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Pathwise strategies for stochastic differential games
with an erratum to “Stochastic Differential Games with Asymmetric Information”

P. Cardaliaguet∗ C. Rainer†

December 19, 2012

Abstract

We introduce a new notion of pathwise strategies for stochastic differential games. This

allows us to give a correct meaning to some statement asserted in [2].

1 Introduction.

In this short note we develop a new notion of strategies for stochastic differential games. We

present our concept in the framework of two-player, zero-sum, differential games. The players

are labelled Player I and Player II, Player I being minimizing while Player II is maximizing. We

assume that the players have perfect monitoring, i.e., they observe each other’s action perfectly.

The state of the game satisfies a stochastic differential equation, that we assume driven by a

Brownian motion, and which is controlled by both players.

Nonanticipative strategies for deterministic differential games have been introduced in a

series of papers by Varaiya [7], Roxin [6], Elliott and Kalton [3]: in this framework a strategy

(for Player I) is a nonanticipative map from Player II’s set of controls to Player I’s. Adapting

this idea to stochastic differential games lead Fleming and Souganidis in their pioneering work

[4] to define a notion of strategy (again for Player I) as nonanticipative map from the set

of adapted controls of Player II to the set of adapted controls of Player I. This approach has

subsequently been used by most authors working on stochastic differential games, sometimes

with some variants: see, e.g., Buckdahn-Li [1].

If the notion of nonanticipative strategies makes perfectly sense for deterministic differen-

tial games—because the players indeed observe each other’s action—one can object that, for

stochastic ones, the players do not actually observe their opponent’s adapted control, but just a
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realization of this control in the actual state of the world: more precisely, assume that Player II

plays the control v = v(t, ω). Then, in the state ω and at time t, Player I has not observed the

full map (s, ω′) → v(s, ω′
[0,t]), but only the map s → v(t, ω[0,t]). For this reason, the authors of

the present paper introduced in [2] a notion of pathwise nonanticipative strategies, formalizing

the fact that the players only observe their opponent’s action in the actual state, as well as the

path of the resulting solution of the stochastic differential equation.

Unfortunately handling such pathwise strategies is quite subtle and, in [2], we overlooked

some difficulties (we explain this in details in section 3). In the present paper we show how to

overcome this problem. We still keep the flavor of pathwise strategies, but require the stronger

condition that the players observe the control actually played by their opponent as well as the

Brownian path (instead of the trajectory of SDE). The key point is that the players can never-

theless deduce the resulting solution of the SDE: to show this we use the pathwise construction

of stochastic integrals introduced by Nutz [5].

This note is divided into two parts: first we introduce the new notion of strategies and show

the existence of a value and its characterization for a classical two-player zero-sum game with

a final cost (to better explain our ideas, we have chosen to present our approach in this simple

framework). The second part of the note is devoted to the erratum of the paper [2].

Acknowledgment : We are very much indebted with Rainer Buckdahn, who pointed out to

us the flaw in the paper [2].

This work has been partially supported by the Commission of the European Communities

under the 7-th Framework Programme Marie Curie Initial Training Networks Project SADCO,

FP7-PEOPLE-2010-ITN, No 264735, and by the French National Research Agency ANR-10-

BLAN 0112.

2 The classical stochastic differential game revisited.

Let T > 0 be a deterministic time horizon. For all t ∈ [0, T ], let Ωt be the set of continuous

maps from [t, T ] to IRd endowed with the σ-algebra generated by the coordinate process and Pt,

the Wiener measure on it. We denote by W the canonical process: Ws(ω) = ω(s). We introduce

also the filtration Ft = (Ft,s = σ{Wr −Wt, r ∈ [t, s]}, completed by all null sets of Pt.

For any t ∈ [0, T ] we denote by C0([t, T ], IRN ) the set of continuous maps from [t, T ] into

IRN endowed with the sup norm and by Bt the associated Borel σ−algebra.

The dynamic of the game is given by

{

dXs = f(Xs, us, vs)ds + σ(Xs, us, vs)dWs, s ∈ [t, T ],

Xt = x ∈ IRN ,
(2.1)
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with u and v two Ft-adapted processes with values in some compact metric spaces U and V .

