
HAL Id: hal-00766411
https://hal.science/hal-00766411v1

Preprint submitted on 18 Dec 2012 (v1), last revised 6 Mar 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spectral monodromy of non selfadjoint operators
Quang Sang Phan

To cite this version:

Quang Sang Phan. Spectral monodromy of non selfadjoint operators. 2012. �hal-00766411v1�

https://hal.science/hal-00766411v1
https://hal.archives-ouvertes.fr


SPECTRAL MONODROMY OF NON SELFADJOINT OPERATORS

QUANG SANG PHAN

ABSTRACT. We propose to build in this paper a combinatorial invariant, called the "spectral mon-
odromy" from the spectrum of a single (non-selfadjoint) h-pseudodifferential operator with two
degrees of freedom in the semi-classical limit.
Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable
system of n commuting selfadjoint h-pseudodifferential operators, given by S. Vu Ngoc.
The first simple case that we treat in this work is a normal operator. In this case, the discrete spec-
trum can be identified with the joint spectrum of an integrable quantum system.
The second more complex case we propose is a small perturbation of a selfadjoint operator with a
classical integrability property. We show that the discrete spectrum (in a small band around the real
axis) also has a combinatorial monodromy. The difficulty here is that we do not know the descrip-
tion of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the
monodromy can be identified with the classical monodromy (which is defined by J. Duistermaat).
These are the main results of this article.
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1. INTRODUCTION

1.1. General framework. This paper aims at understanding the structure of the spectrum of some
classes of non-selfadjoint operators in the semi classical limit. It is a quantum problem that we treat
with the help of semi-classical techniques combined with the general spectral theory of pseudo-
differential operators.

We will also make the link with classical results that illuminate the initial quantum problem.
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1.2. Monodromy of h-pseudo-differential non-selfadjoint operators. More explicitly, in this
paper, we propose to build a new characteristic objet of the structure of the spectrum of non-
selfadjoint h-pseudo-differential operators in the semi-classical limit.

Our inspiration comes from quantum monodromy, which is defined for the joint spectrum (see
the definition 4) of a system of n h− pseudo-differential operators that commute (i.e a completely
integrable quantum system). This is a quantum invariant given by San Vu Ngoc [45](or [47]).

Under certain conditions, the joint spectrum on a domain U of regular values of the map of
principal symbols is an asymptotic affine lattice in the sense that there is an invertible symbol,
denoted fα, from any small ball Bα ⊂ U in Rn that sends the joint spectrum to Zn modulo
O(h∞) (a result of Charbonnel [12]).

These (fα, Bα) are considered as local charts of U whose transition functions, denoted by Aαβ ,
are in the integer affine group GA(n,Z). The quantum monodromy is defined as the 1-cocycle
{Aαβ} modulo-coboundary in the Čech cohomology Ȟ1(U,GA(n,Z)).

For details of this monodromy, we can see the article [45] or section 2.2 of this paper.
Since this work, a mysterious question remains open: Can we define (and detect) such an in-

variant for a single h-pseudo-differential operator? If this happens, we will call it the "spectral
monodromy".

From a geometrical point of view, since the joint spectrum of a quantum integrable system is
an asymptotic affine lattice, if one realizes the parallel transport on the lattice of a basic rectangle
with a vertex c along a some closed path γc (of base c) and returns to the starting point, then the
initial rectangle can become a different rectangle (see figure below). It is the existence of quantum
monodromy. Contrariwise, by the spectrum of a selfadjoint operator being contained in a straight
line (real axis), it seems impossible to define such a parallel transport for a single operator. It is
not known how to define a monodromy in this case.

Figure 1. Joint spectrum of the spherical pendulum with monodromy
(Image by S. Vu Ngoc)

However, if we perturb a self-adjoint operator by a non-symmetric term, the spectrum becomes
complex, and we may hope to find a geometric structure (lattice, monodromy ...). We propose in
this paper to apply this idea to certain classes of h-pseudo-differential operators of two degrees of
freedom.

1.2.1. The first case. The first simple case that we propose is a h-pseudo-differential operator of
form P1 + iP2 with two self-adjoint operators P1, P2 that commute. This is the form of a normal
operator. We show in section 3 that the discrete spectrum of P1 + iP2 is identified with the joint
spectrum of the integrable quantum system (P1, P2) (see Theorems 2.4 and 2.6). One can simply
define the "affine spectral monodromy" of operator P1 + iP2 as the quantum monodromy of the
joint spectrum. For details, see section 2.4.
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1.2.2. The second case. The second case that we study is more complex. For the quantum mon-
odromy and thus the affine spectral monodromy (in the first case), the quantum integrability con-
dition of P1, P2 is necessary but seems a bit heavy to have a monodromy because the quantum
monodromy has a relationship with the classical monodromy (which is given by J.Duistermaat
[18]) of the integrable classical system (p1, p2), the corresponding principal symbols of P1, P2. It
is a result in article [45].

For this reason, keeping the property of classical integrability, we will propose to consider
a small perturbation of a self-adjoint operator of the form Pε := P1 + iεP2 assuming that the
principal symbols p1, p2 commute, ε→ 0 and in the regime h� ε = O(hδ) for 0 < δ < 1.

Here there is no joint spectrum, so we can not apply the construction of the quantum mon-
odromy.

However with the help of the results of asymptotic spectral theory of M.Hitrik, J.Sjöstrand,
S. Vu Ngoc ([23], [24], [25] and especially [27]) (under conditions detailed in the section 4) by
revisiting the procedure of Birkhoff normal form (section (3.3)), the spectrum of Pε is located
in a horizontal band of height O(ε) and in this band, we can give the asymptotic expansion of
eigenvalues of Pε in some "good rectangles" R(χa, ε, h) (see definition 3.5) of size Oδ ×O(εhδ)
which are associated with Diophantine torus Λa.

There is a correspondence between λ ∈ σ(Pε) ∩ R(χa, ε, h) and hk in a part of hZ2 by a
diffeomorphism (a micro-chart) of form (see the formula (81)):

f : R(χa, ε, h) → E(a, ε, h)

σ(Pε) ∩R(χa, ε, h) 3 λ 7→ f(λ, ε;h) ∈ hZ2 +O(h∞). (1)

For more details of this idea, see the section 3.4.
Nevertheless all Diophantine tori do not quite fill the phase space (see [8], [36]) and despite its

density, is not yet known whether such a expansion holds globally on any small domain of spectral
band. However, we will prove the global existence (for such rectangles) of the first term of this
expansion on any small area in the set of regular values of the application (p, εq).

The spectrum of Pε is the model of a particular set Σ(ε, h) on a domain U(ε) that we define in
the section 4 and call "asymptotic pseudo-lattice" ( see definition 3.26) whose differential transition
functions between the adjacent "pseudo-locals charts" are in the group GL(2,Z) moduloO(ε, hε ).

This allows us to treat the inverse problem: define a combinatorial invariant (the spectral mon-
odromy) from the spectrum of Pε.

This is the main result of this paper, presented in section 3.
It would be very interesting to extend these results to the case where p is a perturbation an

integrable system, using the work of Broer, Cusham, Fassò et Takens [9].

2. AFFINE SPECTRAL MONODROMY

The quantum monodromy that is defined for the discrete joint spectrum of a integrable quantum
system of n commuting h−pseudo-differential operators is completely given by S. Vu Ngoc [45].

We propose to define the monodromy for a single h−pseudo-differential operator and in this
section, we will treat the simple case of a normal operator. To do this, we will give an identifi-
cation between the discrete spectrum of a normal operator and the joint spectrum of an integrable
quantum system (theorems 2.4 and 2.6).

First we briefly recall the standard class of h-(Weyl-)pseudo-differential operators which is used
through in this article. Then we give the results of spectral theory that allow us to define the "affine
spectral monodromy" of a pseudo-differential normal operator.

2.1. Pseudo-differential operators. We will work throughout this article with pseudo-differentials
operators obtained by the h−Weyl-quantization with standard classes of symbols onM = T ∗Rn =
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R2n
(x,ξ). These operators admit the standard properties of pseudo differential operators. For more

details, see the references [17], [38], [39].

Definition 2.1. A function m : R2n → (0,+∞) is called an order function (or tempered weight
in the book of D. Robert [38]) if there are constants C,N > 0 such that

m(X) 6 C〈X − Y 〉Nm(Y ),∀X,Y ∈ R2n,

with notation 〈Z〉 = (1 + |Z|2)1/2 for Z ∈ R2n.

One use often the order function m(Z) ≡ 1 or

m(Z) = 〈Z〉l/2 = (1 + |Z|2)l/2,

with a given constant l ∈ R.

Definition 2.2. Let m be an order function and k ∈ R, we define classes of symbols of h-order k,
Sk(m) (families of functions) of (a(·;h))h∈(0,1] on R2n

(x,ξ) by

Sk(m) = {a ∈ C∞(R2n) | ∀α ∈ N2n, |∂αa| 6 Cαhkm}, (2)

for some constant Cα > 0, uniformly in h ∈ (0, 1].

A symbol a is called O(h∞) if it’s in ∩k∈RSk(m) := S∞(m).

Then Ψk(m)(M) denotes the set of all (in general unbounded) linear operators Ah on L2(Rn),
obtained from the h−Weyl-quantization of symbols a(·;h) ∈ Sk(m) by the integral:

(Ahu)(x) = (Opwh (a)u)(x) =
1

(2πh)n

∫

R2n

e
i
h

(x−y)ξa(
x+ y

2
, ξ;h)u(y)dydξ. (3)

In this paper, we always assume that the symbols admit a classical asymptotic expansion in
integer powers of h. The leading term in this expansion is called the principal symbol of the
operator.

2.2. Quantum monodromy of Integrable quantum systems. If an integrable quantum system
(P1(h), . . . , Pn(h)) with joint principal symbol p is proper, then near a regular value of p, the
joint spectrum of the system locally has the structure of an affine integral lattice [12], [44]. By S.
Vu Ngoc, this leads to the construction of quantum monodromy- a natural invariant defined from
the spectrum, see [45]. The non-triviality of this invariant obstructs the global existence of lattice
structure of the joint spectrum. More explicit:

Let X a compact manifold of dimension n or X = Rn and let M := T ∗X the tangent bundle
of X . Let an integrable quantum system (P1(h), . . . , Pn(h)) of n commuting selfadjoint h−Weyl
pseudo-differential operators on L2(X): [Pi(h), Pj(h)] = 0. We will assume that these Pj(h) are
in Ψ0(M), classical and of order zero. In any coordinate chart their Weyl symbols pj(h) have an
asymptotic expansion of the form:

pj(x, ξ;h) = pj0(x, ξ) + hpj1(x, ξ) + h2pj2(x, ξ) + · · · .
Assume that the differentials of the principal symbols pj0 are linearly independent almost every-
where on M . The map of joint principal symbols p = (p1

0, . . . , p
n
0 ) is a momentum map with

respect to the symplectic Poisson bracket on T ∗X ({pi0, pj0} = 0). We will assume that p is proper.
Let Ur be an open subset of regular values of p and let U be a certain open subset with compact

closure K := U in Ur.
We define the joint spectrum of the system in K, noted σconj(P1, . . . , Pn) by:

σconj(P1(h), . . . , Pn(h)) = {(E1(h), . . . , En(h)) ∈ K| ∩nj=1 Ker(Pj(h)− Ej(h)) 6= ∅}. (4)

Let Σ(h) = σconj(P1(h), . . . , Pn(h)) ∩ U . Is is known from the work of Colin de Verdière
[44] and Charbonnel [12], Σ(h) is discrete and for small h is composed of simple eigenvalues.
Moreover, Σ(h) is "an asymptotic affine lattice" on U in the sense: there are locally invertible
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symbols of order zero, denoted fα(·;h) from any small ball Bα ⊂ U in Rn, sending Σ(h) in hZn
modulo O(h∞). These (fα, Bα) are considered as locals charts of Σ(h) on U whose transition
functions, denoted by Aαβ are in the integer affine group GA(n,Z). The quantum monodromy is
defined as the 1-cocycle {Aαβ} modulo-coboundary in the Čech cohomology Ȟ1(U,GA(n,Z))
(see following definition ).

We denote

[Mqu] ∈ Ȟ1(U,GA(n,Z)).

Remark 2.3 We recall here the definition of Čech cohomology that is use often in this paper. Let
M be a manifold and (G, .) be a group. Assume that {Uα}α∈I is a locally finite cover of open sets
of M such that the intersection of a finite number of Uα is either contractible or empty. We denote
C0(M,G) the set of 0-cochains and C1(M,G) the set of 1-cochains with values in G by:

C0(M,G) = {(cα)α∈I | cα ∈ G},

C1(M,G) = {(cα,β) | Uα ∩ Uβ 6= ∅, cα,β ∈ G}.

