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We give all the polynomials functions of degree 20 which are APN over an infinity of field extensions and show they are all CCZ-equivalent to the function x 5 , which is a new step in proving the conjecture of Aubry, McGuire and Rodier.

Introduction

Modern private key crypto-systems, such as AES, are block cipher. The security of such systems relies on what is called the S-box. This is simply a Boolean function f : 2 n → 2 n where n is the size of the blocks. It is the only non linear operation in the algorithm.

One of the best known attack on these systems is differential cryptanalysis. Nyberg proved in [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF] that the S-boxes with the best resistance to such attacks are the one who are said to be Almost Perfectly Non-linear (APN).

Let q = 2 n . A function f : q → q is said APN on q if the number of solutions in q of the equation

f (x + a) + f (x) = b
is at most 2 for all a, b ∈ q , a = 0. The fact that q has characteristic 2 implies that the number of solutions is even for any function f on q .

The study of APN functions has focused on power functions and it was recently generalized to other functions, particularly polynomials (Carlet, Pott and al. [START_REF] Carlet | Codes, bent functions and permutations suitable for DES-like crypto-systems[END_REF][START_REF] Edel | A new APN function which is not equivalent to a power mapping[END_REF][START_REF] Edel | A new almost perfect nonlinear function which is not quadratic[END_REF]) or polynomials on small fields (Dillon [START_REF] Dillon | APN Polynomials: An Update. Fq9, International Conference on Finite Fields and their Applications[END_REF]). On the other hand, several authors (Berger, Canteaut, Charpin, Laigle-Chapuy [START_REF] Berger | On almost perfect nonlinear functions over 2 n[END_REF], Byrne, McGuire 1 [START_REF] Byrne | On the Non-Existence of Quadratic APN and Crooked Functions on Finite Fields[END_REF] or Jedlicka [START_REF] Jedlicka | APN monomials over GF(2n) for infinitely many n[END_REF]) showed that APN functions did not exist in certain cases. Some also studied the notion of being APN on other fields than 2 n (Leducq [START_REF] Leducq | A proof of two conjectures on APN functions[END_REF]).

Toward a full classification of all APN functions, an approach is to show that certain polynomials are not APN for an infinity of extension of 2 .

Hernando and McGuire showed a result on classification of APN functions which was conjectured for 40 years : the only exponents such that the monomial x d is APN over an infinity of extension of 2 are of the form 2 i + 1 or 4 i -2 i + 1. Those exponents are called exceptional exponents.

It lead Aubry, McGuire and Rodier to formulate the following conjecture: Conjecture: (Aubry, McGuire and Rodier) a polynomial can be APN for an infinity of ground fields q if and only if it is CCZ-equivalent (as defined by Carlet, Charpin and Zinoviev in [START_REF] Carlet | Codes, bent functions and permutations suitable for DES-like crypto-systems[END_REF]) to a monomial x d where d is an exceptional exponent.

A way to prove this conjecture is to remark that being APN is equivalent to the fact that the rational points of a certain algebraic surface X in a 3dimensional space linked to the polynomial f defining the Boolean function are all in a surface V made of 3 planes and independent of f . We define the surface X in the 3-dimensional affine space 3 by

φ (x, y, z) = f (x) + f (y) + f (z) + f (x + y + z) (x + y) (x + z) (y + z)
which is a polynomial in q [x, y, z]. When the surface is irreducible or has an irreducible component defined over the field of definition of f , a Weil's type bound may be used to approximate the number of rational points of this surface. When it is too large it means the surface is too big to be contained in the surface V and the function f cannot be APN. This way enabled Rodier to prove in [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF] that when the degree of f is equal to 4e with e ≡ 3 (mod 4) and φ is not divisible by a certain form of polynomial then f is not APN for an infinity of extension of q . He also found all the APN function of degree 12 and proved they are all CCZ-equivalent to x 3 .

To continue in this way, let's get interested in the APN functions of degree 20 which were the next ones on the list. The main difference in this case is that e ≡ 1 (mod 4). We got inspired by the proof of Rodier in [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF] but we had an other approach using divisors of the surface X. This was due to the fact that some of the components of X are no longer irreducible in our case.

Then we were able to obtain all the APN functions of degree 20 by calculation. The conditions of divisibility by the polynomials we obtained made the first part of our work, we had to work on the quotient after to obtain the final forms of the functions.

The second part was to prove that all were CCZ-equivalent to x 5 . This work has been done with François Rodier as adviser.

The state of the art

The best known APN functions are the Gold functions x 2 i +1 and the Kasami-Welch functions by x 4 i -2 i +1 . These 2 functions are defined over 2 and they are APN on any field 2 m if gcd (m, i) = 1. Aubry, McGuire and Rodier obtained the following results in [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields : Theory and applications[END_REF].

Theorem 1 (Aubry, McGuire and Rodier, [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields : Theory and applications[END_REF]) If the degree of the polynomial function f is odd and not an exceptional number then f is not APN over

q n for all n sufficiently large. Theorem 2 (Aubry, McGuire and Rodier [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields : Theory and applications[END_REF]) If the degree of the polynomial function f is 2e with e odd and if f contains a term of odd degree, then f is not APN over q n for all n sufficiently large.