The process u (resp. v) represents the action of Player I (resp. Player II). We denote by Xt,x,u,v

the solution of (2.1).

Throughout the paper, the maps f : IRN × U × V → IRN and σ : RN × U × V → IRN×d

are supposed to be bounded, continuous, Lipschitz continuous in (t, x) uniformly with respect

to u, v. The sets U and V are compact subsets of finite dimensional spaces. We denote by Ut

(resp. Vt) the set of measurable maps from [t, T ] to U (resp. V ), while U(t) (resp. V(t)) denotes

the set of Ft-adapted processes with values in U (resp. V ). In what follows, the sets Ut and Vt

are endowed with the L1-distance and the Borel σ-field generated by it.

Definition 2.1. A strategy for Player I at time t is a nonanticipative, Borel-measurable map

α : Ωt × Vt → Ut with delay: there exists δ > 0 such that, for any t′ ∈ [t, T ], all (v1, v2) ∈ V 2
t

and for Pt-a.s. any (ω1, ω2) ∈ Ω2
t , if (ω1, v1) = (ω2, v2) a.s. on [t, t′], then α(ω1, v1) = α(ω2, v2)

a.s. on [t, t′+ δ]. Strategies for Player II are defined in a symmetrical way. The set of strategies

for Player I (resp. Player II) is denoted by A(t) (resp. B(t)).

Let us point out that, for all α ∈ A(t) and v ∈ V(t), α(v) is a process and belongs to U(t).

In the same way, for all β ∈ B(t) and u ∈ U(t), β(u) belongs to V(t). We denote by Ud(t) the

subset of U(t) of controls u ∈ U(t) for which there exists some δ > 0 such that, (us)s∈[t,T ] is

adapted to Fδ
t := (Ft,(s−δ)∨t). The set Vd(t) is defined in a similar way. We remark that the

elements of Ud(t) and Vd(t) are predictable for the original fitration Ft.

Now we can state our fix point lemma:

Lemma 2.2. For all t ∈ [t, T ], for all (α, β) ∈ A(t)×B(t), there exists a unique pair of controls

(u, v) ∈ Ud(t)× Vd(t) which satisfies, P -a.s.

u = α(v), v = β(u). (2.2)

Proof. Let δ > 0 be a common delay for α and β. We can choose δ such that T = t+Nδ, for

some N ∈ IN∗. We define on Ωt, Uk (resp. Vk) the set of Fδ
t -adapted processes on the time

interval [t, t+ kδ) with values in U (resp. V ).

By definition, on [t, t+ δ), the control α(ω, v) does not depend on (ω, v): we can set, for all

(ω, v) ∈ Ωt×Vt, α(ω, v) = u0, where u0 ∈ U0 (in fact u0 is deterministic). And in the same way,

there exists v0 ∈ V0 such that, for all (ω, u) ∈ Ωt × Ut, β(ω, u) = v0.

Assume now that, for some k ∈ {0, . . . , N−1}, there exists a pair (uk, vk) ∈ Uk×Vk such that,

on [t, t + kδ), α(vk) = uk and β(uk) = vk P -a.s. . We set, for all ω ∈ Ωt, uk+1(ω) = uk(ω) on

[t, t+ kδ) and, since α is non anticipative with delay δ, it makes sense to set uk+1 = α(ω, vk(ω))

on [t+ kδ, t+ (k + 1)δ). By assumption, uk and vk are adapted to Fδ
t and α is nonanticipative.

It follows that a uk+1 is also adapted to Fδ
t . The process vk+1 can be defined in a similar way.

At the end it is sufficient to set (u, v) = (uN , vN ) to get the desired result.
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The main issue with our notion of strategies is that it is not clear that the observation of

the brownian path and of the realized control of the opponent up to some time t′ suffices to

compute the position of the system at time t′. The following Lemma—which is the main point

in our approach—says that this is actually the case.

