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We present a new sharp uniform-in-bandwidth limit law for the nearest-neighbor density estimator. Our result is established in the framework of convergence in probability, and we allow the bandwidth to vary within the complete range for which the estimator is consistent. We provide the explicit value of the asymptotic limiting constant for the sup-norm of the estimator's random error.

Introduction and Result

We are concerned with the nonparametric estimation of the density f (•) of a random variable [rv] X ∈ R by the nearest-neighbor [NN] method. The NN estimators are motivated as follows (see, e.g., Fix and Hodges [START_REF] Fix | Discriminatory analysis. Nonparametric discrimination: consistency properties[END_REF]). Let X 1 , X 2 , . . . be independent and identically distributed [iid] random copies of X, with distribution function [df] F(x) := P(X ≤ x), for x ∈ R. Denote the empirical df based upon X 1 , . . . , X n , by F n (x) := n -1 #{X i ≤ x : 1 ≤ i ≤ n}, for x ∈ R , where # stands for cardinality. For each λ > 0 and x ∈ R , set R n,λ (x) := inf {h > 0 :

F n (x + h) -F n (x) ≥ λ} , (1) 
and R λ (x) := inf {h > 0 :

F (x + h) -F (x) ≥ λ} , (2) 
where we make use of the convention that inf ∅ (• ) = ∞. Since F n (•) and F(•) are rightcontinuous, it is readily checked from (1) and ( 2) that

F n (x + R n,λ (x)) -F n (x) ≥ λ and F(x + R λ (x)) -F(x) ≥ λ.
This, in turn, entails that R n,λ (x) ∈ (0, ∞] and R λ (x) ∈ (0, ∞] for all x ∈ R and λ > 0.

When the density f (t) = F ′ (t) of X exists and is continuous in a neighborhood of x ∈ R, we have, as λ ↓ 0,

M λ (x) := λ R λ (x) → f (x). (3) 
In view of ( 1) and ( 2), the usual NN-estimator of f (x) is the empirical counterpart of M λ (x) in [START_REF] Burba | k-nearest neighbour method in functional nonparametric regression[END_REF], given by

f n,λ (x) := λ R n,λ (x) . (4) 
The convention that λ/∞ = 0 for λ > 0 renders meaningful the definitions of M λ (x) ∈ [0, ∞) in [START_REF] Burba | k-nearest neighbour method in functional nonparametric regression[END_REF], and of f n,λ (x) ∈ [0, ∞) in ( 4), for all x ∈ R and λ > 0. Variants of the NN-estimator f n,λ (•) in ( 4) have been discussed by a number of authors, among whom we should cite Loftsgaarden and Quesenberry [START_REF] Loftsgaarden | A nonparametric estimate of a multivariate density function[END_REF], Devroye and Wagner [START_REF] Devroye | The strong uniform consistency of nearest neighbor density estimates[END_REF], Csörgő and Révész [START_REF] Csörgő | A preliminary version of the preliminary version of an invariance principle for N. N. empirical density functions[END_REF], Mack [START_REF] Mack | Rate of strong uniform convergence of k-NN density estimates[END_REF], Deheuvels and Mason [START_REF] Deheuvels | Functional laws of the iterated logarithm for the increments of empirical and quantile processes[END_REF], and Viallon [START_REF] Viallon | Functional limit laws for the increments of the quantile process; with applications[END_REF].

Let I := [C, D] ⊂ J := [A, B], with -∞ < A < C < D < B < ∞, be specified sub-intervals of R , under the assumption (H) that f (•)
is continuous and strictly positive on J. Set log + u := log(u ∨ e) for u ∈ R. Our main result is the following uniform-in-bandwidth convergence theorem.

