N
N

N

HAL

open science

FPGA-based vision perception architecture for robotic
missions

Laurent Fiack, Benoit Miramond, Nicolas Cuperlier

» To cite this version:

Laurent Fiack, Benoit Miramond, Nicolas Cuperlier. FPGA-based vision perception architecture for
robotic missions. Smart cameras for robotic applications, Oct 2012, Portugal. pp.4. hal-00766597

HAL Id: hal-00766597
https://hal.science/hal-00766597
Submitted on 18 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00766597
https://hal.archives-ouvertes.fr

FPGA-based vision perception architecture for robotic missions

Laurent Fiack, Benoit Miramond, Nicolas Cuperlier
ETIS Lab - UMR 8051 CNRS / ENSEA / UCP
6 Avenue du Ponceau, 95014 Cergy-Pontoise, France
{firstname.lastname } @ensea.fr

Abstract— Most of the robot behaviors are based on visual
sensing and perception. This paper describes a smart camera
composed of a full-hardware vision architecture coupled with
an embedded camera sensor. The hardware architecture corre-
sponds to low-level visual perception processes. The integration
of such a system onto the robot enables not only to accelerate
the visual processing till real-time behavior but also to compress
the data-flow at the output of the camera. The results obtained
during indoor robotic missions show an important reduction
factor of data communication.

I. INTRODUCTION

Real-time visual processing represents a major challenge
for autonomous robots. Most of the robot behaviors are
based on visual sensing and perception: navigation, object
recognition and manipulation, target tracking, and even social
interactions with humans. The visual systems require large
computing capabilities which make them hard to embed.
Smart cameras are proposed as an alternative to get visual
low-level processing back into the robot.

These visual systems are not considered isolated anymore
but as part of an architecture integrated in its environment.
They take into account several parameters related to the
dynamic properties of the systems they belong to (see active
vision [1]). These visual processing algorithms strongly de-
pend on the dynamics of interactions between the system and
its environment by continuous feedbacks regulating even the
low-level visual stages such as the attentional mechanisms
in biological systems.

The robotic missions considered in this paper consists in
a subset of a complex cognitive system allowing a robot
equipped with a charge-coupled device (CCD) camera to
navigate and to perceive objects. The global architecture in
which the visual system is integrated is biologically inspired
and based on the interactions between the processing of the
visual flow and the robot movements (Per-Ac architecture
[2]). The learning of the sensorimotor associations allows the
system to regulate its dynamics [3] and, therefore, navigate,
recognize objects, or create a visual compass.

In this paper, we aim at designing an embedded visual
processing system in the form of a single chip that could
be used for building the CCD-based smart camera of our
robot. On one hand, the embedded processing part should
be configurable in order to allow a variety of navigation
missions. On the other hand, the architecture should also
provide intensive computation capabilities to deal with low-
level image processing. Finally, the system should reduce the

amount of data communication at the output of the camera
without loss of information.

Thus, the proposed architecture combines video sensing,
perception processing and communication into a System-on-
Chip (SoC) embedded onto the robot. This vision system
is designed as a full hardware architecture deployed onto a
FPGA device. The system is able to process video frames in
real-time and communicates intensively with an embedded
computer running high-level cognitive tasks that depend on
the robot mission. GPU-based solutions provide similar per-
formances but at the cost of important energy consumption
that make them unusable in an embedded context.

The rest of the paper is organized as follows. Section
II presents the context of this work, especially it describes
the different types of robotic missions. For each mission,
the environment and the cognitive tasks are different. For
that reason the robot needs specific visual features that
are provided by the configurable vision SoC. Section III
describes the architecture of this system and the parameters
that are used to configure the smart camera. Section IV
presents the experimental platform and provides the results
obtained during robotic missions. Finally, we conclude and
outline future works in section V.

II. CONTEXT

Among different perceptual modalities, vision is certainly
the most important building block of a bio-inspired cognitive
robot. Vision enables robots to perceive the external world
in order to perform a large range of tasks such as navigation,
object tracking and manipulation, and even interaction with
humans. This broad range of tasks often relies on different
models and architectures. According to a given task, the
visual processing often used only a subset of the available
algorithms like optical flow, feature points extraction and
recognition (over one or several scale spaces). For instance,
navigation often relies on low resolution images to only
capture the main regularities from the environment, whereas
object recognition may need to characterize an object over
several scales in order to take into account more details of
the object.