We denote Ž1(M,G) the set of 1-cochains satisfying the cocycle condition

cα,β.cβ,γ = cα,γ

if Uα ∩ Uβ ∩ Uγ 6= ∅.
We define an equivalence relation, denoted ” ∼ ” on Ž1(M,G): two cocycles (cα,β) and (c′α,β)

are equivalent (cα,β) ∼ (c′α,β) if there exists a 0-cochain (dα) ∈ C0(M,G) such that c′α,β =

dα.cα,β.d
−1
β for any Uα ∩ Uβ 6= ∅.

Then the Čech cohomology of M with values in G is the quotient set

Ȟ1(M,G) = Ž1(M,G)/ ∼ .

Note that it does not depends on choice of cover {Uα}α∈I . 4

The quantum monodromy can be considered as a group morphism (holonomy):

µ : π1(U)→ GA(n,Z)/{∼} (5)

which is the product of transition functions along a closed loop modulo by conjugation ” ∼ ”.
For more details and discussion of this monodromy, we can see [45], [47].

f (h) h

hZn
U

B

Figure 2. Asymptotic affine lattice
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2.3. Normal operators. In this section, we will show the natural statement that: the discrete spec-
trum of a unbounded normal operator A can be identified with the joint spectrum of an integrable
system which consists of the real part and the imaginary part of A. This allows us to define the
monodromy of normal operator as an application of quantum monodromy.

Consider a normal operator (usually unbounded) A with dense domain D(A) = D on a Hilbert
space H . It is known that the adjoint operator A∗ has the same domain D(A∗) = D(A) = D. We
denote the real part and imaginary part of A by A = A1 + iA2 with

A1 =
A+A∗

2
, A2 =

A−A∗
2i

,D(A1) = D(A2) = D. (6)

It is true that A1 and A2 defined by the formula (6) are self-adjoint. Moreover, the commutativ-
ity of A and A∗ is equivalent to the commutativity of A1, A2 and therefore A1A2 = A2A1.

In this article, one say that two selfadjoint operators (usually unbounded) (A1, D(A1)) and
(A2, D(A2)) commute if A1A2 = A2A1 and this definition includes the requirement of domain:

Ran(A2) ⊆ D(A1), Ran(A1) ⊆ D(A2), D(A1A2) = D(A2A1).

Conversely, let two commuting self-adjoint operators A1 and A2, D(A1) = D(A2) = D dense in
H . Then the operator defined by A := A1 + iA2, D(A) = D is a well-defined normal operator
(and hence closed) on H .

In the literature, there are alternative definitions of discrete spectrum (see[15], [17], [34], [5])
which coincide in the self-adjoint case. In this article, we use the following general definition of
discrete spectrum, see [37], [31].

Definition 2.4. For a closed operator (A,D(A)), let λ be an isolated point of σ(A): there is ε > 0
such that {µ ∈ C, | |z − λ| < ε} ∩ σ(A) = {λ}. For all 0 < r < ε, we can define the projection
Pλ (not necessarily orthogonal) by

Pλ =
1

2πi

∫

|z−λ|=r
(z −A)−1. (7)

We say that λ ∈ σ(A) is in the discrete spectrum of A, denoted σdisc(A) if λ is isolated in σ(A)
and Pλ has finite rank.

We define the essential spectrum of A, denoted σess(A) as the complement of the discrete spec-
trum

σess(A) = σ(A) \ σdisc(A).

Proposition 2.5. Let A1, A2 two commuting self-adjoint operators on a Hilbert space H with
dense domain D(A) = D(B) = D, A1A2 = A2A1. Then we have:

(1) If λ ∈ σ(A1 + iA2), then Re(λ) ∈ σ(A1) and Im(λ) ∈ σ(A2).
(2) If λ ∈ σp(A1 + iA2), then Re(λ) ∈ σp(A1) and Im(λ) ∈ σp(A2).

Moreover if λ is an eigenvalue of infinite multiplicity of A1 + iA2, then Re(λ), Im(λ) are
the eigenvalues of infinite multiplicity corresponding of A1, A2.

(3) If λ ∈ σess(A1 + iA2), then Re(λ) ∈ σess(A1) and Im(λ) ∈ σess(A2).

Proof. Let A = A1 + iA2, D(A) = D. As we explained earlier at the beginning of this section,
A is a normal operator with adjoint operator A∗ = A1 − iA2 . For any complex number λ ∈ C,
A − λ is still a normal operator. Then for any u ∈ D, the equality ‖(A − λ)u‖ = ‖(A∗ − λ)u‖
gives us

‖(A1 + iA2 − λ)u‖2 = ‖(A1 −Re(λ))u‖2 + ‖(A2 − Im(λ))u‖2 (8)

This equation implies that:

Ker(A− λ) = Ker(A1 −Re(λ)) ∩Ker(A2 − Im(λ)). (9)

If λ ∈ σ(A1 + iA2), by the Weyl theorem (see [5], page 102)), there exists a Weyl sequence for A
and λ: a sequence un ∈ D, ‖un‖ = 1 such that limn→∞ ‖(A − λ)un‖ = 0. By the equation (8),
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it is still a Weyl sequence for A1 and Re(λ), for A2 and Im(λ). Again by the Weyl theorem, we
have Re(λ) ∈ σ(A1) and Im(λ) ∈ σ(A2).

If λ is an eigenvalue of A1 + iA2, by the equation (9) we have Re(λ) ∈ σp(A1) and Im(λ) ∈
σp(A2). Moreover, it is obvious that if λ is an eigenvalue of infinite multiplicity of A1 + iA2, then
Re(λ), Im(λ) are also eigenvalues of infinite multiplicity corresponding to A1, A2.

We also note that if u is an eigenvector corresponding to λ of A1 + iA2, then u is also simulta-
neous eigenvector of A1, A2.

If λ ∈ σess(A1 + iA2), then there exists a orthogonal Weyl sequence for A1 + iA2 in λ such
that: un ∈ D, ‖un‖ = 1 and limn→∞ ‖(A − λ)un‖ = 0. By the equation (8) and by the Weyl
theorem for a self-adjoint operator (see [17], [34] page 287), [5] page 173, [15]... ), we obtain
Re(λ) ∈ σess(A1) and Im(λ) ∈ σess(A2). The proposition is shown. �

One can easily show that the reverse implications are false in general.
From this proposition, by identifying C ∼= R2 we have the following result:

Theorem 2.6. Let A1, A2 two commuting self-adjoint operators on a Hilbert space H with dense
domain D(A) = D(B) = D. Let I1, I2 be two intervals of R such that the corresponding spectra
of A1,A2 in I1, I2 are discrete.

Then the spectrum of A1 + iA2 in I1 + iI2
∼= I1 × I2 is discrete and

σ(A1 + iA2) ∩ (I1 + iI2) ∼= σconj(A1, A2) ∩ (I1 × I2).

Proof. We always have inclusion:

σconj(A1, A2) ∩ I1 × I2 ⊆ σp(A1 + iA2) ∩ I1 + iI2 ⊆ σ(A1 + iA2) ∩ I1 + iI2.

Let us consider the inverse inclusion. For any λ ∈ σ(A1 + iA2)∩ I1 + iI2, the previous propo-
sition says that: Re(λ) ∈ σ(A1+) ∩ I1 and Im(λ) ∈ σ(A2) ∩ I2.
Because the corresponding spectra of A1, A2 in I1, I2 are discrete, Re(λ) and Im(λ) are respec-
tively isolated eigenvalues of finite multiplicity of A1, A2.
From the equation (9), λ must be an eigenvalue of finite multiplicity of A1 + iA2 and there exists
a common eigenvalue for A1, A2: u ∈ D, ‖u‖ = 1, A1u = Re(λ)u,A2u = Im(λ)u. Therefore

λ = (Re(λ), Im(λ)) ∈ σconj(A1, A2) ∩ I1 × I2.

�

We will give a version of this theorem for a normal operator with spectrum discrete in a rectangle
area of C.

Theorem 2.7. Let A a normal operator and I1, I2 two intervals of R such that the spectrum of A
in I1 + iI2 is discrete. We denote the real part and the imaginary part of A by A1 and A2. Then
we have:

σ(A) ∩ (I1 + iI2) ∼= σconj(A1, A2) ∩ (I1 × I2).

Proof. It is obvious that

σconj(A1, A2) ∩ (I1 × I2) ⊆ σ(A) ∩ (I1 + iI2).

For the inverse inclusion: if λ ∈ σ(A)∩(I1+iI2), then λ is an eigenvalue ofA because σ(A)∩(I1+
iI2) is discrete. The proposition 2.5 implies that Re(λ) ∈ σp(A1) ∩ I1 and Im(λ) ∈ σp(A2) ∩ I2

with a nonzero common eigenvector (by equation (9)) and we get the inverse inclusion. �

This theorem allows us to define the monodromy of a normal pseudo-differential operator re-
turning the quantum monodromy of the joint spectrum as below.



8 QUANG SANG PHAN

2.4. Monodromy of Normal pseudo-differential operators. In this section, we work with a
space of dimension n = 2. Let P (h) a h-pseudo-differential operator on L2(X).

We assume that P (h) is normal and classical of order zero, P (h) ∈ Ψ0(M). As in the previous
section, we can write P (h) = P1(h) + iP2(h) where P1(h), P2(h) are the real part and imaginary
part of P (h).
The commutativity of P1(h), P2(h) gives us the integrable quantum system (P1(h), P2(h)) and
thanks to its joint spectrum, we can define its quantum monodromy [Mqu] ∈ Ȟ1(U,GA(n,Z))
as in the previous section. Here U is some open subset with compact closure in the set of regular
values of the momentum map p0 of principal symbols of P1(h), P2(h), p0 = (Re(p), Im(p))
where p is the principal symbol of P (h).

We assume moreover that the spectrum of P (h) in U is discrete. The previous theorem gives
us an identification on U between this spectrum and the joint spectrum. We have therefore the
following definition of a combinatorial invariant from the discrete spectrum.

Definition 2.8. With the above hypothesis, the monodromy of a normal h-Weyl-pseudo-differential
P (h) on U is defined as the quantum monodromy of the integrable quantum system (P1(h), P2(h))
on U .

We call it the affine spectral monodromy.

3. LINEAR SPECTRAL MONODROMY

3.1. Introduction. In this section, we propose to define the monodromy of a particular class of
non-self-adjoint h-pseudo-differentials operator two degree of freedom which are small perturba-
tions of selfadjoint operators, of the form Pε := P + iεQ (P is selfadjoint) with principal symbols
p, q that commute for the Poisson bracket and in the regime h� ε = O(hδ) for some 0 < δ < 1.

The asymptotic spectral theory by M.Hitrik-J.Sjöstrand- S. Vu Ngoc ([23], [24], [25]...) allows
us to concretely give the asymptotic expansion of eigenvalues of Pε in a adapted complex window.

The spectrum of Pε is the model of a particular discrete set which we will define in this section
and call "pseudo-asymptotic lattice" (see definition 3.26). By calculating the transition functions
between the "pseudo-local cards" that are in the group GL(2,Z), we can define a combinatorial
invariant (the monodromy) of this lattice.

This allows us to treat the inverse problem: define the monodromy from the spectrum of Pε.
We first recall some important results and analyze the general asymptotic spectral theory ([27],

[23], [24]...). Then we will detail these results in our particular case by restating the Birkhoff pro-
cedure of normal form. Next, we give some necessary steps for the construction of the monodromy
of a pseudo-asymptotic lattice and then apply it to the spectrum of Pε.

Finally, noting that with the property of integrability, the classical monodromy (given by J.Duitermaat,
[18]) is well defined, we also give the relationship between two monodromy types.

3.2. Spectral Asymptotic.

3.2.1. Assumptions. We will first give the general assumptions of our operator as in the articles
[27], [22], [23], [24], [25] and the assumptions on the classical flow of the principal symbol of the
non-perturbed operator and some associated spectral results: the discrete spectrum, the localization
of the spectrum, the expansion of asymptotic eigenvalues ...
M denotes R2 or a connected compact analytic real (riemannian) manifold of dimension 2 and

we denote by M̃ the canonical complexification of M , which is either C2 in the Euclidean case or
a Grauert tube in the case of manifold (see [10], [30]).