Theorem 1 Let 0 < a n ≤ b n ≤ 1 be such that, as n → ∞, b n → 0 and na n / log n → ∞. (5) 
Then, with

H n := [a n , b n ], we have, as n → ∞, sup λ∈Hn nλ 2 log + (1/λ) 1/2 sup x∈I ± f n,λ (x) -M λ (x) f (x) -1 = o P (1). ( 6 
)
Remark 1 1 • ) Our proofs will show that the conclusion (6) of Theorem 1 remains valid if, in the definitions (3)-( 4) of M λ (x) and f n,λ (x), we respectively replace R λ (x) and R n,λ (x), by

R * λ (x) = inf h > 0 : F(x + 1 2 h) -F(x -1 2 h) ≥ λ , and R * n,λ (x) = inf h > 0 : F n (x + 1 2 h) -F n (x -1 2 h) ≥ λ . 2 
• ) It is easy to see that, under (5), the limit law (6) holds with the formal replacement of

± {f n,λ (x) -M λ (x)} by |f n,λ (x) -M λ (x)|.
3

• ) The extension of our methods to NN nonparametric estimators of the regression function (see, e.g., Beck [START_REF] Beck | The exponential rate of convergence of error for k n -NN nonparametric regression and decision[END_REF], Collomb [START_REF] Collomb | Estimation de la régression par la méthode des k points les plus proches avec noyau : quelques propriétés de convergence ponctuelle[END_REF], Devroye [START_REF] Devroye | Necessary and sufficient conditions for the pointwise convergence of nearest neighbor regression function estimates[END_REF], Burba et al. [START_REF] Burba | k-nearest neighbour method in functional nonparametric regression[END_REF]) will be considered elsewhere.

4

• ) The uniform consistency of f n,λ (• ) over bounded intervals was discussed by Moore and Henrichon [START_REF] Moore | Uniform consistency of some estimates of a density function[END_REF] (see, e.g., Devroye and Wagner [START_REF] Devroye | The strong uniform consistency of nearest neighbor density estimates[END_REF]), under the assumption that f (• ) is uniformly continuous and positive on R.

•

) Theorem 1 allows us to construct uniform asymptotic simultaneous confidence bands for f (• ), in the spirit of that given in Deheuvels and Mason [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF] (see, e.g., Deheuvels and Derzko [START_REF] Deheuvels | Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme[END_REF], Deheuvels [START_REF] Deheuvels | One bootstrap suffices to generate sharp uniform bounds in functional estimation[END_REF]).

As may be checked from our forthcoming proofs, Theorem 1 remains valid if we allow a n and b n to be random and fulfilling (5) in probability. A motivation for uniform-inbandwidth results such as that given in Theorem 1, is to describe the limiting behavior of nonparametric functional estimators when their smoothing parameter (or bandwidth) is possibly random or data-dependent. A number of elaborate schemes have been proposed in the statistical literature for constructing such bandwidth sequences (see, e.g., Berlinet and Devroye [START_REF] Berlinet | Comparison of kernel density estimates[END_REF], and sections 2.4.1-2.4.2 in Deheuvels and Mason [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF]). These authors typically recommend bandwidths of the form λ = λ * n = Z n n -1/5 where Z n is an appropriate (possibly data-dependent) random sequence, stochastically bounded away from 0 and ∞. Making use of Theorem 1, we readily obtain a description of the limiting behavior of the corresponding NN-estimators. We refer to Einmahl and Mason [START_REF] Einmahl | Uniform in bandwidth consistency of kerneltype function estimators[END_REF], and Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF], for discussions and references on the closely related problem of uniform-in-bandwidth convergence for kernel estimators. To illustrate the sharpness of (5), we set H n = [λ n , λ n ] in Theorem 1, and observe that, whenever {λ n : n ≥ 1} are constants fulfilling, as n → ∞, λ n → 0, and