Lemma 2.3. Fix (t, x) ∈ [0, T ] × IRN . For all α0 ∈ A(t), there exists a measurable function

F := Fα0,t,x : (Vt × Ωt,B(Vt)⊗Ft) → (C0([t, T ], IRN ),Bt) such that, for all v̄ ∈ Vd(t),

F (v̄(·), ·) = Xt,x,α0(v̄),v̄ Pt-a.s. .

Furthermore the map F is nonanticipative, in the sense that there exists Ω′
t ⊂ Ωt with Pt(Ω

′
t) = 1

such that, for all ω, ω′ ∈ Ω′
t and v, v′ ∈ Vt, if (v, ω) = (v′, ω′) a.s. on [t, t′], then, F (v, ω) =

F (v′, ω′) on [t, t′].

Proof. Let v̄ ∈ Vd(t) and P v̄
t the law on Vt × Ωt of (v̄,W ) under Pt. We endow the set Vt × Ωt

with the following filtration : let Vt,t′ be the set of measurable maps from [t, t′] to V and set

Bt,t′ = {{v ∈ Vt, v[t,t′] ∈ B}, B ∈ B(Vt,t′)}. Set F∗
t,s =

⋂

v̄∈Vd(t)

(Bt,t′ ⊗ Ft,s ∨ N P v̄

), with N P v̄

the

set of null sets for the probability P v̄. Then (F∗
t,s, s ∈ [t, t′]) is a filtration satisfying the usual

assumptions and in which (Ws(v, ω) := ω(s), s ∈ [t, t′]) is a Brownian motion.

On the filtered probability space (Vt ×Ωt,B(Vt)⊗Ft, P
v̄
t ; (F

∗
t,s, s ∈ [t, t′])), we consider now the

following SDE:

{

dX̃s = b(X̃s, α0(v)s,vs)ds+ σ(X̃s, α0(v)s,vs)dWs, s ∈ [t, t′],

X̃t = x,
(2.3)

with
{

W (v, ω)s = ω(s),

v(v, ω)s = v(s).

Then (2.3) has a strong solution X̃t,x,α0 which law, under P v̄
t on Vt ×Ωt coincides with the law

of Xt,x,α0(v̄),v̄ under Pt on Ωt.

We now apply the main Theorem of [5] to the above filtered space and the processes

Ss =

(

s

Ws

)

, Hs =

(

b(X
t,x,α0(v),v
s , α0(v)s,vs)

σ(X
t,x,α0(v),v
s , α0(v)s,vs)

)

.

We obtain that there exists a map F : Vt×Ωt → C0([t, T ], IRN ) which is adapted with respect to

the filtration (F∗
t,s), such that, for all v̄ ∈ Vd(t) and for all bounded test function ϕ : IRN ×Ωt →

IR,

Et[ϕ(F (v̄(·), ·), ·)] = Ev̄
t [ϕ(F )] = Ev̄

t [ϕ(X̃
t,x,α0

t′ )] = Et[ϕ(X
t,x,α0(v̄),v̄
t′ )].

The nonanticipativity of F follows from the fact that F is adapted with respect to (F∗
t,s).
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We now define the value functions of the game. Given a bounded and Lipschitz continuous

terminal cost g : IRN → IR, an initial position (t, x) ∈ [0, T ]× IRN and a pair of adapted controls

(u, v) ∈ U(t)× V(t), we define the cost function

J(t, x, u, v) = Et

[

g(Xt,x,u,v
T )

]

.

It is well known that, for all pair of controls (u, v) ∈ U(t) × V(t), (s, x) 7→ J(s, x, u, v) is

Lipschitz in x and Hölder in s, uniformly in (u, v). It follows that, for all (α, v) ∈ A(t) × V(t),

(s, x) 7→ J(s, x, α(v), v) is also Lipschitz continuous in x and Hölder continuous in s, uniformly

in α and v. Furthermore, for all (t, t′, x) ∈ [0, T ]2× IRN with t ≤ t′, and ǫ > 0 there exists R > 0

such that, if we denote by BR(x) the ball in IRN with radius R and center x, we have, for all

(α, v) ∈ A(t)× V(t),

Pt[X
t,x,α(v),v
t′ ∈ BR(x))] > 1− ǫ.