We consider a non-selfadjoint h-pseudo-differential operator Pε on M and suppose that

Pε=0 := P is formally self-adjoint. (10)

Note that if M = R2, the volume form µ(dx) is naturally induced by the Lebesgue measure
on R2, contrariwise in the case M is compact riemannian manifold, the volume form µ(dx) is
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induced by the given riemannian structure of M . So, in all cases, the operator Pε is seen as an
(unbounded) operator on L2(M,µ(dx)).

We always denote the principal symbol of Pε by pε which is defined on T ∗M as we discussed
in previous section.

We’ll assume the ellipticity condition at infinity for Pε as follows:
When M = R2, let

Pε = P (x, hDx, ε;h) (11)
be the Weyl quantification of a total symbol P (x, ξ, ε;h) depending smoothly on ε in a neigh-
borhood of (0,R) and taking values in the space of holomorphic functions of (x, ξ) in a tubular
neighborhood of R4 in C4 on which we assume that:

|P (x, ξ, ε;h)| 6 O(1)m(Re(x, ξ)). (12)

Here m is an order function in the sense of definition 2.1.
We assume moreover that m > 1 and Pε is classical

P (x, ξ, ε;h) ∼
∞∑

j=0

pj,ε(x, ξ)h
j , h→ 0, (13)

in the selected space of symbols.
In this case, the main symbol is the first term of the above expansion, pε = p0,ε and the ellipticity

condition at infinity is

|p0,ε(x, ξ)| >
1

C
m(Re(x, ξ)), | (x, ξ) |> C, (14)

for some C > 0 large enough.
When M is a manifold, we consider Pε a differential operator on M such that in local coordi-

nates x of M , it is of the form:

Pε =
∑

|α|6m

aα,ε(x;h)(hDx)α, (15)

Where Dx = 1
i
∂
∂x and aα,ε are smooth functions of ε in a neighborhood of 0 with values in the

space of holomorphic functions on a complex neighborhood of x = 0.
We assume that these aα,ε are classic

aα,ε(x;h) ∼
∞∑

j=0

aα,ε,j(x)hj , h→ 0, (16)

in the selected space of symbols.

In this case, the principal symbol pε in the local canonical coordinates associated (x, ξ) on T ∗M
is

pε(x, ξ) =
∑

|α|6m

aα,ε,0(x)ξα (17)

and the elipticity condition at infinity is

|pε(x, ξ)| >
1

C
〈ξ〉m, (x, ξ) ∈ T ∗M, | ξ |> C, (18)

for some C > 0 large enough.
Note here that M has a riemannian metric, then | ξ | and 〈ξ〉 = (1+ | ξ |2)1/2 is well defined.
It is known from articles [27], [23] that with the above conditions, the spectrum of Pε in a small

but fixed neighborhood of 0 ∈ C is discrete, when h > 0, ε > 0 are small enough. Moreover, this
spectrum is contained in a band of size ε:

|Im(z)| 6 O(ε). (19)

This gives the first location of the spectrum of Pε.
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Let p = pε=0, it is principal symbol of the selfadjoint unperturbed operator P and therefore
real.

We assume that
p−1(0) ∩ T ∗M is connected (20)

and the energy level E = 0 is regular for p, i.e dp 6= 0 on p−1(0) ∩ T ∗M .
Let q = 1

i (
∂
∂ε)ε=0pε, so

pε = p+ iεq +O(ε2) (21)

in the neighborhood of p−1(0) ∩ T ∗M .
For T > 0, we introduce the symmetric average time T of q along the flow of p, defined near

p−1(0) ∩ T ∗M :

〈q〉T =
1

T

∫ T/2

−T/2
q ◦ exp(tHp)dt, (22)

where Hp = ∂p
∂ξ · ∂∂x −

∂p
∂x · ∂∂ξ is the hamiltonian vector field of p.

Note that Hp(〈q〉T ) = {p, 〈q〉T } = O(1/T ).
As explained in [27], by introducing a Fourier integral operator (which is defined microlocally

close to p−1(0)∩T ∗M ), we can reduce our operator to a new operator, denoted again by Pε, with
principal symbol p + iε〈q〉T + O(ε2) and Pε=0 is still the original unperturbed operator. So we
can assume that our operator Pε is microlocally defined in the neighborhood of p−1(0) ∩ T ∗M
with h- principal symbol

p+ iε〈q〉T +O(ε2). (23)

Consequently, with the help of the sharp Garding inequality the spectrum of Pε in the domain
{z ∈ C : |z| < δ}, when ε, h, δ → 0 is confined in the band (voir [40], [41]):

]− δ, δ[+iε
[

lim
T→∞

inf
p−1(0)

Re〈q〉T − o(1), lim
T→∞

sup
p−1(0)

Re〈q〉T + o(1)
]
. (24)

With more assumptions about the dynamics of classical flow of the first term of the unper-
turbed symbol (in a certain energy level), one can obtain more detailed results on the asymptotic
distribution of eigenvalues in such a band.

Let a given value F0 ∈
[

limT→∞ infp−1(0)Re〈q〉T , limT→∞ supp−1(0)Re〈q〉T
]
, we want to

determine all the eigenvalues of Pε in a rectangle of center (0, εF0) and of size O(hδ) × O(εhδ)
(which is included in the previous band) for

h� ε 6 O(hδ),

where δ > 0 is some number small enough but fixed.

Remark 3.1 The problem of determining asymptotically the eigenvalues of Pε in such a rectangle
of spectral domain has been proposed in the literature with different assumptions on the Hamil-
tonian flow of p: this flow can be periodic on an energy E near 0, completely integrable or almost
integrable.

The force of the perturbation ε is treated with several regimes: hM 6 ε 6 O(hδ), for M fixed
large enough, h� ε 6 O(hδ), h1/3−δ < ε 6 ε0,... and the size of the rectangle: depends on h or
does not depend on h.

One can read the articles [23], [24], [27], [25], [26], [42].
Here, we present the completely integrable case in the regime h� ε 6 O(hδ). 4
Now, assume that p is completely integrable in a neighborhood of p−1(0) ∩ T ∗M , i.e there

exists a smooth real function f , independent of p such that {p, f} = 0. As explained in ([27], page
21-22 and 55), the energy space p−1(0) is decomposed into a singular foliation:

p−1(0) ∩ T ∗M =
⋃

a∈J
Λa, (25)
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where J is assumed to be a connected graph with a finite number of vertices and of edges. We
denote by S the set of vertices.

For each a ∈ J , Λa is a connected compact subset invariant with respect to Hp. Moreover, if
a ∈ J\S, Λa is a invariant Lagrangian torus depending analytically on a. Each edge of J can be
identified with a bounded interval of R.

Next, we assume the continuity of tori: let Λa0 , a0 ∈ J\S, for all µ > 0,∃γ > 0, such that if
dist(a, a0) < γ, then Λa ⊂ {ρ ∈ p−1(0) ∩ T ∗M : dist(ρ,Λ0) < µ}. Note that this hypothesis
holds for integrable systems with non-degenerate singularities.

For each torus Λa, a ∈ J\S, there are action-angle local coordinates (x, ξ) near Λa such that
Λa ' {ξ = 0} and that p becomes a function of ξ, p = p(ξ) = p(ξ1, ξ2). The frequency of Λa can
be defined as an element of the real projective line by

ω(a) = [p′ξ1(0) : p′ξ2(0)]. (26)

Sometimes ω(a) is seen as an element of R.
Moreover, by the action-angle theorem, we know that ω(a) depends analytically of a ∈ J\S.

We will assume that the function a 7→ ω(a) is not identically constant on any connected component
of J\S.

For each a ∈ J , we define a compact interval in R:

Q∞(a) =
[

lim
T→∞

inf
Λa
Re〈q〉T , lim

T→∞
sup
Λa

Re〈q〉T
]
. (27)

Then the spectral localization (24) becomes

Im(σ(Pε) ∩ {z ∈ C : |Rez| 6 δ}) ⊂ ε
[

inf
⋃

a∈J
Q∞(a)− o(1), sup

⋃

a∈J
Q∞(a) + o(1)

]
, (28)

when ε, h, δ → 0.
From now, for simplicity, we will assume that q is real.
For each torus Λa, a ∈ J\S, one defines 〈q〉Λa the average of q with respect to the natural

Liouville measure on Λa

〈q〉Λa =

∫

Λa

q (29)

Remark 3.2
In action-angle coordinates (x, ξ) near Λa such that Λa ' {ξ = 0}, we have

〈q〉(ξ) =
1

(2π)2

∫

T2

q(x, ξ)dx. (30)

In particular, 〈q〉Λa = 〈q〉(0). 4

Remark 3.3 [([27], page 56-57)] For a ∈ J\S:
- if ω(a) /∈ Q, then Q∞(a) = {〈q〉Λa}.
- if ω(a) = m

n ∈ Q (m ∈ Z, n ∈ N), then

Q∞(a) = 〈q〉Λa +O
( 1

k(ω(a))∞
)
[−1, 1], k(ω(a)) := |m|+ |n|.

In particular ∑

a:ω(a)∈Q

|Q∞(a)| <∞.

4
〈q〉Λa depends analytically of a ∈ J\S and we assume it can be extended continuously on J .

Furthermore, we assume that the function a 7→ 〈q〉(a) = 〈q〉Λa is not identically constant on any
connected component of J\S.

Note that p and 〈q〉 commute in neighborhood of p−1(0) ∩ T ∗M .
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3.2.2. Asymptotic eigenvalues.

Definition 3.4. For a torus Λa, a ∈ J\S and ω(a) defined as (26) and let α > 0, d > 0, we say
that Λa is (α, d)−Diophantine if:

∣∣ω(a)− m

n

∣∣ > α

n1+d
, ∀m ∈ Z, n ∈ N∗, (31)

here ω(a) is seen as an element of R.

Note also that when d > 0 is fixed, the Diophantine property (for some α) of Λa is independent
of the choice of action-angle coordinates.

Definition 3.5. For α > 0 and d > 0, we define the set of "good values" G(α, d) obtained from
∪a∈JQ∞(a) by removing the following set of "bad values" B(α, d):

B(α, d) =

( ⋃

dist(a,S)<α

Q∞(a)

)⋃( ⋃

a∈J\S:|ω′(a)|<α

Q∞(a)

)⋃( ⋃

a∈J\S:|d〈q〉Λa |<α

Q∞(a)

)

⋃( ⋃

a∈J\S:ω(a) is not (α,d)−Diophantine

Q∞(a)

)
.

Remark 3.6
• The measure of the set of bad values B(α, d) in ∪a∈JQ∞(a) is small (O(α)) when α > 0

is small and d > 0 is fixed, provided that the measure of
( ⋃

a∈J\S:ω(a)|∈Q

Q∞(a)

)⋃( ⋃

a∈S
Q∞(a)

)
(32)

is sufficiently small, depending on α (see [27]).
• If F0 ∈ G(α, d) is a good value , then by definition of B(α, d) and remark (3.3), the

pre-image 〈q〉−1(F0) is a finite set

〈q〉−1(F0) = {a1, . . . , aL} ⊂ J \ S.
The corresponding tori Λa1 , . . . ,ΛaL are tori (α, d)-Diophantine of p−1(0) ∩ T ∗M . By
this way, when F0 varies in G(α, d), we obtain a Cantor family of invariant tori (α, d)-
Diophantine in the energy space p−1(0) ∩ T ∗M .

4

Definition 3.7 (([43], page 16, 42), [2], [11]). Let E is a symplectic space and his Lagrangian
Grassmannian Λ(E) (which is set of all Lagrangian subspaces of E). We consider a bundle B in
E over the circle or a compact interval provided with a Lagrangian subbundle called vertical. Let
λ(t) a section of Λ(B) which is transverse to the vertical edges of the interval in the case where
the base is an interval.

The Maslov index of λ(t) is the intersection number of this curve with the singular cycle of
Lagrangians which do not cut transversely the vertical subbundle.

Theorem 3.8 ([27]). Suppose that Pε is an operator with principal symbol (21) and satisfying the
above conditions.

Let F0 ∈ G(α, d) a good value. As in the remark (3.6), we write 〈q〉−1(F0) = {a1, . . . , aL} ⊂
J \ S and the corresponding tori Λa1 , . . . ,ΛaL in p−1(0) ∩ T ∗M .