nλ n / log n → ∞, (7) 
then, as n → ∞,

nλ n 2 log + (1/λ n ) 1/2 sup x∈I ± f n,λn (x) -M λn (x) f (x) P → 1. ( 8 
)
Almost sure versions of ( 8) have been established, under various sets of assumptions, by Csörgő and Révész [START_REF] Csörgő | A preliminary version of the preliminary version of an invariance principle for N. N. empirical density functions[END_REF], Mack [START_REF] Mack | Rate of strong uniform convergence of k-NN density estimates[END_REF], Deheuvels and Mason [START_REF] Deheuvels | Functional laws of the iterated logarithm for the increments of empirical and quantile processes[END_REF], and Ralescu [START_REF] Ralescu | The law of the iterated logarithm for the multivariate nearest neighbor density estimators[END_REF]. We note that (8) (and hence, ( 6)), does not hold almost surely [a.s.] for an arbitrary choice of the continuous density f (•) on J, and for all bandwidth sequences {λ n : n ≥ 1} fulfilling [START_REF] Deheuvels | Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme[END_REF].

If we assume, in addition to [START_REF] Deheuvels | Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme[END_REF], that, as n → ∞,

log(1/λ n )/ loglog n → ∞, λ n ↓ 0, and nλ n ↑ ∞, (9) 
then (see, e.g., Theorem 4.3 in Deheuvels and Mason [START_REF] Deheuvels | Functional laws of the iterated logarithm for the increments of empirical and quantile processes[END_REF]), we have, a.s.,

lim n→∞ nλ n 2 log + (1/λ n ) 1/2 sup x∈I ± f n,λn (x) -M λn (x) f (x) = 1.
This last result is known not to hold in general when the first condition in ( 9) is not fulfilled. Viallon [START_REF] Viallon | Functional limit laws for the increments of the quantile process; with applications[END_REF] has obtained a uniform-in-bandwidth convergence theorem in the spirit of [START_REF] Deheuvels | One bootstrap suffices to generate sharp uniform bounds in functional estimation[END_REF], by showing that, a.s.,

lim n→∞ sup λ∈Hn nλ 2 log + (1/λ) 1/2 sup x∈I f n,λ (x) -M λ (x) f (x) = 1, (10) 
where

H n = [λ ′ n , λ ′′ n ]
, and λ ′ n , λ ′′ n are sequences of constants fulfilling ( 7)-( 9) together with at least one of the additional conditions below. As n → ∞,

√ nλ ′ n log(1/λ ′ n ) log n loglog λ ′ n → ∞ or λ ′′ n log(1/λ ′′ n ) λ ′′ n log(1/λ ′′ n ) = o √ n log n .
We mention that Viallon [START_REF] Viallon | Functional limit laws for the increments of the quantile process; with applications[END_REF] works under the assumption that F(•) is twice continuously differentiable on J, and such that, for some γ > 0,

sup u∈J F(u)(1 -F(u))|f ′ (u)| f 2 (u) ≤ γ.
Subject to additional conditions on H n , he showed that, as n → ∞,

sup λ∈Hn nλ 2 log + (1/λ) 1/2 sup x∈I f n,λ (x) -M λ (x) f (x) P → 1. ( 11 
)
The conditions imposed on λ n in (9), as well as the additional restrictions in Viallon [START_REF] Viallon | Functional limit laws for the increments of the quantile process; with applications[END_REF], are more strenuous than [START_REF] Csörgő | A preliminary version of the preliminary version of an invariance principle for N. N. empirical density functions[END_REF]. We should point out that ( 11) is a much weaker statement than [START_REF] Deheuvels | One bootstrap suffices to generate sharp uniform bounds in functional estimation[END_REF]. Indeed, the asymptotic limiting constant in [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF] relies on a specific λ ∈ H n , whereas the limit law (6) provides the asymptotic limiting constant for the sup-norm of the estimator's random error, uniformly over λ ∈ H n .

The proof of Theorem 1 is postponed until §2.4. It relies on a uniform-in-bandwidth limit law of Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF], which we recall in §2.1. In §2.2 and §2.3, we present preliminaries which are needed in our proofs.