The current visual system integrates a multiscale approach
to extract the visual primitives. In doing so, it also allows
a wider range of applications. Roughly the visual system
provides a local characterisation of the keypoints detected on
the image flow of an 8-bit gray-scale CCD camera. This local
characterisation feeds a neural network which can associate

motor actions with visual information: this neural network
can learn, for example, the direction of a displacement of
the robot as a function of the scene recognition. The studied
visual system can be divided into two main modules:

« a multiscale mechanism for characteristic points extrac-
tion (keypoints detection),
« a mechanism supplying a local feature of each keypoint.

A. The multiscale keypoints detection

The multiresolution approach is now well known in the
vision community. A wide variety of keypoints detectors
based on multiresolution mechanisms can be found in the
literature. Amongst them are the Lindeberg interest point
detector [4], the Lowe detector [5] based on local maxima
of the image filtered by difference of Gaussians (DoGs) or
the Mikolajczyk detector [6], where keypoints correspond to
those provided by the computation of a 2D Harris function
and fit local maxima of the Laplacian over scales. The visual
system described here is inspired from cognitive psychology.
The used detector extracts points in the neighbourhood of
the keypoints, which are sharp corners of the robots visual
environment. More precisely, the keypoints correspond to
the local maxima of the gradient magnitude image filtered
by DoGs. The detector is characterised by a good stability.
Following the detector itself, the system provides a list of
sorted local features by the way of competition between the
corresponding keypoints.

Keypoints are detected in a sampled scale space based
on an image pyramid. Pyramids are used in multiresolution
methods to avoid expensive computations due to filtering
operations. The algorithm used to construct the pyramid is
detailed and evaluated in [7]. The pyramid is based on suc-
cessive image filtering with 2D Gaussian kernels normalised
by a factor S.

These operations achieve successive smoothing of the
images. Two successive smoothing are carried out by two
Gaussian kernels with variance 02 = 1 and 02 = 2. The scale
factor doubles (achievement of an octave) and thus the image
is decimated by a factor of two without loss of information.
The same Gaussian kernels can be reused to continue the
pyramid construction. Interestingly, the kernel sizes remain
small (half-width and half-height of 30) allowing a fast
computation of the pyramid. Finally, the images filtered by
DoGs in the pyramid can be simply obtained by subtracting
two consecutive images. Keypoints detected on the images
are the first N local maxima existing in each DoG image of
the pyramid. Thus, the keypoint research algorithm orders
the NV first local maxima according to their intensities and
extracts their coordinates. The shape of the neighbourhood
for the research of maxima is a circular region with a radius
of 21 pixels. This value is one of the system parameters. The
number N which parametrises the algorithm corresponds to a
maximal number of detections. Indeed, the robot may explore
various visual environments (indoor versus outdoor) and
particularly more or less cluttered scenes may be captured
(e.g., walls with no salience versus complex objects). A
detection threshold (v) is set to avoid nonsalient keypoints.

This threshold is based on a minimal value of the local
maxima detected. The presence of this threshold is even more
important in the lowest resolutions since the information
is very coarse at these resolutions. This particularity of
the algorithm confers it a dynamical aspect. Precisely, the
number of keypoints (and consequently the number of local
features) depends on the visual scene and is not known a
priori. Furthermore, the threshold ~ could be set dynamically
through a context recognition feedback but discussing here
this mechanism is not our current purpose. However, even if
this threshold is considered as a constant value, the number
of detected keypoints varies dynamically according to the in-
put visual scene. Consequently, the number of computations
(neighbourhood extractions) also depends on the input data.