For each j = 1, . . . , L, note Sj ∈ R2 the action and kj ∈ Z2 the Maslov index of the funda-
mental cycles (γ1,j , γ2,j) of Λaj which are defined by

κj(γl,j) = {x ∈ T2 : xl = 0}, l = 1, 2,
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where κj is a action-angle coordinates in neighborhood of torus Λaj ,

κj : (Λaj , T
∗M)→ (ξ = 0, T ∗T2) (33)

We assume that h� ε = O(hδ) for 0 < δ < 1.
Then the eigenvalues of Pε with multiplicity in a rectangle of form

R(ε, h) =
[
− hδ

O(1)
,
hδ

O(1)

]
+ iε

[
F0 −

hδ

O(1)
, F0 +

hδ

O(1)

]
(34)

are given by

P
(∞)
j

(
h(k − kj

4
)− Sj

2π
, ε;h

)
+O(h∞), k ∈ Z2, 1 6 j 6 L. (35)

Here P (∞)
j (ξ, ε;h) is a smooth function of ξ in a neighborhood of (0,R2) and ε in a neighborhood

of (0,R), real valued for ε = 0 and admits an asymptotic expansion in the space of symbols.

1 6 j 6 L, P
(∞)
j (ξ, ε;h) ∼

∞∑

k=0

hkp
(∞)
j,k (ξ, ε) (36)

whose principal symbol is

p
(∞)
j,0 (ξ, ε) = pj(ξ) + iε〈qj〉(ξ) +O(ε2). (37)

Here pj , qj are the expressions of p, q in action-angle variables near of Λj , given by (33) and
〈qj〉is the average of qj on tori, defined in (30).

Remark 3.9
In the case of the above theorem that for every j = 1, . . . , L, the eigenvalues form a deformed

spectrum lattice in the rectangle (34) of size (hδ × εhδ). Therefore the spectrum of Pε in the
rectangle therefore is the union of L such lattices.

Note that this is not valid for every rectangle. However, it is valid for a "good rectangle" whose
center (0, εF0) with F0 is a good value. However, as we said in the remark 3.6, with the condition
(32), the complement of the set of good values is a small measure (see [36]), then there are many
such good rectangles in the band (28). This signifies that one can give asymptotically "almost all"
eigenvalues of Pε in this band.

4

Remark 3.10 In the case where p is nearly integrable, the result of the theorem is still true thanks
to the existence invariant KAM tori which allows us to realize microlocally the construction of the
quantum normal form of Pε (see section 7.3 in [27]).

For the KAM theory (Kolmogorov-Arnold-Moser), one may consult the references [36], [9],
[6], [7], [16].

4

Main idea of the proof of theorem(3.8). For a detailed proof of the theorem, one can consult [27],
[22]. We will give here some important ideas of the proof of theorem.

The principle is the formal construction of the Birkhoff quantum normal form for Pε, microlo-
cally near a fixed Diophantine torus in p−1(0)∩T ∗M , say Λ1 ∈ {Λa1 , . . . ,ΛaL}. The Diophantine
condition is necessary for this construction. For this method, see also [1], [35],[4], [19].

In this procedure we first use (formally) a canonical (symplectic) transformation for the total
symbol of Pε in order to reduce it to the normal form (36),(37) modulo O(h∞) which is inde-
pendent of x and homogeneous in (h, ξ, ε) in all orders. Then, the operator Pε is conjugated by a
Fourier integral operator with complex phase to a new operator with such a total symbol.
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Indeed, by introducing action-angle coordinates near Λ1, Pε is microlocally defined around the
section ξ = 0 in T ∗T2 and its principal symbol (21) has the form:

pε(x, ξ) = p(ξ) + iεq(x, ξ) +O(ε2) (38)

with p(ξ) = ω̃ ·ξ+O(ξ2), where ω̃ = (p′ξ1(0), p′ξ2(0)) and the frequency ω(a) = [p′ξ1(0) : p′ξ2(0)],
defined in (26) satisfies the condition (31).

Then, by the Birkhoff normal form procedure, for any arbitrary fixed N large enough, we can
construct a holomorphic canonical transformation κ

(N)
ε defined in a complex neighborhood of

ξ = 0 in T ∗T2 such that the total symbol P of Pε is reduced to a new symbol:

P ◦ κ(N)
ε (x, ξ, ε;h) = p0 + hp1 + h2p2 + · · · , (39)

where every pj = pj(x, ξ, ε), j > 1 holomorphic near ξ = 0 in T ∗T2, depending smoothly in
ε ∈ (0,R), independent of x to order N and it is important that the principal symbol p0 satisfies

p0 = pε ◦ κ(N)
ε (x, ξ) = p(N)(ξ, ε) + rN+1(x, ξ, ε), (40)

where p(N)(ξ, ε) = p(ξ)+ iε〈q〉(ξ)+O(ε2), 〈q〉(ξ) given by (30), rN+1(x, ξ, ε) = O((ξ, ε)N+1).
Thus, p0 has the same form as (37).
On operator level, Pε is conjugated to a new operator of the form

P (N)(hDx, ε;h) +RN+1(x, hDx, ε;h), (41)

where P (N)(hDx, ε;h) has a total symbol independent of x whose principal symbol is p(N) and
RN+1(x, ξ, ε;h) = O((h, ξ, ε)N+1).

The operator (41) acts on the space L2
θ(T2) of Floquet periodic functions microlocally defined

over T2 whose an element u satisfies

u(x− ν) = eiθ·νu(x), θ =
S1

2πh
+
k1

4
, ν ∈ 2πZ2.

An orthonormal basis of this space is
{
x ∈ T2, ek(x) = eix(k−θ) = e

i
h
x.
(
h(k− k1

4
)−S1

2π

)
, k ∈ Z2

}
.

Consequently, the eigenvalues of Pε modulo O(h∞) are given by (35). �

Remark 3.11 For all j = 1, . . . , L, from (37), at ξ = 0 we have p(∞)
j,0 (0, ε) = iεF0 +O(ε2) and

therefore P (∞)
j (0, ε;h) = iεF0 +O(ε2) +O(h). Consequently, p(∞)

j,0 (0, ε) ∼ iεF0 when ε → 0

and P (∞)
j (0, ε;h) ∼ iεF0 when ε, h→ 0, h� ε.

Moreover, we have also d(pj)|ξ=0 =: aj = (a1,j , a2,j) ∈ R2 and d(〈qj〉)|ξ=0 =: bj =

(b1,j , b2,j) ∈ R2 are R-linearly independent. We can rewrite the principal symbol (37) in the
form

p
(∞)
j,0 (ξ, ε) = iεF0 + (aj + iεbj) · ξ +O(ξ2) +O(ε2). (42)

4

Proposition 3.12. Let λ = P (ξ; ε, h) a complex-valued smooth function of ξ near 0 ∈ R2 and of
small parameters h, ε near 0 ∈ R. Suppose that we can write P in the form

P (ξ; ε, h) = P0 +O(h)

with
P0 = P0(ξ; ε) = g1(ξ) + iεg2(ξ) +O(ε2)

such that dg1(0) ∧ dg2(0) 6= 0.
If we assume that h � ε, then for h et ε small enough, there are ρ, r > 0 small enough such

that P is a local diffeomorphism near ξ = 0 from B(0, ρ) to its image, denoted B(ε).
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Proof. First, seeing P as a function of R2, we set P̂ := χ−1 ◦ P . Then we can write

P̂ = g1(ξ) + ig2(ξ) +O(ε) +O(
h

ε
).

Let a = (a1, a2) = dg1(0), b = (b1, b2) = dg2(0) and M =| a1b2 − a2b1 |> 0.
The differential of P̂ in ξ = 0 is

∂P̂

∂ξ
(0) = a+ iεb+O(ε) +O(

h

ε
) =

(
a1 +O(ε) +O(hε ) a2 +O(ε) +O(hε )

b1 +O(ε) +O(hε ) b2 +O(ε) +O(hε )

)

and thus

| det(∂P̂
∂ξ

(0)) |= M +O(ε) +O(
h

ε
).

Then for h, ε small enough and h � ε, it’s clear that | det(∂P̂∂ξ (0)) |' M is nonzero. Therefore,

the local inverse function theorem ensures that P̂ is local diffeomorphism in ξ = 0. Hence we get
the desired result for P . �

Let us return to the spectral problem of Pε discussed in the theorem (3.8). For each j =

1, . . . , L, as an application of the previous lemma with P = P
(∞)
j , then P (∞)

j is a smooth local
diffeomorphism in ξ = 0 ∈ R2 from a neighborhood of 0 to its image, noted by Bj(ε) . Note that
for h small enough, the good rectangle R(ε, h) is always included in Bj(ε).

We denote Σj(ε, h) ⊂ R(ε, h) the quasi-eigenvalues of Pε in R(ε, h), given by the image by
P

(∞)
j of ξ = h(k − kj

4 )− Sj
2π , k ∈ Z2.

Writing hk = ξ + h
kj
4 +

Sj
2π and letting

fj := (P
(∞)
j )−1 + h

kj
4

+
Sj
2π
, (43)

then fj = fj(λ, ε;h) is a local diffeomorphism from Bj(ε) to its image. Denote Ej(ε, h) =

fj(R(ε, h)) which is close to Sj
2π and Γj(ε, h) := fj(Σj(ε, h)), then we have Γj(ε, h) = hZ2 ∩

Ej(ε, h).
In summary, we have:

fj : R(ε, h)→ Ej(ε, h) (44)

fj |Σj(ε,h): Σj(ε, h)→ Γj(ε, h) ⊂ hZ2 (45)

Remark 3.13 On the other hand, if we assume that L = 1, the theorem (3.8) asserts that in
R(ε, h), the quasi-eigenvalues are equal to the real eigenvalues of Pε modulo O(h∞):

σ(Pε) ∩R(ε, h) = Σ1(ε, h) +O(h∞), (46)

in the sense that there is a bijection

χ : Σ1(ε, h)→ σ(Pε) ∩R(ε, h) (47)

such that χ = Id+O(h∞). The diffeomorphism f := f1 in (44) thus satisfies

f : R(ε, h) → E1(ε, h)

σ(Pε) ∩R(ε, h) 3 λ 7→ f(λ, ε;h) ∈ hZ2 +O(h∞). (48)



16 QUANG SANG PHAN

f

σ(Pε)

h

hZ2

R(ε, h)

E1(ε, h)

Figure 3. A micro-chart of spectrum of Pε

In particular, we have a bijection between the sets

σ(Pε) ∩R(ε, h) ' Σ1(ε, h) ' Γ1(ε, h) ⊂ hZ2 (49)

4

3.2.3. What is the size ofE(ε, h)? As we know, the surfaceR(ε, h) is of sizeO(hδ)·O(εhδ), Now
we are interested the size of E := Ej(ε, h) which is the image of R(ε, h) by the diffeomorphism
fj (44). Let P be still one of P (∞)

j . By the proposition (3.12), in the regime h� ε, the differential
of λ = P (ξ, ε;h) in ξ = 0 is a determinant of size O(ε):

| det(∂P
∂ξ

(0, ε;h)) |= Mε,

with M > 0. By writing the Taylor expansion of ξ = P−1 = g(λ, ε;h) in λ0 = P (0, ε;h), we
have:

|ξ| 6 1

Mε
|λ− λ0|+O(|λ− λ0|2).

Hence, if λ ∈ R(ε, h), then |λ− λ0| 6 O(hδ) and so

|ξ| 6 1

Mε
O(hδ) + (O(hδ))2 6 O(

hδ

ε
).

Consequently, from the formula (43), we have that E := Ej(ε, h) is contained in a ball of radius
O(h

δ

ε ).

3.2.4. How is the lattice of quasi-eigenvalues and the lattice of spectrum? For each j = 1, . . . , L,
from the remark 3.11 we can express P (∞)

j in the form

λ = P
(∞)
j (ξ, ε;h) = iεF0 + (aj + iεbj) · ξ +O(ξ2) +O(ε2) +O(h)

and thus
λ1 = Re(λ) = aj · ξ +O(ξ2) +O(ε2) +O(h),

λ2 = Im(λ) = iεF0 + εbj · ξ +O(ξ2) +O(ε2) +O(h).

Note that we work in the regime h� ε and that

∂λ1

∂ξ
|ξ=0 = aj +O(ε2) +O(h) ∼ aj
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and
∂λ2

∂ξ
|ξ=0 = εbj +O(ε2) +O(h) ∼ bjε.

Thus the variations of the image with respect to the reference value are

|∆λ1| = |aj ||∆ξ|+O(|∆ξ|2)

and
|∆λ2| = ε|bj ||∆ξ|+O(|∆ξ|2).

Hence, if |∆ξ| ∼ Ch (C > 0), then

|∆λ1| ∼ |aj | · Ch+O(h2) ∼ C1h,

with C1 > 0 and

|∆λ2| ∼ ε|bj | · Ch+O(h2) ∼ C2εh(1 +O(
h

ε
)) ∼ C2εh,

with C2 > 0. Note that ξ = h(k− kj
4 )− Sj

2π , k ∈ Z2, then |∆ξ| = h|∆k| and we can assert that the
spectrum of Pε in a good rectangle R(ε, h) of the form (34) is the union of L deformed lattices,
with a horizontal spacing h and vertical spacing εh.