Proofs 2.1 A Uniform-in-Bandwidth Limit Law

The following notation is needed for the statement of the uniform-in-bandwidth limit law of Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF] (see Fact 1), which will be instrumental in our proofs. Let U 1 , U 2 , . . . be iid rv's with a uniform distribution on (0, 1). Let U n (u) := n -1 #{U i ≤ u : 1 ≤ i ≤ n}, for u ∈ R, be the empirical df based upon the first n ≥ 1 of these observations. Define the empirical quantile function [qf] pertaining to

U n (•) by V n (v) := inf{u ≥ 0 : U n (u) ≥ v}, for 0 ≤ v ≤ 1, V n (v) := 0 for v < 0 and V n (v) := 1 for v > 1.
Denote the uniform empirical quantile process by

β n (u) := n 1/2 (V n (u) -u) , for u ∈ R. (12) 
For each I = [r, s] ⊆ [0, 1], with r < s, consider the statistic

δ ± n,I (h) := sup t∈I∩[0,1-h] ±{β n (t + h) -β n (t)}. ( 13 
)
Fact 1 is established in Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF] (see Corollary 1).

Fact 1 Let H n = [a n , b n ] be as in Theorem 1. Then, as n → ∞, we have

sup h∈Hn δ ± n,I (h) 2h log + (1/h) -1 = o P (1). ( 14 
)
Theorem 1 is an application of the uniform-in-bandwidth limit law (14).

Some Other Useful Facts

The following arguments are oriented towards proving Theorem 1. We inherit the notation of §1. Let Q(t) := inf{x ∈ R : F(x) ≥ t}, for 0 < t < 1, denote the quantile function [qf] pertaining to F(•). We extend the definition of Q(•) to the endpoints of [0, 1], by setting

Q(0) := A := lim t↓0 Q(t), and Q(1) := B := lim t↑1 Q(t).
We shall provide a proof of Theorem 1 under the assumption (H) that J = [A, B] is the support of F(•), and that f (•) := F ′ (•) is continuous and (stictly?) positive on J. The extension of our methods to the general case is readily achieved by routine arguments which we omit. The assumption (H) implies that the qf Q(•) is differentiable on [0, 1], with quantile density [qd] q(•) := Q ′ (•), continuous and positive on [0, 1]. We have, namely,

q(t) := 1 f (Q(t)) ∈ (0, ∞) for 0 ≤ t ≤ 1. (15) 
Under (H), the rv's U 1 := F(X 1 ), U 2 := F(X 2 ), . . . are uniformly distributed on (0, 1), and fulfill, with probability 1, X 1 = Q(U 1 ), X 2 = Q(U 2 ), . . . We observe that (see, e.g., Proposition 1.1 p. 98 in del Barrio et al. [START_REF] Del Barrio | Lectures on empirical processes. Theory and statistical applications[END_REF])

F(Q(t)) = t, for 0 ≤ t ≤ 1, and Q(F(x)) = x, for x ∈ J. (16) 
Denote by Q n (t) := inf{x ≥ 0 : F n (x) ≥ t}, for 0 < t < 1, the empirical qf pertaining to F n (•). Set further

Q n (0) := lim t↓0 Q n (t) = min{X 1 , . . . , X n }, Q n (1) := lim t↑1 Q n (t) = max{X 1 , . . . , X n }.
Recalling the definition U n (u) := n -1 #{U i ≤ u : 1 ≤ i ≤ n}, u ∈ R, of the uniform empirical df in §2.1, we recall the definition of the empirical qf based upon U 1 , . . . , U n , given by

V n (v) := inf{u ≥ 0 : U n (u) ≥ v} for v ∈ [0, 1].
We extend the definition of V n (•) to 0 and 1, by setting