B. The local image feature extraction

At this stage, the neighbourhood of each keypoint has to
be characterised in order to be learnt by the neural network.
Existing approaches to locally characterise keypoints are
numerous in the literature: local jets, scale invariant feature
transform (SIFT) and its variants, steerable filters, and so
forth. In the current application, we simply reuse a view-
based characterisation where keypoint neighbourhoods are
represented in a log-polar space. This representation has
good properties in terms of scale and rotation robustness.
The local feature of each keypoint is, therefore, a small
image resulting from the log-polar transformation of the
neighbourhood. The neighbourhoods are extracted from the
gradient magnitude image at the scale the keypoint was
found by the detector. Each neighbourhood extracted is a
ring of radius (5, 16) pixels. Excluding the small interior
disc avoids multiple representations of the central pixels
in the log-polar coordinates. The angular and logarithmic
radius scale of the log-polar mapping are sampled with 16
values. Each feature is thus an image of dimension 16x16
pixels. The sizes of the rings and feature images have been
determined experimentally for an indoor object recognition.
The given parameters represent a tradeoff between stability
and specificity of the features. Finally, the small log-polar
images are normalised before their use by the rest of the
neural architecture. By associating the data provided by the
visual system with actions, the global system allows the robot
to behave coherently in its environment [3]. Generally, the
visual system must not be considered isolated but integrated
in a whole architecture whose modules interact dynamically
with each other and through the environment. Hence, the
evaluation of the parameters of the visual system depends
on the rest of the robot system architecture.

IIT. HARDWARE ARCHITECTURE

This section describes the hardware implementation of the
bio-inspired visual system, which feeds the neural network
of the mobile robot. The visual system is implemented into a
FPGA device which communicates through Ethernet with an
embedded computer running the neural network (Figure 1).

This vision system requires heavy computing power
and can’t be embedded as software respecting real-time

FPGA PC |

N

> VISUAL ~
ETHERNET
I: & SYSTEM |

+_I
——

Schematic view of the robot

NEURAL
NETWORK

Fig. 1.

constraints (the frame-rate of the camera). That’s why
we realized a hardware implementation through an algo-
rithm/architecture adequacy process [8]. Integrating these
first steps of vision perception into the robot itself brings
interesting reductions of the data communication. The cam-
era does not act as a primitive sensor anymore but as a
smart camera modeling pre-attentional mechanisms that only
keeps the most salient visual points. The Gaussian pyramid
is presented in figure 2.

A. Architecture of the pyramid

The gradient and the Gaussian filters are the results of
convolutions by a kernel. As often in hardware vision, the
pixels of an image come as a flow, and they are processed
with the same rhythm. Instead of moving the kernel over the
image, the image moves over an architecture which computes
the matrix product. A number of pixels must then be stored in
first-in first-out (FIFO) memories, depending on the kernel
size and the image width. The output pixels are produced
with a fixed latency, depending also on these two parameters.

The DoG just computes the difference of it’s two inputs.
Because of the latency of the Gaussian filters, a FIFO is
needed for one of its inputs. The subsampling decimates
the input image by a factor of two, and thus divides the
coordinates of the pixels by two.

In the first part of his project, Lefebvre [9] proposed an
interface for its processing IPs. With this interface, the input
and output buses are composed of the pixels value and their
coordinates. A standard interface allows for modularity of
these IPs. It is then easy to assemble the processing IPs
(gradient, gauss, dog and subsampling) to build the hardware
Gaussian pyramid (Figure 2).

B. Keypoint search and sorting

The next step consists in searching the local maxima of a
DoG output, to sort them by magnitude, and finally to keep
the N most significant points. Each pixel is compared to
all the pixels in the neighborhood disc. To follow the pixel
rhythm, this comparison must be done in one clock cycle.
Once a potential keypoint is found, the exclusion disc avoids
two keypoints to be to close.

These points then enter in the sort IP. This component
consists in a register bank which stores the value, the

CAMERA

-

GRADIENT

GAUSSIAN

FILTER (1) :u: T
GAUSSIAN RS hji:::
FILTER (1) HHH
|l
GAUSSIAN i o u:__
FILTER (\2) ::H___H T
HH

SUBSAMPLE
GAUSSIAN
FILTER (1)

GAUSSIAN
FILTER (V2)

SUBSAMPLE

GAUSSIAN
FILTER (1)

GAUSSIAN
FILTER (\2)

Fig. 2. Gaussian Pyramid. Each output corresponds to a frequency band
of the input image.

coordinates, and an index corresponding to the IP that will
process the log-polar mapping (Figure 4). These points are
stored at a position depending on its value. When a point

must be inserted between two registers, the lower part can
be shifted down.