Of course, the lattices Σj(ε, h) are all described the same way.

As a corollary, we have:

Remark 3.14 The cardinal of such a spectral network in R(ε, h) is O(h
δ.εhδ

h.εh ) = O(h2(δ−1))
which converges to∞ when h→ 0. This means that the asymptotic expansion is applied to many
eigenvalues of Pε.

Moreover, a recent work of M.Hitrik-J.Sjöstrand allows us to calculate the cardinal of eigenval-
ues of Pε in the rectangle R(ε, h). 4

3.3. Birkhoff normal form.

3.3.1. Motivation. In this section, we will discuss the procedure of Birkhoff normal form of a
perturbed pseudo-differential operator Pε which depends on small positive parameters h, ε around
a Diophantine torus Λ and treat it explicitly in a particular case (but important for our work).

For the Birkhoff normal form, we can consult [49], [13], [1], [35].
We assume that Λ is equal to the section {ξ = 0} in T ∗Tn and that Pε is microlocally defined

near {ξ = 0} ∈ T ∗Tn, with h-Weyl (total) symbol P = P (x, ξ, ε, h) which is holomorphic in
(x, ξ) near a complex neighborhood of ξ = 0 ∈ T ∗Tn and C∞ in (h, ε) near 0.

In the article [27] (section 3) one realized the Birkhoff normal form of Pε whose h-principal
symbol is of the form (38)

pε(x, ξ) = p(ξ) + iεq(x, ξ) +O(ε2)

and the principal symbol of the obtained normal form is of the form (like 37))

P
(∞)
0 = P

(∞)
0 (ξ, ε) = p(ξ) + iε〈q〉(ξ) +O(ε2).

Our work requires treat a more specific case when the principal symbol of Pε already does not
depend in x and with no term O(ε2):

pε = P0(ξ, ε) = p(ξ) + iεq(ξ).

In the above formula for P (∞)
0 , can we remove the term O(ε2) and is P (∞)

0 equal to P0 ? This
is an important result that we want. However, this is not obvious: the proof in [27] is not enough
to explain it because one used transformations depending also on ε.
We will prove this result here, by providing a normalization of the total symbol P (x, ξ, ε, h) in all
three variables (ξ, ε, h). The approach that we propose is different from [27].
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3.3.2. Formal series and operators. Let E = Hol(Tnx)[[ξ, ε, h]] denote the space of formal series
in (ξ, ε, h) with holomorphic coefficients in x ∈ Tn,

E =
{
a(E) =

∞∑

k,m,l=0

ak,m,l(x)ξkεmhl such that ak,m,l(x)are analytic in x
}
.

There is a correspondence between an h-Weyl pseudo-differential operator and an element of
E : if we denote A h-Weyl pseudo-differential operator, a := σw(A) its Weyl total symbol and
σ(E)(A) ∈ E the formal Taylor series of a in (ξ, ε, h), then this correspondence is given by a map,
denoted by σ(E) from the algebra of (Weyl) pseudo-differential operators Ψ to the space of formal
series E :

σ(E) : Ψ → E
A 7→ σ(E)(A), (50)

σ(E)(A) =
∞∑

|α|,j,l=0

1

(|α|+ j + l)!

(
∂αξ ∂

j
ε∂

l
ha(x, ξ, ε, h)

∣∣
ξ=ε=h=0

)
ξαεjhl.

The Moyal formula (see [33], [21], [50]) for the composition of two operators from the Weyl semi-
classical calculation say that if a := σw(A), b := σw(B), thenA◦B is still a h-pseudo-differential
whose Weyl symbol satisfies

σw(A ◦B) = (a]wb)(x, ξ, ε, h)

= eih[DηDx−DyDξ]a(x, ξ, ε, h)b(x, ξ, ε, h)
∣∣
y=x,η=ξ

∼
∑

α,β

h|α|+|β|(−1)|α|

(2i)|α|+|β|α!β!
(∂αx ∂

β
ξ a(x, ξ, ε, h))(∂αξ ∂

β
x b(x, ξ, ε, h)) (51)

= a(x, ξ, ε, h)b(x, ξ, ε, h) +
h

2i
{a(x, ξ, ε, h), b(x, ξ, ε, h)}+ · · ·

On the other hand, by the Borel theorem, any formal series aE ∈ E can be seen as Taylor series of
a smooth function a = a(x, ξ, ε, h) (which is not unique) and we can associate to it a h-pseudo-
differential operator by asking A = Opwh (a). We have then a(E) = σ(E)(A). In this way and from
Moyal formula (51), we can define a product on E , denoted by ?: let a(E), b(E) ∈ E , then

a(E) ? b(E) = σ(E)(A ◦B)

is the Taylor series of a]wb. Thus E becomes an algebra with this product. The associative bracket
thus is well defined and is called by the Moyal bracket.

[a(E), b(E)] = a(E) ? b(E) − b(E) ? a(E).

Consequently, let a(E) ∈ E , we can define on E the adjoint operator:

ada(E) := [a(E), ·].
For any p(E) ∈ E , the formal series

ead
a(E)p(E) =

∞∑

k=0

1

k!
(ad(E))kp(E)

is well defined in E because it contain only a finite number of terms of fixed degree. Thus the
exponential operator exp(ada(E)) is well defined on E .

Moreover, for two h-pseudo-differential operators A et P , we have

σ(E)([A,P ]) = [σ(E)(A), σ(E)(P )]

and σ(E) becomes an (associative) algebra morphism.
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Similarly, we have also

exp(adσ(E)(A))(σ
(E)(P )) = σ(E)(exp(adA)P ),

where the exponential operator exp(adA) is defined below.

3.3.3. Action by conjugation. Let A be a bounded operator on a Hilbert space H . We define in
B(H) the exponential operator eA ∈ B(H) by the absolutely convergent series

eA =
∑

k>0

1

k!
Ak. (52)

Next, we associate with A a bounded operator adA := [A, ·] ∈ B(B(H)) and by (52) the operator
exp(adA) (or eadA) is well defined in B(B(H)). In addition, we have the following result:

Lemma 3.15. Let A et P be two bounded operators of B(H), we have

eAPe−A = exp(adA)P. (53)

Proof. For t ∈ R, let f(t) = etAPe−tA and g(t) = exp(adtA)P which are analytic functions from
R to B(H). We will calculate its derivatives. First note that d

dt(e
tA) = AetA = etAA and so

d

dt
(etA)P = AetAP = etAAP,

we have
f ′(t) = AetAPe−tA − etAPe−tAA = Af(t)− f(t)A = [A, f(t)]

and

g′(t) =
d

dt
(et·adAP ) = adA ◦ et·adAP = adAg(t) = [A, g(t)].

Then f(t), g(t) satisfy the same linear differential equation of first order

u′ = [A, u].

But the initial value in t = 0, f(0) = g(0) = P and consequently we have f(t) = g(t) for all
t ∈ R. Especially for t = 1, we well have eAPe−A = exp(adA)P . �

As an application, we have:

3.3.4. Idea of the construction of Birkhoff normal form. The main idea of this construction is to
find a pseudo-differential operator A such that the associated Fourier integral operator U(h) :=

e
i
h
A reduce the initial operator Pε to its conjugate operator

e
i
h
APεe

− i
h
A = e

i
h

adA(Pε) := P̃ε (54)

the formal series of whose total symbol σ(E)(P̃ε) in E does not depend on x. Noticing that
σ(E)(P̃ε) = exp(adσ(E)(A))(σ

(E)(Pε)) as in the previous section, the work is concentrated to seek
σE as a series of homogenous terms in (ξ, ε, h). In search of this series, the Diophantine condition
is essential, see (65).

Remark 3.16
(1) The above operator P̃ε is still a pseudo-differential by the Egorov theorem (see for example

[20],[48], [29]). In the special case when Â = hB̂, then the operator U(h) := e
i
h
Â =

eiB̂ is really a pseudo-differential operator and P̃ε is simply the composition of pseudo-
differential operators

(2) The conjugation at the operator level is replaced by the adjoint action on the space of
formal series.

4
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3.3.5. Construction of the Birkhoff normal form. In this part, by convention, for a h-pseudo-
differential operator P , we identify it with its total (Weyl) symbol P = P (x, ξ, ε, h) and its formal
series σE(P ).

We use a particular order for (ξ, ε, h) by counting the power in ξ plus twice the power in ε and
h. The associated filtration is denoted by the symbol O(j).

Let us denote alsoD(j) the subspace of E of homogenous polynomials of degree j with respect
to (ξ, ε, h) in this order. Thus, we have:

D(j) = V ect{ξkεmhl|k + 2(m+ l) = j} ⊗Hol(Tnx)

and

O(j) =
⊕

n>j

D(j).

We have of course D(j) ⊂ O(j) and O(j + 1) ⊂ O(j). As usual, we allow the notation A =
B +O(j) to say that A−B ∈ O(j).

If Kj = Kj(x, ξ, ε, h) ∈ O(j), then it is obvious that the Poisson bracket satisfies {Kj ,Kl} =
O(j + l − 1).
For the Moyal bracket i[Kj ,Kl], from (51), it can be computed as a series in (hi

∂
∂ξ ,

∂
∂x) and is well

of order j + l + 1 because every time we lose a degree in ξ we win also a degree in h. Moreover,
we have

i[Kj ,Kl] = h{Kj ,Kl}+ hO(j + l) (55)
= hO(j + l − 1) = O(j + l + 1). (56)

Consequently, we have also

[O(jn), [. . . , [O(j2),O(j1)] . . .] = hn−1O
(
j1 + · · ·+ jn − (n− 1)

)

= O(j1 + · · ·+ jn + n− 1) (57)

and [. . . [O(j1),O(j2)], . . .],O(jn)] = hn−1O
(
j1 + · · ·+ jn − (n− 1)

)

= O(j1 + · · ·+ jn + n− 1). (58)

Theorem 3.17. Suppose that P = P (x, ξ, ε, h) is an analytic Weyl h-pseudo-differential operator
on Tn (microlocally defined close to ξ = 0) with principal h-symbol P0 = p(ξ) + iεq(ξ) such that
p(ξ) = 〈a, ξ〉+O(ξ2) and a is Diophantine as in the definition 3.4. Then for any integer N > 1,
there exists a function G(N) =

∑N
j=2Gj (G(1) = 0) where Gj = Gj(x, ξ, ε, h) ∈ D(j − 2) (for

j > 2) is analytic in x, homogenous in (ξ, ε, h) such that

exp
(
iadG(N)

)
P = P0 + hP

(N)
1 + hRN−1, (59)

where P (N)
1 = P

(N)
1 (ξ, ε, h) ∈ E is independent of x and RN−1 = O(N − 1).

Proof. We can write P in the form

P = P (x, ξ, ε, h) = P0 + hP1,

with P1 = P1(x, ξ, ε, h) holomorphic in (x, ξ) and analytic in (h, ε) close to 0. We will show the
property (59) by induction on N .

For N = 1, we take G(1) = P
(1)
1 = 0, R0 = P1(x, ξ, ε, h) and the property (59) is valid.

Assume that it is valid for N with a found function G(N). We now seek a function GN+1 ∈
D(N) such that G(N+1) = G(N) +GN+1 satisfies the equation (59). By developing the exponen-
tial and using (55) with the attention that P = O(1) and G(N) ∈ O(0), we can write

exp
(
iadG(N+1)

)
P = exp

(
iadG(N)

)
P + iadGN+1

P + hO(N). (60)
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Indeed, denoting Aj := iadGj and A(N) =
∑N

j=2Aj , we have the expansion

exp
(
iadG(N+1)

)
P = exp

(
A(N) +AN+1

)
P

=
∑

k>0

1

k!

(
A(N) +AN+1

)k
P

=
∑

k>0

1

k!

k∑

l=0

(A(N))k−l ∗ (AN+1)lP

=
∑

k>0

1

k!
(A(N))kP +

∑

k>1

1

k!

k∑

l=1

(A(N))k−l ∗ (AN+1)lP

︸ ︷︷ ︸
Bk

= exp
(
A(N)

)
P +

∑

k>1

Bk. (61)

In the above formulas, we used the symbol ” ∗ ” which means that Am ∗ Bn is the sum of all
compositions containing m times the operator A and n times the operator B.

Particularly, for k = 1 we have

B1 = AN+1P = iadGN+1
P = iadG(N+1)

P.