There are some results in the case of Gold degree d = 2 i + 1:

Theorem 3 (Aubry, McGuire and Rodier [1]) Suppose f (x) = x d + g (x)
where deg (g) 2 i-1 +1. Let g (x) = 2 i-1 +1 j=0 a j x j . Suppose moreover that there exists a nonzero coefficient a j of g such that φ j (x, y, z) is absolutely irreducible (where φ j (x, y, z) denote the polynomial φ (x, y, z) associated to x j ). Then f is not APN over q n for all n sufficiently large.

And for Kasami degree as well:

Theorem 4 (Férard, Oyono and Rodier [START_REF] Ferard | Some more functions that are not APN infinitely often. The case of Gold and Kasami exponents[END_REF]

) Suppose f (x) = x d + g (x)
where d is a Kasami exponent and deg (g)

2 2k-1 -2 k-1 + 1. Let g (x) = 2 2k-1 -2 k-1 +1 j=0
a j x j . Suppose moreover that there exist a nonzero coefficient a j of g such that φ j (x, y, z) is absolutely irreducible. Then φ (x, y, z) is absolutely irreducible.

Rodier proved the following results in [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]. We recall that for any function f : q → q we associate to f the polynomial φ (x, y, z) defined by:

φ (x, y, z) = f (x) + f (y) + f (z) + f (x + y + z) (x + y) (x + z) (y + z) .
Theorem 5 (Rodier [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]) If the degree of a polynomial function f is even such that deg (f ) = 4e with e ≡ 3 (mod 4), and if the polynomials of the form

(x + y) (x + z) (y + z) + P, with P (x, y, z) = c 1 x 2 + y 2 + z 2 + c 4 (xy + xz + zy) + b 1 (x + y + z) + d, for c 1 , c 4 , b 1 , d ∈ q 3 ,
do not divide φ then f is APN over q n for n large.

There are more precise results for polynomials of degree 12.

Theorem 6 (Rodier [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]) If the degree of the polynomial f defined over q is 12, then either f is not APN over q n for large n or f is CCZ equivalent to the Gold function x 3 .

New Results

We have been interested in the functions defined by a polynomial of degree 20.

The main difference with the case already studied is that, when e = 5, φ e (x, y, z) (where φ e (x, y, z) denote the polynomial φ (x, y, z) associated to x e ) is not irreducible. So we had to detail more cases in the proof and use divisors on the surface X. And then obtained the following results :

Theorem 7 If the degree of a polynomial function defined over q is 20 and if the polynomials of the form

(x + y)(x + z)(y + z) + P 1 with P 1 ∈ q 3 [x, y, z ] and P 1 (x, y, z) = c 1 (x 2 + y 2 + z 2 ) + c 4 (xy + xz + yz) + b 1 (x + y + z) + d or φ 5 + P 2 with P 2 = a(x + y + z) + b do not divide φ then f is APN over q n for n large.
Theorem 8 If the degree of the polynomial f defined over q is 20, then either f is not APN over q n for large n or f is CCZ equivalent to the Gold function x 5 .

Preliminaries

The following results are needed to prove the theorem 7 All the proofs are in [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF].

Proposition 1 [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]The class of APN functions is invariant by adding a qaffine polynomial.

Proposition 2 [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]The kernel of the map

f → f (x) + f (y) + f (z) + f (x + y + z) (x + y) (x + z) (y + z)
is made of q-affine polynomials.

We define the surface X in the 3-dimensional affine space 3 by

φ (x, y, z) = f (x) + f (y) + f (z) + f (x + y + z) (x + y) (x + z) (y + z)
and we call X its projective closure.

Proposition 3 [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]If the surface X has an irreducible component defined over the field of definition of f which is not one of the planes (x + y) (x + z) (y + z) = 0, the function f cannot be APN for infinitely many extensions of q .

Lemma 1 [START_REF] Leander | Bounds on the degree of APN Polynomials. The case of x -1 + g (x). Designs, Codes and cryptography[END_REF]Let H be a projective hyper-surface. If X ∩ H has a reduced absolutely irreducible component defined over q then X has an absolutely irreducible component defined over q .

Lemma 2 [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields : Theory and applications[END_REF]Suppose d is even and write d = 2 j e where e is odd. In X ∩ H we have

φ d = φ e (x, y, z) 2 j ((x + y) (x + z) (y + z)) 2 j -1
Lemma 3 [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]The function x + y (and therefore A) does not divide φ i (x, y, z) for i an odd integer.

Lemma 4 φ 5 is not irreducible and we have

φ 5 = x + αy + α 2 z x + α 2 y + αz with α ∈ 4 -2 .
Calculus is sufficient to prove this.

Proof of theorem 7

Let f : q → q be a function which is APN over infinitely many extensions of q . As a consequence of proposition 11 no absolutely irreducible component of X is defined over q , except perhaps x + y = 0, x + z = 0 or y + z = 0. If some component of X is equal to one of these planes then by symmetry in x, y, and z, all of them are component of X, which implies that A = (x + y) (x + z) (y + z) divides φ. Let us suppose from now on that this is not the case.