We introduce now the value functions of the game: for all (t, x) ∈ [0, T ] × IRN , we set

V +(t, x) = inf
α∈A(t)

sup
β∈B(t)

J(t, x, α, β), (2.4)

and

V −(t, x) = sup
β∈B(t)

inf
α∈A(t)

J(t, x, α, β). (2.5)

It is clear that V −(t, x) ≤ V +(t, x). Moreover we have the equivalent formulations

V +(t, x) = inf
α∈A(t)

sup
v∈Vd(t)

J(t, x, α(v), v) and V −(t, x) = sup
β∈B(t)

inf
u∈Ud(t)

J(t, x, u, β(u)).

Proposition 2.4. The value functions V + and V − are Lipschitz continuous in x, and Hölder

continuous in t.

Proof. The proof is a straightforward consequence of the regularity of J .

Now we are able to establish a subdynamic programming principle.

Proposition 2.5. For all x ∈ IRN and 0 ≤ t0 ≤ t1 ≤ T , the following subdynamic programming

principle holds:

V +(t0, x) ≤ inf
α∈A(t0)

sup
v∈Vd(t0)

Et0 [V
+(t1,X

t0,x,α(v),v
t1

)]. (2.6)

In particular, V + is a viscosity subsolution of the following Hamilton-Jacobi-Isaacs equation














Vt +H+(D2V,DV, x, t) = 0, (t, x) ∈ [0, T ] × IRN ,

V (T, x) = g(x), x ∈ IRN ,

(2.7)

where H+(A, ξ, x, t) = inf
u∈U

sup
v∈V

(

1

2
tr(σσ∗(t, x, u, v)A + 〈b(t, x, u, v), ξ〉

)

.
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Proof. Following [4] we set Ωt0,t1 = {ω : [t0, t1] → IRd continuous}. For ω ∈ Ωt0 , we define the

pair (ω1, ω2) ∈ Ωt0,t1 ×Ωt1 by

ω1 = ω|[t0,t1), ω2 = ω|[t1,T ] − ω(t1).

The map ω 7→ π(ω) := (ω1, ω2) allows to identify Ωt0 with Ωt0,t1 × Ωt1 and we have Pt0 =

Pt0,t1 ⊗ Pt1 , where Pt0,t1 is the Wiener measure on Ωt0,t1 .

For v ∈ V(t0), we denote by v2 the restriction of v on [t1, T ]. We further set ṽ2(ω1, ω2) :=

v2(ω) and remark that, if v ∈ Vd(t0), then (ṽ2(ω1, ·), ω1 ∈ Ωt0) is a family of processes which

belongs to Vd(t1).

Let us now denote by V (t0, t1, x0) the right-hand side of (2.6). We fix ǫ > 0 and consider

α0 ∈ A(t0) ǫ-optimal for V (t0, t1, x0): for all v ∈ Vd(t0),

Et0 [V
+(t1,X

t0,x0,α0(v),v
t1

)] ≤ V (t0, t1, x0) + ǫ. (2.8)

Let δ > 0 be the delay of α0. We can suppose that δ ≤ ǫ2 ∧ (t1 − t0). Let R > 0 be such that,

for all v ∈ Vd(t0),

Pt0

[

X
t0,x0,α0(v),v
t1−δ ∈ BR(x0)

]

> 1− ǫ.

For K ∈ IN large enough, let {O0, . . . OK} be a Borel partition of IRN such that O1, . . . , OK

have a radius smaller than ǫ and BR(x0) ⊂ ∪K
k=1Ok. Pick, for each k ∈ {1, . . . ,K}, xk ∈ Ok

and αk ∈ A(t1) ǫ-optimal for V +(t1, xk). We fix α0 ∈ A(t1) some arbitrary strategy. By lemma

2.3, there exists a measurable, nonanticipative map F : Vt0 × Ωt0 → C0(IRN ) such that, for all

v ∈ Vd(t0), Pt0-a.s., X
t0,x0,α0(v),v
t1−δ (ω) = F (v(ω), ω)t′ . We define a new strategy αǫ ∈ A(t0) by

αǫ(v, ω)s =

{

α0(v, ω)s, if s ∈ [t0, t1),

αk(v2, ω2)s, if s ∈ [t1, T ] and F (v, ω) ∈ Ok, k ∈ {0, . . . ,K}.