For all k > 2, by using the formula (57) with remarks P = O(1), G(N) = O(0), G(N+1) =
O(N − 1), we obtain that

Bk = O(N + k) = hO(N + k − 2)

because for l = 1, . . . , k all the termsA(N))k−l∗(AN+1)lP = O
(
(k−l)×0+l(N−1)+1+k

)
=

O
(
l(N −1) + 1 +k

)
= O(h) and the inequality l(N −1) + 1 +k > N +k is always true. Hence

the formula (60) is shown.
From (60), the induction hypothesis (59) and the formulas (55) by noting that one can write

P = 〈a, ξ〉+O(ξ2) + iεq(ξ) +O(h) = 〈a, ξ〉+O(2),

we therefore have:

exp
(
iadG(N+1)

)
P = P0 + hP

(N)
1 + hRN−1 + iadGN+1

P + hO(N)

= P0 + hP
(N)
1 + hRN−1 + i[GN+1, 〈a, ξ〉+O(2)]

= P0 + hP
(N)
1 + hRN−1 + i[GN+1, 〈a, ξ〉] + i[GN+1,O(2)]

= P0 + hP
(N)
1 + hRN−1 + h{GN+1, 〈a, ξ〉}+ hO(N − 1 + 1)

+hO(N − 1 + 2− 1)

= P0 + h{GN+1, 〈a, ξ〉}+ hRN−1 + hP
(N)
1 + hO(N) (62)

Then, the equation for GN+1 becomes

P0 + h{GN+1, 〈a, ξ〉}+ hRN−1 + hP
(N)
1 + hO(N) = P0 + hP

(N+1)
1 + hO(N)

and it is equivalent to the following cohomological equation

{GN+1, 〈a, ξ〉}+RN = KN +O(N), (63)

where KN := P
(N+1)
1 − P (N)

1 should not depend on x. Or, this equation is well solvable.
Indeed: in the above equation, as the rest is of order N , we can replace RN−1 by its homogenous
part of order N − 1, denoted by RN−1 and we will solve the equation:

{GN+1, 〈a, ξ〉}+RN−1 = KN . (64)
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Develop GN+1 and RN−1 in Fourier series of x ∈ Tn

GN+1 =
∑

k∈Zn
ĜN+1(k)eik·x

RN−1 =
∑

k∈Zn
R̂N−1(k)eik·x,

where ĜN+1(k), R̂N−1(k) are polynomials in R[ξ, ε, h].
Note that the crochet {GN+1, 〈a, ξ〉} = −(a · ∂x)GN+1, we can write the equation (64) in the

form
−
∑

k∈Zn
i(a · k)ĜN+1(k)eik·x +

∑

k∈Zn
R̂N−1(k)eik·x = KN

or
R̂N−1(0) +

∑

k∈Zn\{0}

(
R̂N−1(k)− i(a · k)ĜN+1(k)

)
eik·x = KN .

This equation is well resolved by posing

KN = R̂N−1(0)

(this is also equal to x-average 〈RN−1〉 ) and for k ∈ Zn\{0},

ĜN+1(k) = −i R̂N−1(k)

(a · k)
,

(here (a · k) 6= 0 by the Diophantine condition of a).
In addition, the Diophantine condition of a (see (31) ), there exist two constants C0, N0 > 0

such that for all k 6= 0 we have the estimate:

| ĜN+1(k) |= | R̂N−1(k) |
| (a · k) | 6 C0 | k |N0 | R̂N−1(k) | (65)

that ensures convergence and analyticity of GN+1 en x because RN−1 is. �

Remark 3.18
(1) In the above theorem, by takingN converge to infinity and by posing [A] := G1+G2+· · · ,

then[A] is the desired formal series discussed in the last section and the Birkhoff normal
form of P = P (x, ξ, ε, h) is the limit in E of P0 + hP

(N)
1 as N →∞. On the other hand,

there exits a C∞ function, denoted often by P (∞) which admits this limit as its asymptotic
expansion.

(2) We see an important thing that in the case of theorem, the first term (or yet the h- principal
term) along the procedure of Birkhoff normal form of P is always

P0 = p(ξ) + iεq(ξ).

4

Proposition 3.19. Let P̂ = P̂ (ξ;X) a complex-valued smooth function of ξ near 0 ∈ R2 and X
near 0 ∈ Rn. Assume that P̂ admits an asymptotic expansion in X near 0 of the form

P̂ (ξ;X) ∼
∑

α

Cα(ξ)Xα

with Cα(ξ) are smooth functions and C0(ξ) := P̂0(ξ) is local diffeomorphism in ξ = 0.
Then, for | X | small enough, P̂ is too a local diffeomorphism in ξ = 0 and its inverse admits

an asymptotic expansion in X near 0 whose the first term is (P̂0)−1.
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Proof. One can write P̂ in the form

P̂ (ξ;X) = P̂0(ξ) +O(X).

The determinant

| det(∂P̂
∂ξ

(0)) |=| det(∂P̂0

∂ξ
(0)) +O(| X |) |

is nonzero for | X | small enough and it ensures that P̂ is a local diffeomorphism in ξ = 0.
Then, by induction, we can show that P̂−1 admits an asymptotic expansion in X near 0 ∈

Rn. �

3.4. Operator Pε = P + iεQ, the case {p, q} = 0. In this section, we will work on a partic-
ular case of the operator Pε considered in the previous section when the principal symbols p, q
commute. This is a simple, but very interesting case. More explicitly:

We now assume that Pε if of the form

Pε = P + iεQ, (66)

with P,Q two h-pseudo-differential operators and P = Pε=0 is selfadjoint (Q is not necessarily
selfadjoint).

Suppose that p, q are associated principal symbols of P,Q. Note that p is real-valued, q is not
necessarily real-valued but for more simple, we will assume also that q is real-valued (if not just
replace q by Re(q)).

Then the principal symbol of Pε is

pε = p+ iεq.

Note that the principal symbol in (21) becomes the same form as last but without term O(ε2).
We assume further that p, q commute i.e. {p, q} = Hp(q) = 0 with respect to the Poisson

bracket on T ∗M and that dp, dq are linearly independent almost everywhere.

Remark 3.20 On the operator level, in this case, P,Q are not necessarily in involution, contrari-
wise their commutant is power of order 2 of h,

[P,Q] = O(h2).

4

3.4.1. Asymptotic spectrum of Pε = P + iεQ, the case {p, q} = 0. We know that by the com-
mutativity, q is invariant under the flow of p, the function 〈q〉T (for all T > 0) in (22) is so still q
and by the action-angle theorem, q is constant on any invariant torus Λa, the average of q on Λa
(definition in (29)) is still q.
Consequently, we can replace 〈q〉T and 〈q〉 in all definitions, assumptions and assertions of the last
section by q.

Particulary, for each a ∈ J , the compact interval of Q∞(a) defined in (27) becomes a single
point:

Q∞(a) = {q|Λa} (67)
and locations of the spectrum of Pε given in (24), ( 28) become:

Im(σ(Pε) ∩ {z ∈ C : |Rez| 6 δ}) ⊂ ε
[

infp−1(0) q − o(1), supp−1(0) q + o(1)
]

⊂ ε
[

inf
⋃
a∈J q|Λa − o(1), sup

⋃
a∈J q|Λa + o(1)

]
, (68)

as ε, h, δ → 0.
In action-angle coordinates (x, ξ) near Λa such that Λa ' {ξ = 0}, we have p = p(ξ) and the

formula (30) becomes 〈q〉(ξ) = q(ξ). Then microlocally, the principal symbol becomes

pε = p(ξ) + iεq(ξ). (69)
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As an important application of section 3.3.2 (the theorem 3.17), the microlocal construction of
Birkhoff quantic normal form of Pε in neighborhood of a Diophantine torus does not change the
principal symbol. Ie in the coordinates (x, ξ) near the section ξ = 0 in T ∗T2 such that Pε has the
normal form, its h-principal symbol is still of the form p(ξ) + iεq(ξ).

So in this case, concerning the theorem (3.8), the eigenvalues of Pε in the rectangle R(ε, h)

(34) modulo O(h∞) are given by asymptotic expansion of a smooth function P (∞)
j , j = 1, . . . , L

in (ε, h) and in

ξ = h(k − kj
4

)− Sj
2π
, k ∈ Z2

whose the first term (the principal symbol (37) in the case of the theorem (3.8)) is

pj,0(ξ, ε) = pj(ξ) + iεqj(ξ), (70)

where pj , qj are expressions of p, q in action-angle variables near Λj of p, q.
In reduced form, we can write

σ(Pε) ∩R(ε, h) 3 λ = P
(∞)
j

(
h(k − kj

4
)− Sj

2π
, ε;h

)
+O(h∞)

= pj

(
h(k − kj

4
)− Sj

2π

)
+ iεqj

(
h(k − kj

4
)− Sj

2π

)

+ O(h), k ∈ Z2, (71)

uniformly for h, ε small.

Remark 3.21 We just give the asymptotic expansion of eigenvalues of Pε in a good rectangle in
the neighborhood of 0 ∈ C.

However, if we assume the same assumptions on the energy space p−1(E) ∩ T ∗M (E ∈ R)
as p−1(0) ∩ T ∗M and by introducing the same definition of set of good values, we can build the
same result for the eigenvalues of Pε in any good rectangle of center of form E + iF0. 4

3.4.2. The detailed spectral formula. In this paragraph, We consider the operator Pε as in the
preceding paragraph and more we will assume all the same assumptions on the energy space
p−1(E) ∩ T ∗M que p−1(0) ∩ T ∗M and introduce the definition of good values, similarly the
definition (3.5). Here we take E in a bounded interval of R because we want uniform estimates
with respect to E.

As we said in the previous remark and with the help of the coordinates action-angle, we will
explicitly give the asymptotic expansion of eigenvalues of Pε in an arbitrary good rectangle of size
O(hδ)×O(εhδ) with a good center E + iεF .

Moreover, it is interesting that one can construct a such expansion whose principal symbol is
globally well defined for all good rectangle near a regular value of (p, εq).
Indeed, for more simple, we assume that the momentum map Φ := (p, q) is proper and of con-
nected fibre (each compact regular fibre is thus a Liouville lagrangian invariant torus. In this case
L = 1.

Denoted by Ur the set of regular values of Φ = (p, q) and let a point c ∈ Ur.
We recall that by the action-angle theorem 4.2, we have action-angle coordinates in a neighborhood
of torus Λc := Φ−1(c) in M : there exists r > 0, a neighborhood Ω := Φ−1(B(c, r)) of Λc, un
small open D ⊂ R2 of center 0, a symplectomorphism κ : Ω → T2 × D and a diffeomorphism
ϕ : D → ϕ(D) = B(c, r) such that: κ(Λc) = {ξ = 0}, Φ ◦ κ−1(x, ξ) = ϕ(ξ), for all x ∈ T2, ξ ∈
D and ϕ(0) = c.

We introduce the function

χ : R2 3 u = (u1, u2) 7→ χu = (u1, εu2) ∼= u1 + iεu2 (72)

and denote
B(χu, r, ε) := χ(B(u, r))

for a certain ball B(u, r) (r > 0), Ur(ε) := χ(Ur).
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For any point χa ∈ B(χc, r, ε) such that F := a2 is a good value, E := a1 and p−1(E) ∩
T ∗M satisfies the same assumptions as p−1(0) ∩ T ∗M in the section 3.2.1. We will construct the
asymptotic expansion of eigenvalues of Pε in a "good rectangle" of "good center" χa (which is
just a translation of rectangle R(ε, h) in (34)):

R(χa, ε, h) = χa +R(0, ε, h), (73)

where

R(0, ε, h) =
[
− hδ

O(1)
,
hδ

O(1)

]
+ iε

[
− hδ

O(1)
,+

hδ

O(1)

]
= R(ε, h)− iεa2. (74)

Let Λ1 = Φ−1(a), this is an invariant torus of type (α, d)-Diophantine, defined in (31) and suppose
that its action-angle coordinates are ξa, ie {ξ = ξa} = κ(Λ1) in T ∗T2 or ξa = ϕ−1(a) ∈ D.

After, let P̃ε := Pε − χa to reduce the spectrum of Pε near χa to the spectrum of P̃ε near 0 by
noting that:

σ(Pε) = σ(P̃ε) + χa. (75)

The principal symbol of P̃ε is p̃+ iεq̃, with p̃ := p− a1, q̃ := q− a2. Note that we have still an
integrable system (p̃, q̃) and if let ξ̃ = ξ − ξa, then ξ̃ is the new action variable for this system in
which Λa ' {ξ̃ = 0}, as the standard case of theorem 3.8.