Let H ∞ is the plane at infinity of 3 and X ∞ = X ∩ H ∞ . The equation of X ∞ is φ 20 = 0 which gives, using lemma 13 and 14

A 3 x + αy + α 2 z 4 x + α 2 y + αz 4 = 0
As the curve X ∞ does not contain any irreducible component defined over q , α / ∈ q and then q = 2 n with n odd. Let X 0 be a reduced absolutely irreducible component of X which contains the line x + y = 0 in H ∞ . The cases where X 0 contains 2 or 3 copies of the line x + y = 0 in H ∞ and where X 0 contains one copy of the line x + y = 0 and is of degree 1 are treated in [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF] and do not differ in our case. So from now on we assume that X 0 contains only one copy of the line x + y = 0 and is at least of degree 2.

Let d 1 be the plane of equation x + αy + α 2 z = 0, d 2 the plane of equation x + α 2 y + αz = 0 we denote

C i = d i ∩ H ∞ for i = 1, 2. Let A 0 be the line of equation x + y = 0 in H ∞ , A 1 the line of equation y + z = 0 in H ∞ and A 2 the line of equation x + z = 0 in H ∞ .
Let us consider D the divisor associated to the hyperplane section X ∩ H ∞ , so

D = 4C 1 + 4C 2 + 3A 0 + 3A 1 + 3A 2
We now denote X 0 the divisor associated to the hyperplane section of X 0 which is a sub-divisor of D of degree at least 2. We will denote X 1 the divisor obtained from X 0 by applying the permutation (x, y, z), X 2 the divisor obtained from X 0 by applying the permutation (x, z, y), X 3 the divisor obtained from X 0 by applying the transposition (x, y), X 4 the divisor obtained from X 0 by applying the transposition (x, z) and X 5 the divisor obtained from X 0 by applying the transposition (y, z). As φ (x, y, z) is symmetrical in x, y and z we know that X i is a subdivisor of D for i = 1, . . . , 5. The cases where X 0 2A 0 or X 0 = A 0 are already treated in [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF] so we have to study the cases below.

5.1 Case where X 0 is of degree 2.

i. If X 0 = A 0 + A 1 therefore from [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF] 5.7 we have a contradiction with the fact that X 0 is at most of degree 2.

ii.

If X 0 = A 0 + C i , then X 1 = A 1 + C i , X 2 = A 2 + C i , X 3 = A 0 + C j , X 4 = A 1 + C j , X 5 = A 2 + C j with j = i.
As seen in [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF] the group < ρ >= Gal q 3 / q acts on X 0 and as X 0 is not defined over q there exist sub-varieties X 6 , X 7 and X 8 which have, respectively the associated divisor X 6 , X 7 and X 8 . We have

X 6 = A 0 + C i , X 7 = A 1 + C i and X 8 = A 2 + C i .
Finally we have X i D which is a contradiction.

5.2

Case where X 0 is of degree 3.

iv. If X 0 = A 0 + 2C i + C j then X 1 = A 1 + 2C i + C j and X 2 = A 2 + 2C i + C j , with j = i. Then X i D which is a contradiction.

5.4

Case where X 0 is of degree 5.

i.

If X 0 = A 0 + 2 (C 1 + C 2 ), then X 1 = A 1 + 2 (C 1 + C 2 ) and X 2 = A 2 + 2 (C 1 + C 2 ). Then X i D which is a contradiction. ii. If X 0 = A 0 + 3C i + C j , j = i, X 1 = A 1 + 3C i + C j and X 2 = A 2 + 3C i + C j . Then X i D which is a contradiction. iii. If X 0 = A 0 + 4C i , then X 1 = A 1 + 4C i then X 0 + X 1 D which is a contradiction.
iv. If X 0 contains 2 of the A i from [14] 5.7 it contains the 3 and we will treat those cases in the following points.

v.

If X 0 = A 0 + A 1 + A 2 + 2C i then X 1 = A 0 + A 1 + A 2 + 2C i and X 2 = A 0 + A 1 + A 2 + 2C i . Then X i D which is a contradiction.
vi. The only case left is when

X 0 = A 0 + A 1 + A 2 + C 1 + C 2 .
As seen in [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF] the group < ρ >= Gal q 3 / q acts on X 0 and as X 0 is not defined over q there exist sub-varieties X 6 , X 7 and X 8 which have, respectively the associated divisor X 6 , X 7 and X 8 . We have

X 6 = A 0 + A 1 + A 2 + C 1 + C 2 , X 7 = A 0 + A 1 + A 2 + C 1 + C 2 and X 8 = A 0 + A 1 + A 2 + C 1 + C 2 . It remains the sub-divisor X 9 = C 1 + C 2 .
Therefore X i = D and the form of φ is :

φ = (φ 5 + R) (Aφ 5 + Q) (Aφ 5 + ρ (Q)) Aφ 5 + ρ 2 (Q)
with R a polynomial of degree 1 such as φ 5 + R is not irreducible, Q a polynomial of degree 4 and ρ the generator of Gal q 3 / q .

It is useless to consider the cases where X 0 is of degree more than 5 as we obtain 2 other divisors of the same degree from X 0 and D is of degree 17. Therefore it is sufficient to prove the theorem 7.

6 Proof of theorem 8

We have the two following cases to study:

6.1 Case where A + P 1 divides φ.

If P 1 divides φ then (A + P 1 ) (A + ρ (P 1 )) A + ρ 2 (P 1 ) divides φ too (see [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]. By calculus (see Appendix 1) we can state that:

• P 1 = c 1 φ 5 + c 3 1 .
• The trace of c 1 in q 3 is 0.