Set, for all k ∈ {0, . . . ,K}, Ak = {X
t0,x0,α0(v),v
t1−δ ∈ Ok} ⊂ Ft0,t1 . Recall that the sets {F (v) ∈ Ok}

and Ak differs only by a Pt0-null set, and that Pt0(A0) ≤ ǫ.

Since V + is bounded, Lipschitz continuous in x and Hölder in t, we get, for all v ∈ Vd(t1)

Et0

[

V +(t1,X
t0,x0,α0(v),v
t1

)
]

= Et0

[

K
∑

k=0

1Ak
V +(t1,X

t0,x0,α0(v),v
t1

)

]

≥ Et0

[

K
∑

k=1

1Ak
V +(t1,X

t0,x0,α0(v),v
t1

)

]

− ‖V +‖∞Pt0(A0)

≥ Et0

[

K
∑

k=1

1Ak
V +(t1, xk)

]

− Cǫ

(2.9)

where C denotes a constant which changes from line to line.
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Now let us come from the left hand side of (2.6): For any v ∈ Vd(t0), we can write:

J(t0, x0, α
ǫ(v), v) = Et0

[

K
∑

k=0

1Ak
Et0 [g(X

t1,X
t0,x0,α0(v),v
t1

,αk(v2),v2

T )ds|Ft1 ]

]

. (2.10)

But, for all k ∈ {1, . . . ,K}, for Pt0-allmost ω ∈ Ωt0 , we have

Et0

[

g(X
t1 ,X

t0,x0,α0(v),v
t1

,αk(v2),v2

T )|Ft1

]

(ω) = Et1

[

g(X
t1 ,X

t0,x0,α0(v),v
t1

(ω1),αk(ṽ2(ω1)),ṽ2(ω1)

T )

]

= J(t1,X
t0,x0,α0(v),v
t1

, αk(v2), v2)(ω).

(2.11)

Since J is Lipschitz continuous in x and Hölder in t and αk is ǫ-optimal for V +(t1, xk), it holds

that

Et0

[

1Ak
J(t1,X

t0,x0,α0(v),v
t1

, αk(v2), v2)
]

≤ Et0

[

1Ak
(J(t1, xk, α

k(v2), v2) + Cǫ)
]

≤ Et0 [1Ak
(V +(t1, xk) + Cǫ)] .

(2.12)

Putting together (2.8)-(2.12), we get

J(t0, x0, α
ǫ(v), v) ≤ V (t0, t1, x0) +Cǫ.

Taking the sup over v ∈ Vd(t0) then gives the result.

The proof of the supersolution property from the subdynamic programming is standard (see

[4]).

In a symmetrical way, we obtain a superdynamic programming principle for V − and the fact

that V − is a subsolution:

Proposition 2.6. For all x ∈ IRN and 0 ≤ t0 ≤ t1 ≤ T , the following superdynamic program-

ming principle holds:

V −(t0, x) ≥ inf
β∈B(t0)

sup
u∈Ud(t0)

Et0 [V
−(t1,X

t0,x,u,β(u)
t1

)].

Therefore V − is a supersolution in viscosity sense of the following Hamilton-Jacobi-Isaacs equa-

tion














Vt +H−(D2V,DV, x, t) = 0, (t, x) ∈ [0, T ] × IRN ,

V (T, x) = g(x), x ∈ IRN ,

where H−(A, ξ, x, t) = supv∈V infu∈U
(

1
2tr(σσ

∗(t, x, u, v)A + 〈b(t, x, u, v), ξ〉
)

.

