN + ĤG(N) + D̂ ~G(N) + Ĝψ̃(N), (C.1)

where
∼
G(N), Ga(N), ψ̃i(N) are those solutions which can be found from (4.17) and (4.28).

Our aim here is to get the function analogous to Na(N,M) in (2.16) to read off the physical

metric determined by the diffeomorphism algebra. Therefore, we are not interested in the

full commutator, but only in the terms proportional to the diffeomorphism constraint D.

Using the constraint algebra presented in (4.13), one finds

{Hf.c.
N1
,Hf.c.

N2
} = Va(N1, N2)Da + · · · , (C.2)

11An alternative possibility to treat the conditions (B.8) would be to insert them into the original La-

grangian. Then they appear in the total Hamiltonian with appropriate Lagrange multipliers and their

stability should be studied at the same step as the stability of the primary constraints. In this scenario,

the stability of Y and Ŷ is ensured by fixing the Lagrange multipliers and does not require the vanishing of

∼
N and

∼
G. However, due to

{Y(x), Ŷ(y)} ≈ 4ηi
jη

j
kη

k
i δ̃

3(x− y) +O(
∼

H),

the constraints Y and Ŷ appear to be second class and affect the expression of the secondary constraint.

As a result, this scenario leads to a constraint surface which does not intersect with the one corresponding

to the physically interesting case of massive gravity.
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where

Va(N1, N2) = V a(N1, N2) + V a(G(N1), G(N2))− Ua(N1, G(N2))− Ua(G(N1), N2)

+ La(~G(N1), ~G(N2)).

(C.3)

Let us take

Ga(N) =
∼
Nfa +

∼
G(N)ga,

∼
G(N) = R

∼
N, (C.4)

where our results imply that

fa = {H, Ĝi}{Ĝi, D̂a}−1, ga = {Ĥ, Ĝi}{Ĝi, D̂a}−1, R = −Y/Ŷ. (C.5)

Then one easily calculates that

Va(N1, N2) = Kab (
∼
N1∂b

∼
N2 −

∼
N2∂b

∼
N1) , (C.6)

where

Kab = (1 +R2)
(

(
∼

E
∼

E)ab + (
∼

H
∼

H)ab
)

− 2R
(

∼

Eai
∼

Hb
i +

∼

Ebi
∼

Ha
i

)

+ (fa +Rga)(f b +Rgb)

= (
∼

Eai −R ∼

Ha
i )(

∼

Ebi −R ∼

Hb
i ) + (

∼

Ha
i −R ∼

Eai )(
∼

Hb
i −R ∼

Ebi ) + (fa +Rga)(f b +Rgb).
(C.7)

The function Kab is expected to encode the spatial part of the physical metric of the coupled

theory as Kab = ggab. The result (C.7) clearly shows that the physical metric is a very

complicated function being expressed in terms of “diagonal” and ”off-diagonal” variables.

Using results from appendix B, it is possible to get a more explicit representation for

Kab in the quadratic approximation in
∼

Ha. One finds

Kab ≈ (
∼

E
∼

E)ab

[

1 +

(

∼
Eic

∼

Hc
i +

2
∼

Eci η
i
d

∼

Hd
j η

j
c

6αe− ∼

Egkη
k
f

∼

Efl η
l
g

)2 ]

+ (
∼

H
∼

H)ab

+ 2
(

∼

Eam
∼

Hb
m +

∼

Ebm
∼

Ha
m

)

(

∼
Eic

∼

Hc
i +

2
∼

Eci η
i
d

∼

Hd
j η

j
c

6αe− ∼

Egkη
k
f

∼

Efl η
l
g

)

+ ǫijk
∼

Eai
∼

Hc
j ∼
Ekc ǫ

lmn ∼

Ebl
∼

Hd
m∼
End +O(

∼

H3).

(C.8)

Expanding around a bi-flat background

∼

Eai = δai + fai , f ∼ A ∼ ∼

H ∼ η ∼ o(1), (C.9)

this further simplifies to

Kab ≈ δab + fab + fab + fai f
b
i + (

∼

H
∼

H)ab

+ δab(
∼

H i
i )

2 + 2(
∼

Ha
b +

∼

Hb
a)

∼

H i
i + ǫajk

∼

Hk
j ǫ
bmn ∼

Hn
m.

(C.10)

The expression in the first line gives the fluctuation of the metric defined as a symmetric

combination of the two metrics g± constructed from B± and expanded around a bi-flat
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background. All terms in the second line contain contributions either from trace of
∼

H

or from its antisymmetric part. These components are constrained by the constraints Ĥ
and D̂, respectively. However, they are restricted not to vanish, but to be given (in our

approximation) by derivatives of η:

∼

H i
i =

1

2α
ǫijk∂iη

k
j , ǫajk

∼

Hk
j = − 1

2α
∂iη

i
a. (C.11)

Thus, we found that although in the linear approximation the fluctuations of the diagonal

triad
∼

Eai are consistent with the fluctuations of the physical metric, already at the quadratic

order the metric gets contributions from all fields.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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