• (A + P 1 ) (A + ρ (P 1 )) A + ρ 2 (P 1 ) is the polynomial φ associated to L (x)

3 where L (x) = x (x + c 1 ) (x + ρ (c 1 )) x + ρ 2 (c 1 ) . • We have f = L (x) 3 L (x) 2 + a + a 16 x 16 + a 8 x 8 + a 4 x 4 + a 2 x 2 + a 1 x + a 0
where a, a 0 , a 1 , a 2 , a 4 , a 8 , a 16 ∈ q .

By proposition 9 f is equivalent to L (x) 5 + aL (x) 3 . As tr (c 1 ) = 0, L (x) is a q-affine permutation hence f is CCZ-equivalent to x 5 + ax 3 .

By theorem 3 f cannot be APN over infinitely many extensions of q if a = 0. Hence a = 0 and f is CCZ-equivalent to x 5 , which is a gold function.

6.2 Case where P 2 divides φ.

If P 2 divides φ then, by calculus (see Appendix 2), we obtain that f = x 20 + ax 10 + bx 5 + a 16 x 16 + a 8 x 8 + a 4 x 4 + a 2 x 2 + a 1 x + a 0 , where a, b, a 0 , a 1 , a 2 , a 4 , a 8 , a 16 ∈ q . By proposition 9 f is equivalent to x 5 + ax 2 + bx 4 . Therefore f can be written

f (x) = L x 5 with L (x) = x 4 + ax 2 + bx which is a permutation. Hence, f is CCZ-equivalent to x 5 .
In conclusion, we proved that if f (x) is a polynomial of q of degree 20 which is APN over infinitely many extensions of q , then f (x) is CCZ-equivalent to x 5 .

where P i is the term of degree i of (A + P) (A + ρ (P )) A + ρ 2 (P ) .

As (A + P ) (A + ρ (P )) A + ρ 2 (P ) divides φ there exists a polynomial Q of degree 8 such as φ = (A + P ) (A + ρ (P )) A + ρ 2 (P ) Q and we write

Q = 8 i=0 Q i ,
where Q i is the term of degree i of Q.

Degree 17

We put a 20 = 1 and we have :

φ 20 = P 9 Q 8 .
As P 9 = A 3 we have Q 8 = φ 4 5 .

Degree 16.

We have a 19 φ 19 = P 9 Q 7 + P 8 Q 8 .

As P 8 = A 2 (s 2 1 tr(c 1 ) + s 2 tr(c 4 )), where tr (c i ) is the trace of c 1 , it gives us

a 19 φ 19 = A 3 Q 7 + A 2 φ 4 5 (s 2 1 tr(c 1 ) + s 2 tr(c 4 )).
As φ 19 is not divisible by A (by lemma 13) so a 19 = 0 and

AQ 7 = φ 4 5 (s 2 1 tr(c 1 ) + s 2 tr(c 4 )).
We know that A is prime with s 2 1 tr(c 1 )+s 2 tr(c 4 ) because (x+y) does not divide this polynomial, and A does not divide either φ 4 5 which implies Q 7 = P 8 = 0 and tr(c 1 ) = tr(c 4 ) = a 19 = 0.

Degree 15.

We have

a 18 φ 18 = a 18 (Aφ 2 9 ) = P 9 Q 6 + P 8 Q 7 + P 7 Q 8 . Knowing that P 8 = Q 7 = 0 we obtain a 18 (Aφ 2 9 ) = P 9 Q 6 + P 7 Q 8 = A 3 Q 6 + φ 4 5 P 7 .
We also know that

φ 4 5 = s 2 1 + s 2 4 = s 8 1 + s 4 2 and P 7 = A s 4 1 q 1 (c 1 ) + s 2 2 q 1 (c 4 ) + s 2 1 s 2 q 5 (c 1 , c 4 ) + A 2 s 1 tr (b 1 ) denoting q 1 (c i ) = c i ρ (c i ) + c i ρ 2 (c i ) + ρ (c i ) ρ 2 (c i ) and q 5 (c 1 , c 4 ) = c 1 ρ(c 4 ) + ρ 2 (c 4 ) +c 4 ρ(c 1 ) + ρ 2 (c 1 ) +ρ(c 1 )ρ 2 (c 4 )+ρ(c 4 )ρ 2 (c 1 ). So a 18 φ 2 9 = A 2 Q 6 + φ 4 5 s 4 1 q 1 (c 1 ) + s 2 2 q 1 (c 4 ) + s 2 1 s 2 q 5 (c 1 , c 4 ) + As 1 tr (b 1 )) ,
hence A divide a 18 φ 2 9 +φ 4 5 s 4 1 q 1 (c 1 ) + s 2 2 q 1 (c 4 ) + s 2 1 s 2 q 5 (c 1 , c 4 ) . As A = s 1 s 2 + s 3 the polynomial a 18 φ 2 9 + φ 4 5 s 4 1 q 1 (c 1 ) + s 2 2 q 1 (c 4 ) + s 2 1 s 2 q 5 (c 1 , c 4 ) cannot contain monomial in s 12 1 or s6 2 , therefore a 18 = q 1 (c 1 ) = q 1 (c 4 ). Then A divides a 18 φ 2 9 + φ 6 5 + φ 4 5 s 2 1 s 2 q 5 (c 1 , c 4 ). As φ 2 9 + φ 6 5 = A 4 and A does not divide φ 4 5 we have q 5 (c 1 , c 4 ) = 0. Replacing in the first equation we have

a 18 A 4 = A 2 Q 6 + Aφ 4 5 s 1 (tr (b 1 )) . So a 18 A 3 + AQ 6 = φ 4 5 s 1 (tr (b 1 )) , as A does not divide φ 4 5 s 1 , tr (b 1 ) = 0 and Q 6 = a 18 A 2 .
7.1.4 Degree 14.