The principal symbol of P̃ε is microlocally reduced to

ϕ1(ξ) + iεϕ2(ξ)− χa = ϕ1(ξa + ξ̃) + iεϕ2(ξa + ξ̃)− χa.

Applying the theorem (3.8) in the case of last section for P̃ε and from the formula (75), we have: all
the eigenvalues of Pε in the good rectangle R(χa, ε, h), defined by (73) modulo O(h∞) are given
by asymptotic expansion of a smooth function P (ξ, ε;h) in (ε, h) and in ξ in a neighborhood of
ξa such that in reduced form (it’s the same as (71)),

σ(Pε) ∩R(χa, ε, h) 3 λ = P
(
ξa + h(k − k1

4
)− S1

2π
, ε;h

)
+O(h∞)

= ϕ1

(
ξa + h(k − k1

4
)− S1

2π

)
+ iεϕ2

(
ξa + h(k − k1

4
)− S1

2π

)

+O(h), k ∈ Z2, (76)

uniformly for h, ε small, where S1 ∈ R2 is the action and k1 ∈ Z2 is the Maslov index of
fundamental cycles of Λ1.

With the below remark (3.25), there exists a function τc ∈ R2, locally constant in c ∈ Ur
(depending on the choice of local action-angle coordinates near c ∈ U ) such that S1

2π = ξa + τc.
So the formula for λ becomes:

λ = ϕ1

(
− τc + h(k − k1

4
)
)

+ iεϕ2

(
− τc + h(k − k1

4
)
)

+O(h). (77)

There is a bijective correspondence between λ ∈ σ(Pε) ∩R(χa, ε, h) and hk in a part of hZ2 (by
the proposition 3.12). Moreover, as in (43) and (48), there exists a smooth local diffeomorphism
f = f(λ, ε;h) which sends R(χa, ε, h) on its image, denoted by E(a, ε, h) which is close to S1

2π

such that it sends σ(Pε) ∩R(χa, ε, h) on hZ2 modulo O(h∞):

f = f(λ, ε;h) = τc + h
k1

4
+ P−1(λ).

Let f̃ = f ◦ χ,

f̃ = τc + h
k1

4
+ P−1 ◦ χ.
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Remark 3.22 Let P̂ := χ−1 ◦ P . Because P admits an asymptotic expansion in (ξ, ε, h), so it is
obvious that P̂ admits an asymptotic expansion in (ξ, ε, hε ) (here h� ε):

P̂ (ξ, ε, h) =
∑

α,β,γ

Cαβγξ
αεβ(

h

ε
)γ

= P̂0(ξ) +O(ε,
h

ε
), (78)

with

P̂0(ξ) = ϕ1(ξ) + iϕ2(ξ)

is a local diffeomorphism.
Moreover, by looking at the Birkhoff normal form in section 3.3, we can rewrite it as form:

P̂ (ξ, ε, h) = P̂0(ξ) +O(
h

ε
).

According to the proposition (3.19), (P̂ )−1 = P−1 ◦ χ also admits an asymptotic expansion in
(ε, hε ) whose first term is

(P̂0)−1 = (ϕ)−1.

4
Consequently, f̃ admits an asymptotic expansion in (ε, hε ) and it can moreover be written as

f̃ = f̃0 +O(
h

ε
) (79)

whose first term is

f̃0 = τc + (ϕ)−1. (80)

We have an important remark that the first term f̃0 is well defined globally on B(c, r) in the sense
that it does not depends on selected good rectangle R(χa, ε, h).

In summary, for any regular value c ∈ Ur, there is a small domainB(χc, r, ε) = χ(B(c, r)) and
for any good value a ∈ B(c, r) (which is outside a set of small measure), we have a good rectangle
R(χa, ε, h) of good center χa and a smooth local diffeomorphism f which sends R(χa, ε, h) on
its image, denoted by E(a, ε, h) of the form:

f : R(χa, ε, h) → E(a, ε, h)

σ(Pε) ∩R(χa, ε, h) 3 λ 7→ f(λ, ε;h) ∈ hZ2 +O(h∞). (81)

such that f̃ = f ◦ χ admits an asymptotic expansion in (ε, hε ) of the form (79) with the first term
(80) is a diffeomorphism, globally defined on B(c, r).
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f̃ (·, ε, h)

B(χc, r, ε)
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Ur
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h

σ(Pε)
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χa

Figure 4. Pseudo-lattice spectrum of Pε

Remark 3.23
We don’t know if f admits an asymptotic expansion in (ε, hε ) but we can express f in the form:

f(λ, ε, h) =
∑

α,β

Cαβ(λ1,
λ2

ε
)εα(

h

ε
)β

with

C00(λ1,
λ2

ε
) = τc + ϕ−1 ◦ χ−1(λ) := f0 (82)

which is well defined for all λ ∈ B(χc, r, ε).
Moreover, we can also write f = f0 +O(ε, hε ).

4

Remark 3.24 In terms of the definition 3.26, we say that couples
(
f(ε;h), R(χa, ε, h)

)
as above

form a pseudo-chart σ(Pε) on the domain Ur(ε). 4

Remark 3.25 [Action integral] If c ∈ Ur a regular value of Φ and (x, ξ) a coordinated action-angle,
given by κ as previous. There is a Liouville 1-primitive form α of ω on Ω := Φ−1(B(c, r)) ⊂M
such that dα = ω.

Let ω̃ the canonical symplectic form and α̃ =
∑
ξidxi a canonical form on T ∗T2: dα̃ = ω̃.

As κ is symplectic, we have κ∗ω = ω̃. This is equivalent to d(κ∗α− α̃) = 0. I.e there is a 1-closed
form β on T ∗T2 such that

κ∗α = α̃+ β.

For any invariant torus Λa ⊂ Ω, let (γ1, γ2) two fundamental cycles on Λa that are sent on the
sides of the torus: κ(Λa) = {ξ = ξa} by κ in T ∗T2.
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So the action of (γ1, γ2) is S1 = (S1,1, S1,2), calculated by: for j = 1, 2,

S1,j =

∫

γj

α =

∫

κ(γj)
κ∗α =

∫

κ(γj)
(α̃+ β)

=

∫

{x∈T2:xj=0}
(
∑

ξidxi + β) = 2π(ξa + τc,j),

where

τc,j :=

∫

{x∈T2:xj=0}
β

is a constant, independent of Λa ⊂ Ω (independent of c ∈ Ur) by the closure of β.
Then, there exists a function τc ∈ R2, locally constant in c ∈ Ur such that

S1

2π
= ξa + τc. (83)

4

3.5. Construction of the monodromy of asymptotic pseudo-lattice. The spectrum of the oper-
ator Pε considered in the previous section is a model of a more general lattice that we define and
discuss below.

Let U a subset of R2 with compact closure and denote U(ε) = χ(U) où χ is the function
defined as in previous section. Let Σ(ε, h) (depends on small h and ε) a discrete set de U(ε).

Definition 3.26. For h, ε small enough and in regime h � ε, we say that (Σ(ε, h), U(ε)) is an
asymptotic pseudo-lattice if: for any small parameter α > 0, there exists a set of "good values" in
R2, denoted by BV whose complement is of small measure in the sense

| CBV ∩ I |6 Cα | I |

for any domain I ⊂ R2 and C > 0 is a constant.
For all c ∈ U , there exists a ball B(c, r) ⊂ U around c (r > 0) such that for every "good value"
a = (a1, a2) ∈ B(c, r) in the sense a ∈ BV , there is a good rectangle R(χa, ε, h) ⊂ χ(B(c, r))
of good center χa:

R(χa, ε, h) = χ(R(a, h))

whereR(a, h) is a rectangle of sizeO(hδ)×O(hδ), 0 < δ < 1 and a smooth local diffeomorphism
(in χa) f = f(·; ε, h) which sends R(χa, ε, h) on its image, denoted by E(a, ε, h) satisfying

f : R(χa, ε, h) → E(a, ε, h)

Σ(ε, h) ∩R(χa, ε, h) 3 λ 7→ f(λ; ε, h) ∈ hZ2 +O(h∞) (84)

such that f̃ := f ◦χ admits an asymptotic expansion in (ε, hε ) for the topologyC∞ for the variable
u in a neighborhood of a and in the reduced form,

f̃(u) = f̃0(u) +O(ε,
h

ε
), (85)

where the first term f̃0 is a diffeomorphism, independent of α, globally defined on B(c, r) and
independent of the chosen good value a ∈ B(c, r).

We also say that the family of (f(·; ε, h), R(χa, ε, h)) is a local pseudo-chart on B(χc, r, ε) :=
χ(B(c, r) and that a couple (f(·; ε, h), R(χa, ε, h)) is a micro-chart of (Σ(ε, h), U(ε)).
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Figure 5. Asymptotic pseudo-lattice

Remark 3.27 It is clear that the spectrum of an operator Pε = P + iεQ considered in the previous
section is a good example of this definition. In this case, f̃0 is equal to coordinate actions.

We want to give a combinatorial invariant (spectral monodromy) of Σ(ε, h) = σ(Pε). As we
know, in this case P,Q does not necessarily commute, it so can not have any joint spectrum as
the integrable case that we discussed. Therefore, we do not yet define the monodromy for the
spectrum of Pε.

On the other hand, we are careful that the application f in (81) is not an affine chart of U(ε)
defined in previous section because it is only defined on a domain depending on h which will
be reduced to a single point when h → 0. Therefore, we can not apply the construction of the
quantum monodromy for an affine asymptotic lattice as the article [45].

However, we can successfully build this invariant for the discrete spectrum of Pε due to the fact
that the first term f̃0 is globally defined on a small ball B(c, r).

4

Lemma 3.28. Let (Σ(ε, h), U(ε)) an asymptotic pseudo-lattice as in the definition 3.26 and a
point χa ∈ B(χc, r, ε) with a a good value. Then, there is a family λ(ε, h) ∈ Σ(ε, h)∩R(χa, ε, h)
such that

|λ1(ε, h)− a1| = O(h) (86)
|λ2(ε, h)− εa2| = O(ε.h), (87)

uniformly for h, ε→ 0.

Proof. By the proposition 3.19, u := f̃−1 is also a local diffeomorphism in a fixed point ξa
admitting an asymptotic expansion in (ε, hε ) and by its main part, if ξ near ξa we have:

u(ξ) = f̃−1(ξ; ε, h) = (f̃0)−1(ξ) +O(ε,
h

ε
). (88)
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By calculating the differential of u in ξa (this is the same as the proof of proposition 3.19), we can
assert that: if ξ(1), ξ(2) near ξa such that |ξ(1) − ξ(2)| = O(h), then

|u(ξ(1))− u(ξ(2))| = O(h)

uniformly for h, ε→ 0.
Let

ξ(1) := f̃(a, ε;h) ∈ E(a, ε, h).

On the other hand, one can find

ξ(2) := hk = h.k(ε, h) ∈ hZ2 ∩ E(a, ε, h)

such that |ξ(1) − ξ(2)| 6 h by setting k = k(ε, h) the integer part of ξ(1)

h . In the end, with
the remark χ(u(ξ(1))) = χa and there is λ(ε, h) ∈ Σ(ε, h) ∩ R(χa, ε, h) such that λ(ε, h) =

χ(u(ξ(2))) +O(h∞), we get the result of the lemma. �

Remark 3.29 The result of the lemma is still valid for the spectrum of an operator in general case
of the theorem (3.8).

In the previous proof, we can choose k as the integer part of f̃0(a)
h and then k = k(h). 4

3.5.1. Transition function. Let (Σ(ε, h), U(ε)) be an asymptotic pseudo-lattice.
Suppose that Bα := B(c, r) and Bβ := B(c′, r′) are two small balls in U with nonempty

intersection Bαβ := Bα ∩ Bβ 6= ∅ such that there are local two pseudo-charts on Bα(ε) :=
B(χc, r, ε) and Bβ(ε) = B(χ′c, r

′, ε) of (Σ(ε, h), U(ε)).
Denote Bαβ(ε) = Bα(ε) ∩Bβ(ε).
Because the good values in each Bα, Bβ are outside the set of small measure O(α), then the
complement of good values in Bαβ is still small measure O(α).

Let a ∈ Bαβ be a good value. Therefore, there is a associated good rectangle R(χa, ε, h) ⊂
Bαβ(ε) on which we have two micro-charts of Σ(ε, h) in χa as in (84) of the previous definition:

fα(ε;h) : R(χa, ε, h)→ Eα(a, ε, h)

fβ(ε;h) : R(χa, ε, h)→ Eβ(a, ε, h). (89)

Theorem 3.30. There exists a unique constant matrix Mαβ ∈ GL(2,Z) such that

df̃α,0 = Mαβdf̃β,0

in all good values a ∈ Bαβ .