We can now follow [4] to obtain:
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Theorem 2.7. Under Isaacs’ condition:

∀A ∈ S(N), ξ ∈ IRN , x ∈ IRN , t ∈ [0, T ], H+(A, ξ, x, t) = H−(A, ξ, x, t) := H(A, ξ, x, t),

the game has a value V + = V − which is the unique solution in viscosity sense of















Vt +H(D2V,DV, x, t) = 0, (t, x) ∈ [0, T ] × IRN ,

V (T, x) = g(x), x ∈ IRN .

(2.13)

3 Erratum to “Stochastic Differential Games with Asymmetric

Information” [2].

The definition of strategy introduced in Definition 2.1 is mainly motivated by a gap in the paper

[2]. This paper deals with two-player, zero-sum differential games in which the players have a

private information on the game. The flaw in the paper is not with this information issue, but

with some technicalities arising with the notion of strategy developed there.

In the framework of [2] a strategy for player I starting at time t is a Borel-measurable map α :

[t, T ]×C([t, T ], IRn) → U for which there exists δ > 0 such that, ∀s ∈ [t, T ], f, f ′ ∈ C([t, T ], IRn),

if f = f ′ on [t, s], then α(·, f) = α(·, f ′) on [t, (s + δ) ∧ T ]. With this definition, Player I only

needs to observe the realization f of the solution of the stochastic differential equation. We can

use this notion of strategy to define as in (2.4) and (2.5) the value functions V + and V − via a

fixed point argument very close to Lemma 2.2. The issue arises when one tries to prove that

these value functions are Lipschitz continuous in space. Indeed, given a strategy α as above,

an adapted control v ∈ V(t) and two initial conditions x and x′, there seems to be no way to

built a new strategy α′ such that the solutions Xt,x,α,v and Xt,y,α′,v are sufficiently close (in

particular, the idea consisting in choosing α′(s, f) = α(s, f − x′ + x) does not seem to work).

As a consequence, there is a serious gap in the proof of Lemma 2.2 of [2].

In order to correct this, we have to change the notion of strategies and replace it with the

one developed in the present note. This implies several changes, that we list below.

1. As in section 2, we assume that we work on the Wiener space Ωt = C([t, T ] , IRd) endowed

with the Wiener measure Pt and consider, for all initial time t ∈ [0, T ], the canonical

process (Bs(ω) = ω(s), s ∈ [t, T ]). The filtration (Ft,s, t ≤ s) is the one generated by the

canonical process.

2. The definition of strategies (Definition 2.2 in [2]) must be replaced by the one in Definition

2.1. This new notion of strategy must also be used in the definition of random strategies

defined in [2], p. 5.
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3. The fixed point (Lemma 2.1 in [2]) has to be replaced by Lemma 2.2.

4. The Lipschitz continuity of the value functions (Lemma 2.2 in [2]) becomes straightforward

because one can now use the same strategy for different initial positions and get an estimate

as in Proposition 2.4.

5. In the proof of Proposition 3.1 in [2], the construction of the strategy has to be modified

as follows: by Lemma 2.3, there exists a measurable map F : Ut × Ω → IRN , such that,

for all u ∈ Ut, it holds that

Xǫ
t1−δ = F (u, ·), P -a.s..

Now, for l ∈ L, l = (l0, . . . , lM ), we define (βǫ
j)

l ∈ B(t0) by: ∀(u, ω) ∈ Ut0 ×Ωt0 ,∀t ∈ [t0, T ],

(βǫ
j)

l(t, u, ω) =

{

βǫ(v, ω)t, if t ∈ [t0, t1),

β
m,lm
j (u|[t1,T ], ω2) if t ∈ [t1, T ] and F (u, ω) ∈ Em.

We set β̄ǫ
j := ((βǫ

j)
l; slj, l ∈ L) ∈ B(t0), and finally β̂ǫ = (β̄ǫ

1, . . . , β̄
ǫ
J ). Then we can check

as in [2] that β̂ǫ gives the subdynamic programming.

6. In the proof of the Corollary 3.1 in [2], the strategy has to be changed in the following

way: we set β0(v, ω)t = v0 for all (t, v, ω) ∈ [t0, T ]× Vt0 × Ωt0 .
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