We first prove that c 1 = c 4 .

We have a 17 φ 17 = P 9 Q 5 + . . .

+ P 6 Q 8 = P 9 Q 5 + P 6 Q 8 .
We know that

P 6 = A 2 N (d)+A s 3 1 q 5 (c 1 , b 1 ) + s 1 s 2 q 5 (c 1 , b 1 ) +s 6 1 N (c 1 )+s 4 1 s 2 q 4 (c 1 , c 4 )+s 2 1 s 2 2 q 4 (c 4 , c 1 )+s 3 2 N (c 4 )
where

N (a) = aρ(a)ρ 2 (a)which is the norm ofain q .q 4 (a, b) = aρ(a)ρ 2 (b)+aρ(b)ρ 2 (a)+bρ(a)ρ 2 (a).q 5 (a, b) = a(ρ(b)+ρ
for all a, b in q 3 . We can write

P 6 = A 2 tr(d) + A s 3 1 q 5 (c 1 , b 1 ) + s 1 s 2 q 5 (c 1 , b 1 ) + P * 6 ρ(P * 6 )ρ 2 (P * 6 ),
where

P * 6 = c 1 s 2 1 + c 4 s 2 .
So we can deduce that (1)

a 17 φ 17 = A 3 Q 5 +φ 4 5 A 2 tr(d) + A s 3 1 q 5 (c 1 , b 1 ) + s 1 s 2 q 5 (c
Therefore we have

P * 6 = c 1 (s 2 + z 2 ) + c 4 (x 2 + s(x + z)) = c 1 z 2 + c 4 x 2 + sR 3 = P * * 6 + sR 3 .
As s divides (1) the constant term in s vanishes :

(x + z) 16 a 17 (x + z) 6 + P * * 6 ρ(P * * 6 )ρ 2 (P * * 6 ) = 0, then a 17 (x + z) 6 + P * * 6 ρ(P * * 6 )ρ 2 (P * * 6 ) = 0, hence

a 17 (x + z) 6 + (c 4 x 2 + c 1 z 2 )(ρ(c 4 )x 2 + ρ(c 1 )z 2 )(ρ 2 (c 4 )x 2 + ρ 2 (c 1 )z 2 ) = 0, so a 17 (x + z) 3 + ( √ c 4 x + √ c 1 z)(ρ( √ c 4 )x + ρ( √ c 1 )z)(ρ 2 ( √ c 4 )x + ρ 2 ( √ c 1 )z) = 0. The polynomial x + z divides ( √ c 4 x + √ c 1 z)(ρ( √ c 4 )x + ρ( √ c 1 )z)(ρ 2 ( √ c 4 )x + ρ 2 ( √ c 1
)z) so it divides one component and then c 1 = c 4 .

We now calculate P 6 and Q 5 .

As c 1 = c 4 we have P 6 = A 2 tr (d) + Aφ 5 s 1 q 5 (c 1 , b 1 ) + φ 3 5 N (c 1 ), so from a 17 φ 17 = P 9 Q 5 + P 6 Q 8 we can deduce that A divides a 17 φ 17 + q 3 (c 1 ) φ 7 5 . Hence the coefficient of the monomials s 14 1 in a 17 φ 17 + N (c 1 ) φ 7 5 , which is a 17 + N (c 1 ), must be equal to 0, so a 17 = N (c 1 ).

Remarking that φ 17 + φ 7 5 = A 2 φ 5 φ 9 we have A divides φ 5 s 1 q 5 (c 1 , b 1 ). As φ 5 s 1 is not divisible by A we have q 5 (c 1 , b 1 )=0. So now we have

A 3 Q 5 = A 2 φ 4 5 tr (d) + a 17 A 2 φ 5 φ 9 ,
which gives

AQ 5 = φ 4 5 tr (d) + a 17 φ 5 φ 9 .
Using the same argument as precedent we have tr (d) = N (c 1 ) and then

Q 5 = a 17 φ5φ9+φ 4 5 A 2
= a 17 A 2 φ 5 and P 6 = a 17 A 2 + φ 3 5 .

Degree 13

We use 0 = a 16 φ 16 = P

9 Q 4 + P 8 Q 5 + P 7 Q 6 + P 6 Q 7 + P 5 Q 8 = A 3 Q 4 + a 2
18 A 3 φ 2 5 + φ 4 5 P 5 , with

P 5 = q 4 (c 1 , b 1 ) s 5 1 + s 2 2 s 1 + A q 1 (b 1 )s 2 1 + q 5 (c 1 , d) s 2 1 + s 2 .
As A 3 does not divide P 5 φ 4 5 , so P 5 = 0 and q 4 (c

1 , b 1 ) = q 1 (b 1 ) = q 5 (c 1 , d) = 0. We deduce Q 4 = a 2 18 φ 2 5 .