V n (0) = lim v↓0 V n (v), V n (1) = lim v↑1 V n (v).
Observe that

Q n (t) = Q(V n (t)), for 0 ≤ t ≤ 1, (17) 
and

F n (x) = U n (F(x)), for x ∈ R. (18) 
The next fact collects some well-known relations. For [START_REF] Mack | Rate of strong uniform convergence of k-NN density estimates[END_REF], refer to (1.6) in Shorack [START_REF] Shorack | Kiefer's theorem via the Hungarian construction[END_REF], and (2.48)(i) in Fact 6 of Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF]. The relation ( 20) is a consequence of the Dvoretzky, Kiefer and Wolfowitz inequality (see, e.g., Lemma 2 in Dvoretzky et al. [START_REF] Dvoretzky | Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator[END_REF], and Theorem 3.3 p. 140 in del Barrio et al. [START_REF] Del Barrio | Lectures on empirical processes. Theory and statistical applications[END_REF]). For ( 21) and ( 22), we refer to Deheuvels and Devroye [START_REF] Deheuvels | Strong laws for the maximal k-spacing when k ≤ c log n[END_REF].

Fact 2 For each fixed k ≥ 1, we have, as n → ∞,

(i) sup 0≤t≤1 |F n (Q n (t)) -t| = n -1 a.s.; (19) 
(ii) sup 0≤t≤1 |β n (t)| = O P (1); ( 20 
) (iii) sup 0≤t≤1-k/n {V n (t + k/n) -V n (t)} = O P (n -1 log n); (21) 
(iv) sup 0≤t≤1 |V n (U n (t)) -t| = O P (n -1 log n). (22) 
In ( 20), we let β n (u) = n 1/2 (V n (u) -u), u ∈ R, be as in [START_REF] Del Barrio | Lectures on empirical processes. Theory and statistical applications[END_REF].

Proof of Theorem 1 -I

In this section, we shall assume, unless otherwise specified, that F(t) = Q(t) = t and f (t) = q(t) = 1 for 0 ≤ t ≤ 1. We shall let throughout λ vary in (0, ∞). In view of the definitions (3)-( 4) of M λ (•) and of f n,λ (•), we write,

f n,λ (Q(t)) -M λ (Q(t)) = - λ 2 R n,λ (Q(t))R λ (Q(t)) R n,λ (Q(t)) -R λ (Q(t)) λ . ( 23 
)
We shall treat the right-hand side of ( 23) in the next two lemmas.

Lemma 1 Whenever H n = [a n , b n ] satisfies (5) in Theorem 1, we have, as n → ∞, sup λ∈Hn nλ 2 log + (1/λ) 1/2 sup t∈[0,1-λ] ± R n,λ (Q(t)) -R λ (Q(t)) λ -1 = o P (1). (24)
Proof. Since F (t) = Q(t) = t for 0 ≤ t ≤ 1, we infer from ( 17)-( 18) that Q n (t) = V n (t) and F n (t) = U n (t) for 0 ≤ t ≤ 1. Thus, by [START_REF] Shorack | Kiefer's theorem via the Hungarian construction[END_REF], we have, as n → ∞,

sup 0≤t≤1 |Q n (F n (t)) -t| = sup 0≤t≤1 |V n (U n (t)) -t| = O P n -1 log n . (25) 
By combining the definition (1) of R n,λ (• ) with (25) and the definition (12) of β n (• ), we see that, for each λ > 0 and x ∈ [0, 1],

R n,λ (x) -λ = inf{h > 0 : F n (x + h) -F n (x)) ≥ λ} -λ = Q n (F n (x) + λ) -x -λ = V n (U n (x) + λ) -V n (U n (x)) -λ + O P (n -1 log n) = n -1/2 {β n (U n (x) + λ) -β n (U n (x))} + O P (n -1 log n). (26) 
Now, by applying [START_REF] Ralescu | The law of the iterated logarithm for the multivariate nearest neighbor density estimators[END_REF], we obtain that, as n → ∞,

sup 0<λ<1 sup 0≤x≤1 ±n -1/2 {β n (U n (x) + λ) -β n (U n (x))} -sup 0≤x≤1 ±n -1/2 {β n (x + λ) -β n (x)} ≤ 2n -1/2 sup 0≤s,t≤1 |t-s|≤1/n |β n (t) -β n (s)| = O P n -1 log n . (27) 
Fix t ∈ [0, 1] and λ ∈ [0, 1 -t], then set x = Q(t) + h, for h > 0. By combining the definition (2) of R λ (•) with the relation F(Q(t)) = t, following from ( 16), we get