C. Neighborhood extraction and log-polar mapping

Two IPs are responsible for the log-polar mapping (Fig-
ure 4), Address Generator and Transform. The Address Gen-
erator converts the Cartesian address into the log-polar one.
A test ensures that the incoming flow is in the neighborhood
disc of the keypoint, and then its coordinates are removed
from the coordinates of the flow. These coordinates are the
input of a look-up table (LUT) which stores the final log-
polar coordinates.

The Transform IP reads the incoming pixels, and stores
them into a memory at the address computed by the Address
Generator. This IP is built as a double-buffer memory to
compute an image by reading the previous one. The zones
of the outer rings containing more than one pixels must be
averaged. An accumulator is then added to the memory. As
the address conversion is done by a LUT, the values for the
average division can also be stored into a LUT.

We need to duplicate these two IPs as many as the number

B

T
T
I
Pl

L

i i

i
L

i

p

Fig. 3. Log-polar mapping. The image on the left represents the log-polar
mapping with p = 5 and 6 = 16, the image on the right represents the
sampled mapping over the cartesian grid with an extraction radius of 20
and a blind zone radius of 4 pixels, and the third image is the result of the
remapping in the (p, 0) space.

lFrom DoG

SEARCH > FIFO

SORT

div_LUT

A

A

Y XY yv

ADDRESS
GENERATOR

»| TRANSFORM

Y

A

: Feeeee]) 4
DISPATCH f--=-=™ heeees > : AGGREGATE —)@—>
: -
¢ ¢ ¢ From CPY
3
o| Aopress N
2 e »| TRANSFORM
<

Fig. 4. Log-polar transform IP. The N features can be extracted and
remapped in parallel.

of keypoints we want to detect (Figure 4). The keypoints
are dispatched to an Address Generator depending on the
index coming from the sort IP. As we cannot shift down
the content of the entire memory of a Transform bloc, we
can only overwrite the memory corresponding to the lower
keypoint. That’s why we need a connection between the rank
of the keypoint and its index.

Finally, a CPU can read all the data by selecting an index.
A memory (not represented) stores the value of the keypoint,
its coordinates, and the relation between its rank and its
index, so that the CPU doesn’t have to sort the values again.
It can read the log-polar feature as a specific RAM memory.

D. Connection with the PC

We choose to use Ethernet and TCP/IP as it offers suf-
ficient throughput, and was already working on the neural
network software hosted by the PC. We use a NIOS II

soft-processor from Altera to manage the TCP/IP stack.
The Ethernet MAC is built has a hardware peripheral. We
designed a custom memory-mapped peripheral to read the
keypoints values, their coordinates and their associated log-
polar features. The global architecture of the smart-camera
is depicted in figure 5 .

Capture

!

Y.

Controller SDRAM

A

|
SDRAM E
|
|

DoG
&

Search

|
|
|
|
|
|
| Sort
|
|
|
|
|
|

Ethernet
MAC

I

logpol
reader

Ethernet
PHY

A
A4

wcw Zor»<>»

logpol

NIOS II

A
A4

A
A 4

Fig. 5. SOPC. The logpol reader makes the junction between the visual
system and the microprocessor world.

IV. EXPERIMENTS AND RESULTS
A. Vision quality and architecture sizing

The first stage of the pyramid have been tested, and works
in real-time. The architecture supports the flow of 320 x 240
images at 22 frames-per-second given by the image sensor.

The synthesis results are given in Figure 6 for the Altera
Cyclone 1V EP4CEI1 15 FPGA device of the Terasic DE2-115
board. The FPGA architecture is composed of 114480 LEs
(Logic Elements) and 3981312 Memory bits. These results
are given for the first stage of the pyramid, for 320 x 240
images, with a 16-bits bus width. The radius for the research,
the exclusion and the extraction is set to 21 pixels, and the
radius of the blind zone is set to 5 pixels. The architecture
keeps a maximum of N = 16 keypoints.