Degree 12

We have

a 15 φ 15 = P 9 Q 3 + P 8 Q 4 + P 7 Q 5 + P 6 Q 6 + P 5 Q 7 + P 4 Q 8 = A 3 Q 3 + a 18 a 17 A 2 φ 3 5 + a 18 a 17 A 2 A 2 + φ 3 5 + P 4 φ 4 5
, with

P 4 = q 4 (b 1 , c 1 )(s 4 1 + s 2 1 s 2 ) + q 4 (c 1 , d)(s 4 1 + s 2 2 ) + q 5 (b 1 , d)As 1 = H 4 + AG 4 ,
where

H 4 = q 4 (b 1 , c 1 )(s 4 1 + s 2 1 s 2 ) + q 4 (c 1 , d)(s 4 1 + s 2 2 ) and G 4 = q 5 (b 1 , d)s 1 . So A|H 4 φ 4
5 + a 15 φ 15 . As H 4 φ 4 5 +a 15 φ 15 = s 12 1 (a 15 + q 4 (b 1 , c 1 ) + q 4 (c 1 , d))+s 10 1 s 2 q 4 (b 1 , c 1 )+a 15 s 9 1 s 3 +s 8 1 s 2 2 (a 15 + q 4 (c1, d))+s 4 1 s 4 2 (q 4 (b 1 , c 1 ) the coefficients of s 12 1 and s 6 2 must be 0 and so a 15 + q 4 (b1, c1) + q 4 (c1, d) = 0 anda 15 + q 4 (c1, d) = 0 so q 4 (b1, c1) = 0.

Replacing in the equation we now have

H 4 φ 4 5 + a 15 φ 15 = a 15 s 9 1 s 3 + s 4 1 s 4 2 + s 3 1 s 3 3 + s 1 s 4 2 s 3 + s 4 3 = a 15 φ 15 + φ 6 5 ,
but A does not divide φ 15 + φ 6 5 so a 15 = 0 so H 4 = 0. Hence

0 = A 3 Q 3 + a 18 a 17 A 2 φ 3 5 + a 18 a 17 A 2 A 2 + φ 3 5 + AG 4 φ 4 5 .
So A divides G 4 , but the degree of G 4 is less than or equal to 1 so G 4 = 0 it implies q 5 (b 1 , d) = 0 so P 4 = 0. We conclude Q 3 = a 18 a 17 A.

7.1.7 Degree 11.

We have

a 14 φ 14 = P 9 Q 2 + P 8 Q 3 + P 7 Q 4 + P 6 Q 5 + P 5 Q 6 + P 4 Q 7 + P 3 Q 8 , so a 14 A(φ 4 5 + s 2 1 s 2 3 ) = A 3 Q 2 + a 3 18 Aφ 4 5 + a 2 17 Aφ 5 A 2 + φ 3 5 + P 3 φ 4 5 . ( * ) So A divides P 3 . But P 3 = N (b 1 )s 3 1 + q 6 (c 1 , b 1 , d))s 1 φ 5 + q 1 (d)A so N (b 1 ) = q 6 (c 1 , b 1 , d) = 0 with q 6 (c 1 , b 1 , d) = b 1 ρ(c 1 )ρ 2 (d)+b 1 ρ(d)ρ 2 (c 1 )+c 1 ρ(b 1 )ρ 2 (d)+c 1 ρ(d)ρ 2 (b 1 )+dρ(c 1 )ρ 2 (b 1 )+dρ(c 1 )ρ 2 (b 1 ).
As N (b 1 ) = 0, b 1 = 0. When we replace in the equation ( * ) we have We have

A 3 (Q 2 + a 2 17 φ 5 ) = A φ
a 13 φ 13 = P 9 Q 1 + P 8 Q 2 + P 7 Q 3 + P 6 Q 4 + P 5 Q 5 + P 4 Q 6 + P 3 Q 7 + P 2 Q 8 = A 3 Q 1 + a 17 a 2 18 A 2 φ 2 5
+ a 17 a 2 18 φ 2 5 A 2 + φ 3 5 + φ 4 5 s 2 1 q 4 (d, c1) + s 2 q 4 (d, c1) , so A divides a 13 φ 13 +φ 5 5 a 17 a 2 18 + q 4 (d, c1) = a 13 s 4 1 s 2 3 + s 3 1 s 2 2 s 3 + s 2 1 s 2 s 2 3 + s 1 s 3 3 + φ 5 5 a 13 + a 17 a 2 18 + q 4 (d, c1) . with the same argument as before on the coefficients of the monomials s 8 1 and s 4 2 we have a 13 + a 17 a 2 18 + q 4 (d, c1) = 0. in addition, A does not divide s 4 1 s 2 3 + s 3 1 s 2 2 s 3 + s 2 1 s 2 s 2 3 + s 1 s 3 3 so a 13 = 0 and q 4 (d, c1) = a 17 a 2 18 . Now we have AQ 1 = 0.

So Q 1 = 0 and P 2 = a 17 a 2 18 φ 5 .