R λ (Q(t)) = inf {h > 0 : F (Q(t) + h) -F (Q(t)) ≥ λ} = inf {x > 0 : F(x) ≥ t + λ} -Q(t) = Q(t + λ) -Q(t) = λ. (28) 
We infer from the above assertions (26), ( 27) and (28), that, as n → ∞,

sup λ∈Hn nλ 2 log + (1/λ) 1/2 sup t∈[0,1-λ] ± R n,λ (Q(t)) -R λ (Q(t)) λ -1 = sup λ∈Hn nλ 2 log + (1/λ) 1/2 sup t∈[0,1-λ] ± R n,λ (t) -λ λ -1 ≤ sup λ∈Hn sup t∈[0,1-λ] ± β n (t + λ) -β n (t) 2λ log + (1/λ) -1 + sup λ∈Hn 1 2λ log + (1/λ) × O P (n -1/2 log n), (29) 
which, by the limit law ( 14) and the condition (5), equals

O P log n na n 1/2 = o P (1).
This yields (24), as sought.

Lemma 2 Whenever H n = [a n , b n ] satisfies condition (5) of Theorem 1, we have, as n → ∞,

sup λ∈Hn sup t∈[0,1-λ] ± R n,λ (Q(t)) R λ (Q(t)) λ 2 -1 - 2 log + (1/λ) nλ 1/2
= o P (1). ( 30)

Proof. We make use of (28), and of the assumption that

Q(t) = t, t ∈ [0, 1]. We so see that R λ (Q(t)) = Q(t + λ) -Q(t) = λ for t ∈ [0, 1 -λ], whence sup t∈[0,1-λ] ± R n,λ (Q(t)) R λ (Q(t)) λ 2 -1 = sup t∈[0,1-λ] ± R n,λ (Q(t)) R λ (Q(t)) -1 = sup t∈[0,1-λ] ± R n,λ (Q(t)) -R λ (Q(t)) λ .
By combining these equalities with (24) of Lemma 1, we obtain (30).

Proof of Theorem 1 -I The observation [START_REF] Viallon | Functional limit laws for the increments of the quantile process; with applications[END_REF], together with Lemmas 1 and 2, implies [START_REF] Deheuvels | One bootstrap suffices to generate sharp uniform bounds in functional estimation[END_REF], with F(t) = Q(t) = t and f (t) = q(t) = 1 for 0 ≤ t ≤ 1.

Proof of Theorem 1 -II

In this section, we let F(•) and Q(•) be as in §1.

Lemma 3 Fix any 0 ≤ u < v < 1. Then, whenever H n = [a n , b n ] satisfies condition (5) of Theorem 1, we have, as n → ∞, sup λ∈Hn nλ 2 log + (1/λ) 1/2 sup t∈[u,v] ± V n (U n (t) + λ) -(t + λ) λ -1 = o P (1). ( 31 
)
Proof. Making use of [START_REF] Shorack | Kiefer's theorem via the Hungarian construction[END_REF] and the definition (12) of β n (• ), we observe that, for each λ > 0 and t ∈ [u, v],

V n (U n (t) + λ) -(t + λ) = n -1/2 {β n (U n (t) + λ) -β n (U n (t))} + O P n -1 log n .
We next infer from (27) of Lemma 1, when combined with the limit law ( 14) of Fact 1 and condition [START_REF] Csörgő | A preliminary version of the preliminary version of an invariance principle for N. N. empirical density functions[END_REF], that, as n → ∞, (31) holds.

We shall need the following variant of Lemma 1.