1P LEs % | Memory bits | %
Capture 579 <1 15312 <1
Gradient 362 <1 8192 <1
DoG 4302 4 114688 3
Search 56969 | 50 344064 9
Sort 1344 1 0 0
Logpol | 23110 | 20 304160 8
SOPC 15465 | 14 1326953 33
Total 102131 | 89 2113369 53

Fig. 6. Synthesis results given for 320 x 240, 16-bit pixel bus width,
with 21 pixels research radius and N = 16 keypoints.

The Capture represents all the hardware responsible for
reading the images. The DoG represents the two Gaussian
filters, and the DoG itself. The Logpol is the IP shown in
Figure 4. The SOPC contains the NIOS II, the Ethernet

MAC, the SDRAM controller and the specific peripheral
which reads the values from Logpol.

The execution of a single stage of the pyramid already
uses almost the full FPGA resources. Working with the entire
pyramid would need more recent and denser FPGA matrices.

B. Performances and communication

The architecture generates 16 features of 16 x 16 pixels
of 16 bits for each 320 x 240, 8-bits frame. We can easily
compute the compression ratio :

_320x240x8 614400
" T 16x16x16x16 _ 65536

This architecture allows a much smaller computing time
than a classical computer can offer for less power consump-
tion. The visual system itself reduces the amount of data to
transmit. The system is currently embedded onto the robot
as depicted in figure 7.

=9.375

The smart camera embedded onto the robot

Fig. 7.

The architecture almost fills this FPGA, especially due to
the Search and the Logpol 1P, and the SOPC. It’s already
possible to find bigger FPGAs that, in the next generation,
will integrate hard wired CPU and Ethernet MAC.

Moreover we are now working at optimizing the system
dimensioning, especially the size of the Logpol IP. The
size of the Search can also be reduced since it decreases
quadratically with the research radius. But globally there will
always be a trade off between the number of scale to compute
and the resolution of the features to extract.

V. CONCLUSIONS

Visual processing in the context of autonomous robots is
often a challenge both for real-time interactions with the
environment and for communication bottlenecks with distant
robotic platforms. This paper describes a FPGA-based smart
camera executing low-level visual perception tasks directly
onto the robot. The system composed of a CCD camera
and an FPGA device only outputs a set of keypoints at
each frame sampled by the camera. The keypoints detector
is implemented as a full-hardware architecture. The system
works in real-time at 22 frames per second and enables a
compression ratio above 9 compared to a classical camera.

The visual system integrates a multiscale approach to
extract the visual primitives. In this paper, we provided
results for the first stage of the pyramid (high frequencies).
We are now working at integrating the full system into more
recent FPGA families with denser logic matrix.

REFERENCES

[1] D. H. Ballard, “Animate vision,” Artificial Intelligence, vol. 48, no. 1,
p. 5786, 1991.

[2] S. Z. P. Gaussier, “Perac: a neural architecture to control artificial
animals,” Robotics and Autonomous Systems, vol. 16, no. 24, p. 291320,
1995.

[3] M. Maillard, O. Gapenne, L. Hafemeister, and P. Gaussier, “Perception
as a dynamical sensori-motor attraction basin,” in Proceedings of the
8th European Conference on Advances in Artificial Life (ECAL 05),
vol. 3630, 2005, p. 3746.

[4] T. Lindeberg, “Feature detection with automatic scale selection,” Inter-
national Journal of Computer Vision, vol. 30, no. 2, p. 79116, 1998.

[S] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, p.
91110, 2004.

[6] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point
detectors,” International Journal of Computer Vision, vol. 60, no. 1,
2004.

[7]1 J. L. Crowley and O. Riff, “Fast computation of scale normalised
gaussian receptive fields,” Springer Lecture Notes in Computer Science,
vol. 2695, 2003.

[8] F. Verdier, B. Miramond, M. Maillard, E. Huck, and T. Levebvre, “Us-
ing high-level rtos models for hw/sw embedded architecture exploration
: Case study on mobile robotic vision,” EURASIP Journal on Embedded
Systems, 2008.

[9] T. Lefebvre, “Phd report : Exploration architecturale pour la conception
d’un systeme sur puce de vision robotique, adequation algorithme-
architecture d’un systeme embarque temps reel,” 2012, university of
Cergy-Pontoise.