7.1.9 Degree 9.

We have

a 12 φ 12 = P 9 Q 0 + P 8 Q 1 + P 7 Q 2 + P 6 Q 3 + P 5 Q 4 + P 4 Q 5 + P 3 Q 6 + P 2 Q 7 + P 1 Q 8 ,
but φ 12 = A 3 and as b 1 = 0 we have P 1 = 0. So

a 12 A 3 = A 3 Q 0 + a 2 17 a 18 Aφ 3 5 + a 2 17 a 18 A A 2 + φ 3 5 + a 18 (a 2 17 + a 3 18 )A 3 , so Q 0 = a 12 + a 4 18 .
7.1.10 Degree 8.

We have

a 11 φ 11 = P 8 Q 0 + P 7 Q 1 + P 6 Q 2 + P 5 Q 3 + P 4 Q 4 + P 3 Q 5 + P 2 Q 6 + P 1 Q 7 + P 0 Q 8 ,
which gives a 11 φ 11 = (P 0 + a 3 17 )φ 4 5 . But φ 5 does not divide φ 11 so a 11 = 0 et P 0 = a 3 17 .

Conclusion.

We now have the following systems:

                   tr (c 1 ) = 0 N (c 1 ) + tr(d) = 0 q 5 (c 1 , d) = 0 q 4 (c 1 , d) = 0 q 1 (d) = q 3 1 (c 1 ) + N (c 1 ) 2 q 4 (d, c 1 ) = N (c 1 )q 2 1 (c 1 ) (d) = N (c 1 ) 3
and a = q 1 (c 1 ), a 17 = N (c 1 ) = tr(d).

Solving the system formed by the linear equations in d, ρ(d), ρ 2 (d), we obtain Putting L (x) = x (x + c 1 ) (x + ρ (c 1 )) x + ρ 2 (c 1 ) we have that (A + P ) (A + ρ (P )) A + ρ 2 (P ) is the polynomial φ associated to L (x) 3 wich leads us to study the divisibility of f by L (x) 3 . We have in our case f = L (x) 3 L (x) 2 + a 12 + a 16 x 16 + a 8 x 8 + a 4 x 4 + a 2 x 2 + a 1 x + a 0 .

d = c 3 1 . We also have b 1 = 0 as b 1 ρ (b 1 ) ρ 2 (b 1 ) = 0. Therefore P = c 1 φ 5 + c 3 1 , and 
Q = φ 4 5 +q 1 (c 1 )A 2 +N (c 1 )Aφ 5 +q 1 (c 1 ) 2 φ 2 5 +q 1 (c 1 )N (c 1 )A+q 3 (c 1 ) 2 φ 5 +a 12 +q 1 (c 1 ) 4 , therefore f (x) =
7.2 Case where P 2 divides φ.

We will write P for P 2 in this section in order to make the calculus more readable.

From theorem 7 we have

φ = (φ 5 + R) (Aφ 5 + Q) (Aφ 5 + ρ (Q)) Aφ 5 + ρ 2 (Q) ,
where R is a symmetrical polynomial of q of degree 1 and Q is a symmetrical polynomial of q 3 of degree 4. We will denote R = as 1 + b and

(Aφ 5 + Q) (Aφ 5 + ρ (Q)) Aφ 5 + ρ 2 (Q) = 15 i=0 Q i .
We will identify degree by degree the expression of φ.

Degree 17.

We have φ 20 = A 3 φ 4 5 = φ 5 Q 15 , so Q 15 = A 3 φ 3 5 .

Degree 16.

We have a 19 19 = φ 5 Q 14 + as 1 Q 15 = φ 5 Q 14 + as 1 A 3 φ 3 5 , which implies φ 5 divides φ 19 but this is not the case hence a 19 = 0 and Q 14 = as 1 A 3 φ 2 5 .

Degree 15.

We have a 18 φ 18 = φ 5 Q 13 + as 1 Q 14 + bQ 14 = φ 5 Q 13 + as 2 1 A 3 φ 2 5 + bA 3 φ 3 5 , which implies φ 5 divides φ 18 but this is not the case hence a 18 = 0 and Q 13 = A 3 a 2 s 2 1 φ 5 + bφ 2 5 .

Degree 14 and 13

We have We know that φ 5 + b is irreducible if b = 0 ( [START_REF] Leander | Bounds on the degree of APN Polynomials. The case of x -1 + g (x). Designs, Codes and cryptography[END_REF]), which is in contradiction with the fact that f is APN over infinitely many extension of q and then b = 0.

a 17 φ 17 = φ 5 Q 12 + as 1 Q 13 + bQ 14 , (2) 
We now have Q 15 = A 3 φ 3 5 , Q 14 = Q 13 = Q 12 = Q 11 = 0.

7.2.5 Degree 12 to 8.

We have a 15 φ 15 = φ 5 Q 10 , as φ 5 does not divide φ 15 we have a 15 = 0 and Q 10 = 0. The same method can be applied until the degree 8. It gives a 14 = a 13 = a 12 = a 11 = 0 and

Q 9 = Q 8 = Q 7 = Q 6 = 0.
7.2.6 Degree 7.

We have a 10 φ 10 = a 10 Aφ 2 5 = Q 5 φ 10 , so Q 5 = a 10 Aφ 5 .

Degree 6.

The same argument than in section 7.2.5 gives a 9 = 0 and Q 4 = 0.

Degree 5.

We have a 8 φ 8 = 0 = Q 3 φ 5 , therefore Q 3 = 0.

7.2.9 Degree 4 and 3.

The same argument than in section 7.2.5 gives a 7 = a 6 = 0 and Q 2 = Q 1 = 0.