Lemma 4 Whenever

H n = [a n , b n ] satisfies condition (5) of Theorem 1, we have, as n → ∞, sup λ∈Hn nλ 2 log + (1/λ) 1/2 sup t∈[0,1-λ] ± R n,λ (Q(t)) -R λ (Q(t)) λq(t) -1 = o P (1). ( 32 
)
Proof. Letting λ > 0, and t ∈ [0, 1 -λ], we combine the definitions ( 1)-(28

) of R n,λ (•) and of R λ (Q(t)), with the relations F(Q(t)) = t, Q n (t) = Q(V n (t)) and F n (x) = U n (F(x))
, for x ∈ R, following respectively from ( 16), ( 17) and ( 18), to see that,

R n,λ (Q(t)) -R λ (Q(t)) = inf{h > 0 : F n (Q(t) + h) -F n (Q(t)) ≥ λ} -{Q(t + λ) -Q(t)} = {Q n (F n (Q(t)) + λ) -Q(t)} -{Q(t + λ) -Q(t)} = Q(V n (U n (F (Q(t))) + λ) -Q(t + λ) = Q(V n (U n (t) + λ)) -Q(t + λ) . (33) 
Fix an ε, such that 0 < ε < q(u ′ ) and select 0

≤ u ′ < u < v < v ′ ≤ 1, in such a way that sup s,t∈[u ′ ,v ′ ] q(t) q(s) -1 < ε. (34) 
If we let λ vary in H n = [a n , b n ], there exists a.s., an n 0 such that, for all n ≥ n 0 and t ∈ [u, v], we have t + λ ∈ [u ′ , v ′ ]. Moreover, it is readily checked that, if we denote by A n the event

A n = V n (U n (t) + λ) ∈ [u ′ , v ′ ] : ∀ t ∈ [u, v] and λ ∈ H n ,
then, P(A n ) → 1 as n → ∞. This, in turn, implies that, on the event A n , we have, for all t ∈ [u, v] and λ ∈ H n , as n → ∞,

(1 -ε)q(t) V n (U n (t) + λ) -(t + λ) λ ≤ Q(V n (U n (t) + λ)) -Q(t + λ) λ ≤ (1 + ε)q(t) V n (U n (t) + λ) -(t + λ) λ . (35) 
In view of (31), ( 33) and (35), we so obtain that, as n → ∞,

P sup λ∈Hn nλ 2 log + (1/λ) 1/2 × sup t∈[u,v] ± R n,λ (Q(t)) -R λ (Q(t)) λq(t) -1 > ε → 0.
Given this last statement, we conclude readily (32) by splitting [0, 1] into a finite union of intervals [u ′ , v ′ ] on which the oscillation of q(•) fulfills (34), and then, by choosing ε > 0 arbitrarily small.

We shall also need the following variant of Lemma 2. Proof. The proof is essentially identical to the proof of Lemma 2, adding the following observation. Making use of the definitions (3)-( 15) of M λ (• ) and of q(• ), we see that, uniformly over t ∈ (0, 1], we have, as λ → 0,

λq(t)/R λ (Q(t)) → 1.
We omit details.

Proof of Theorem 1. We have now in hand all the necessary ingredients to prove Theorem 1. In view of the definitions (3)-( 4)-( 15) of M λ (•), f n,λ (•) and of q(• ), we write,

f n,λ (Q(t)) -M λ (Q(t)) f (Q(t)) = - λ 2 q(t) 2 R n,λ (Q(t))R λ (Q(t)) R n,λ (Q(t)) -R λ (Q(t)) λq(t) . (37) 
This, when combined with Lemmas 4 and 5, readily implies [START_REF] Deheuvels | One bootstrap suffices to generate sharp uniform bounds in functional estimation[END_REF]. The proof of Theorem 1 is therefore completed.

Lemma 5 2 =

 52 Whenever H n = [a n , b n ] satisfies condition (5) of Theorem 1, we have, as n → ∞,sup λ∈Hn sup t∈[0,1-λ] ± R n,λ (Q(t)) R λ (Q(t)) λ 2 q(t)2 -1 -2 log + (1/λ) nλ 1/o P (1). (36)