7.2.10 Degree 2.

We have a 5 φ 5 = Q 0 φ 5 , therefore Q 0 = a 5 .

Conclusion.

In conclusion we have φ = φ 5 A 3 φ 3 5 + a 10 Aφ 5 + a 5 = φ 20 + a 10 φ 10 + a 5 φ 5 , which gives f (x) = x 20 + a 16 x 16 + a 10 x 10 + a 8 x 8 + a 5 x 5 + a 4 x 4 + a 2 x 2 + a 1 x + a 0 .

and a 16 φ 16 = 0 = φ 5 Q 11 +a 2 s 2 1 φ 5 + bφ 2 5 , ( 3 ) ( 2 )a 17 φ 17 φ 5 = Q 12 + a 3 s 3 1 A 3 . 16 ( 17 φ17φ5 + a 3 s 3 1 A 3 too. But a 17 φ 17 φ 5 + a 3 s 3 1 A 3 = a 17 s 4 3 + R 1 ,

 511532512331617151331 as 1 Q 12 + bQ 13 = φ 5 Q 11 + as 1 Q 12 + bA 3 implies that Q 12 is divisible by φ 5 or a = 0. Lets assume a = 0. From (2) we have we can show easily that φ 5 divides φ 17 by calculus). As φ 5 divides Q 12 it divides a so a 17 = 0. As φ 5 does not divide s3 1 A 3 it means a = 0 and Q 12 = 0. We now have, in both case φ = (φ 5 + b)15 i=0 Q i .

  17 (x + z) 6 x 16 + z 16 + sR 1 + P * 6 ρ(P * 6 )ρ 2 (P * 6 ) x 4 + z 4 + sR 2 .

	1 , b 1 ) + P * 6 ρ(P * 6 )ρ 2 (P * 6 ) . where R 1 is a polynomial of degree 3 and R 2 is a polynomial of degree 15. As We now have A divides a 17 φ 17 + φ 4 5 P * (x + z) 2 φ 17 = (x + z) 16 + sR 2 , (x+z) 8 A = (x+z) 9 s(x+z +s) divides a 17 (x+z) 8 φ 17 +P * 6 ρ(P * 6 )ρ 2 (P * 6 )(x+z) 8 φ 4 5 which is equal to 6 ρ(P * and a

  x 20 +a 18 x 18 +a 17 x 17 +a 16 x 16 +a 12 x 12 +a 18 a 12 x 10 +a 17 a 12 x 9 +a 8 x 8 + a 7

	18 + a 4 18 a 2 17 + a 3 18 a 12 + a 18 a 4 17 + a 2 1

i. The case where X 0 = A 0 + A 1 + A 2 has already been treated in[START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF], this is the case where A + P 1 divides φ.ii. If X 0 contains 2 of the A i from [14] 5.7 it contains the 3 and it is the same case than previously.iii.If X 0 = A 0 + 2C i , then X 1 = A 1 + 2C i and X 2 = A 2 + 2C i , in this case X 0 + X 1 + X 2 D which is a contradiction. iv. If X 0 = A 0 + C 1 + C 2 , then X 1 = A 1 + C 1 + C 2 and X 2 = A 2 + C 1 + C 2 , X 3 = A 0 + C 1 + C 2 , X 4 = A 1 + C 1 + C 2 and X 5 = A 2 + C 1 + C 2 .Then X i D which is a contradiction.5.3Case where X 0 is of degree 4.i. If X 0 = A 0 + A 1 + A 2 + C i , then X 1 = A 0 + A 1 + A 2 + C i , X 2 = A 0 + A 1 + A 2 + C i , X 3 = A 0 + A 1 + A 2 + C j , X 4 = A 0 + A 1 + A 2 + C j and X 5 = A 0 + A 1 + A 2 + C j . Then X i D which is a contradiction.ii. If X 0 contains 2 of the A i from [14] 5.7 it contains the 3 and we are in the same case than in i).iii. If X 0 = A 0 + 3C i , then X 1 = A 1 + 3C i and X 2 = A 2 + 3C i . Then X i D which is a contradiction.

)ρ 2 (P * 6 ). In addition, denoting s = x + y,(x + z) 2 φ 5 = (x + z) 4 + s(x 2 y + x 2 z + yz 2 + z 3 ) = (x + z) 4 + sR 1

Appendix

In this part we give the details of the calculus we made in order to state the theorem 8 We just use the fact that P 1 or P 2 divides φ and it gives us conditions on the coefficients of P 1 or P 2 and φ. As φ is a symmetrical polynomial in x, y, z we can write it using symmetrical functions s 1 = x+y +z, s 2 = xy +xz +yz and s 3 = xyz. We recall that φ i is the polynomial φ associated to x i and therefore φ (x, y, z) the polynomial associated to f (x) = d i=0 a i x i can be written φ = a i φ i . Denoting

and that A = s 1 s 2 + s 3 . The calculus were made on the software Sage and you can find the sheet at the following adress: http://sagenb.org/home/pub/5035.

7.1

Case where A + P 1 divides φ.

We will write P for P 1 in this section in order to make the calculus more readable.

If A + P divides φ then (A + P ) (A + ρ (P )) A + ρ 2 (P ) is of degree 9 and divides φ too (see [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]). We write (A + P ) (A + ρ (P )) A + ρ 2 (P ) =