Proof. In this demonstration, we keep the same notation of lemma 3.28. By this lemma 3.28 and
the remark 3.29, let

λ(ε, h) = f−1
α (hk(h)) +O(h∞) (90)

(with hk(h) ∈ hZ2 ∩ Eα(a, ε, h)) is a family in Σ(ε, h) ∩R(χa, ε, h) such that

|λ1(ε, h)− a1| = O(h)

and
|λ2(ε, h)− εa2| = O(ε.h),

uniformly for h, ε→ 0.
Let k0 ∈ Z2 be arbitrary given. For h small enough, we can define

hk′(h) := hk(h)− hk0 ∈ hZ2 ∩ Eα(a, ε, h). (91)

Then there exists a family λ′(ε, h) ∈ Σ(ε, h) ∩R(χa, ε, h) such that

hk′(h) = fα(λ′(ε, h)) +O(h∞), (92)

uniformly for ε, h small.
We have also

hk(h) = fα(λ(ε, h)) +O(h∞), (93)
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uniformly for ε, h small.
By replacing (92) and (93) in (91), we have:

fα(λ(ε, h))− fα(λ′(ε, h)) = hk0 +O(h∞), (94)

uniformly for ε, h small.
Note also that |hk′(h) − hk(h)| = hk0 = O(h), then |hk′(h) − ξ(1)| = O(h) and so the family
λ′(ε, h) has the same property as that of λ(ε, h). That is

|λ′1(ε, h)− a1| = O(h)

and
|λ′2(ε, h)− εa2| = O(ε.h),

uniformly for h, ε→ 0.
We recall the function

χ : Bαβ → Bαβ(ε)

u = (u1, u2) 7→ χu = (u1, εu2) (95)

Let u(ε, h) = χ−1(λ(ε, h)) (i.e. u1 = λ1, u2 = λ2
ε ) and in the same way u′(ε, h) = χ−1(λ′(ε, h)).

We have

|ui(ε, h)− ai| = O(h),

|u′i(ε, h)− ai| = O(h), (96)

for i = 1, 2. The equation (94) so becomes

f̃α(u(ε, h))− f̃α(u′(ε, h)) = hk0 +O(h∞),

or
f̃α(u(ε, h))− f̃α(u′(ε, h))

h
= k0 +O(h∞), (97)

uniformly for ε, h small.
Because we can express

f̃α(u(ε, h)) = f̃α,0(u(ε, h)) +O(ε,
h

ε
)

and by wring the Taylor expansion of f̃α,0(u(ε, h)) in a with the integral rest, by redoing the same
work for f̃α(u′(ε, h)) and more remark if R(u, ε, h) = O(ε, hε ), then

|R(u(ε, h), ε, h)−R(u′(ε, h), ε, h)| = O(h)×O(ε,
h

ε
),

uniformly for h, ε petits and h� ε as |u(ε, h)− u′(ε, h)| = O(h), The equation (97) gives us:

(df̃α,0)(a)
u(ε, h)− u′(ε, h)

h
= k0 +O(ε,

h

ε
)

Consequently, we have

u(ε, h)− u′(ε, h)

h
=
(
(df̃α,0)(a)

)−1
(k0) +

(
(df̃α,0)(a)

)−1(O(ε,
h

ε
)
)
. (98)

On the other hand, as the norm of differential
(
(df̃α,0)(a)

)−1 is a independent constant of ε, h,
the equation (98) allows us to write

u(ε, h)− u′(ε, h)

h
=
(
(df̃α,0)(a)

)−1
(k0) +O(ε,

h

ε
), (99)

uniformly for h, ε small and h� ε.
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Now we will work with fβ(ε;h). Let also f̃β = fβ ◦ χ.
Because λ(ε, h), λ′(ε, h) is in σ(Pε)∩R(χa, ε, h), then there exists a family, denoted by k′(ε, h) ∈
Z2 such that

f̃β(u(ε, h))− f̃β(u′(ε, h))

h
= k′(ε, h) +O(h∞),

uniformly for ε, h small.
In the same way that before, we also get

u(ε, h)− u′(ε, h)

h
=
(
(df̃β,0)(a)

)−1
(k′(ε, h)) +O(ε,

h

ε
), (100)

uniformly for ε, h small and h� ε.
Then the equation (99) and the equation (100) give us

(
(df̃α,0)(a)

)−1
(k0) =

(
(df̃β,0)(a)

)−1
(k′(ε, h)) +O(ε,

h

ε
),

uniformly for ε, h small, h� ε and therefore

(df̃β,0)(a)
(
(df̃α,0)(a)

)−1
(k0) = k′(ε, h) +O(ε,

h

ε
), (101)

uniformly for ε, h small and h� ε.
As the left part of the last equation is a constant, O(ε, hε ) is small for ε, h small, h � ε and
k′(ε, h) ∈ Z2, it is necessary that k′(ε, h) ∈ Z2 is a constant k′ ∈ Z2 and that we have

(df̃β,0)(a)
(
(df̃α,0)(a)

)−1
(k0) = k′ ∈ Z2 (102)

for all k0 ∈ Z2 given.
This means that (df̃β,0)(a)

(
(df̃α,0)(a)

)−1 ∈ GL(2,Z).
On the other hand, df̃β,0 ◦

(
df̃α,0

)−1 is uniformly continuous on Bαβ and the measure of com-
plementary of good values in Bαβ is O(α). By taking α small enough and with the fact that the
group GL(2,Z) is discrete, the uniform continuity implies that therefore there is a constant matrix
Mβα ∈ GL(2,Z) such that

(df̃β,0)(a) = Mβα(df̃α,0)(a),

for all good values a ∈ Bαβ . �

Because on intersection, the function fα,0 ◦ (fβ,0)−1 is well defined, smooth. Outside a set of
measure O(α), the value of d(fα,0 ◦ (fβ,0)−1) is a constant matrix Mαβ ∈ GL(2,Z). Note that
d(fα,0 ◦ (fβ,0)−1) is independent of α. By taking α→ 0, we get that d(fα,0 ◦ (fβ,0)−1) is equal to
the constant Mαβ outside a set of measure 0. By the continuity, it must have d(fα,0 ◦ (fβ,0)−1) =
Mαβ everywhere.

Then we have:

Theorem 3.31. There exists a unique constant matrix Mαβ ∈ GL(2,Z) such that

df̃α,0 = Mαβdf̃β,0

on Bαβ .

Remark 3.32 For the spectrum of the operator Pε = P + iεQ considered in the previous section,
we can see that the result of the theorem can be found independently from classical results. Indeed:
We remember from (80) that the leading terms are

f̃α,0 = τc + ϕ−1
α ,

f̃β,0 = τc′ + ϕ−1
β . (103)
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On the other hand, as an application of action-angle theorem (see the next section and the
equation (108)), on Bαβ nonempty, there exists an affine map Aαβ ∈ GAR(2,Z) of the form

Aαβ := M cl
αβ + Cαβ,

with a matrix M cl
αβ ∈ GL(2,Z), Cαβ ∈ R2 such that

ϕ−1
α ◦ ϕβ = Aαβ. (104)

Therefore the action coordinates ξa and ξ′a of Λa in two action-angle coordinates, associated with
ϕα, ϕβ satisfy

ξa = Aαβξ
′
a.

We have also the corresponding integral actions on Λa satisfying the relation

S1 = M cl
αβS

′
1.

Two last equations and the equation (83) give us

τc = M cl
αβτ

′
c − Cαβ.

Consequently, we obtain
f̃α,0 = (M cl

αβ)f̃β,0. (105)

It means that we recover the result of theorem with help of action-angle theorem.
Moreover, if we denote M sp

αβ the matrix Mαβ defined by the theorem 3.31, we have so:

M sp
αβ = (M cl

αβ).

4

Remark 3.33 For an asymptotic pseudo-lattice, we would like to show a stronger result: there
exists a unique constant matrix Mαβ ∈ GL(2,Z) such that

f̃α,0 = Mαβ f̃β,0

on Bαβ .

By the remark 3.32, we have just seen that this result is true for spectrum of the discussed
operator Pε. However, we have not succeeded to show it in the case of asymptotic pseudo-lattice.

4

3.5.2. Definition of monodromy of an asymptotic pseudo-lattice. Let (Σ(ε, h), U(ε)) be an as-
ymptotic pseudo-lattice as the 3.26. Assume that U is covered by a locally finite covering {Bα)}
and that (Σ(ε, h), U(ε)) is covered by associated local pseudo-charts on Bα(ε) := χ(Bα):

{(f(·; ε, h), R(χa, ε, h)) a ∈ Bα is a good value }.
We can see {(f̃α,0(ε, h), Bα)} as the charts of U whose transition functions are in the linear

group GL(2,Z).
Indeed, on each nonempty intersection Bα ∩ Bβ 6= ∅, the theorem 3.31 states that there exists a
unique linear map Mαβ ∈ GL(2,Z) satisfying

d(f̃α,0) = Mαβd(f̃β,0) or d
(
f̃α,0 ◦ (f̃β,0)−1

)
= Mαβ. (106)

The family {Mαβ} defines 1-cocycle, denoted byM in the Čech cohomology with value in the
linear group GL(2,Z). We have therefore

Definition 3.34. The class [M] ∈ Ȟ1(U(ε), GL(2,Z)) is called (linear) monodromy of the as-
ymptotic pseudo-lattice (Σ(ε, h), U(ε)).
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As with quantum monodromy, we can of course associate this cocycle class with an isomor-
phism class of bundles (bundle up to isomorphism) on U(ε) with structure of the group GL(2,Z)
and fiber Z2. The transition functions between two adjacent trivializations of the bundle are
{Mαβ}.

IfM is some cocycle associated with trivialization of the bundle and let γ(ε) be a closed loop,
contained in U(ε).
We define

µ(γ(ε)) = M1,N ◦MN,N−1 ◦ · · ·M3,2 ◦M2,1,

where Mi,j denote the corresponding transition function to each pair of nonempty intersection
(Bi(ε), Bj(ε)), defined as in the theorem (3.31), here (B1(ε), · · · , BN (ε)) is a numbered finite
covering of γ(ε) in U(ε) with Bi ∩Bi+1 6= ∅.

The non triviality of [M] is equivalent to that of a group morphism, denoted also by µ, defined
as follows

µ : π1(U(ε)) → GL(2,Z)/{∼}
γ(ε) 7→ µ(γ(ε)), (107)

where {∼} denote the modulo conjugation.
We call µ the representation of the monodromy [M].

3.6. Linear Spectral Monodromy. We reconsider the operator Pε = P + iεQ, the case {p, q} =
0 that we discussed in the section 3.4.

Let U a subset of regular values Ur of the map (p, q) with compact closure and denote U(ε) =
χ(U).
We further assume that the spectrum of Pε is discrete in U(ε). Then it is clear that (σ(Pε), U(ε))
is an asymptotic pseudo-lattice, adapted to the definition 3.26. We can therefore define the mon-
odromy of Pε as the monodromy of the asymptotic pseudo-lattice (σ(Pε), U(ε)) according to the
definition 3.34. We call it the (linear) spectral monodromy, denoted by [Msp] ∈ Ȟ1(U(ε), GL(2,Z)).

Definition 3.35. For ε, h > 0 small such that h � ε 6 hδ, 0 < δ < 1, the class [Msp] ∈
Ȟ1(U(ε), GL(2,Z)) is called spectral monodromy of operator Pε on the domain U(ε).

4. RELATIONSHIP BETWEEN THE SPECTRAL MONODROMY AND THE CLASSICAL
MONODROMY

We will also make the link with classical monodromy that illuminate the existence of linear
spectral monodromy. The first, we recall the classical monodromy that is given by J. Duistermaat
in the article [18].

4.1. Classical Monodromy.
Let (M,ω) be a symplectic manifold of dimension 2n.

Definition 4.1. A completely integrable system on M is given n real-valued functions f1, . . . , fn
in C∞(M) in involution whose differentials are almost everywhere linearly independent.
In this case, the map F = (f1, . . . , fn) : M → Rn is called momentum map.

A point m ∈ M is regular for the momentum map F if its differential dF (m) has maximal rank
n. For c ∈ Rn, we say that Λc is a sheet of F if it is a connected component of F−1(c). And more
this sheet is regular if all its points are regular point for F .
A famous theorem called "action-angle theorem" of Liouville, Mineur and Arnold (see [32], [28],
[3],[14]) says that if Λc is compact, then all sheets of F in a neighborhood of Λc are lagrangian tori
of rank n (diffeomorphic to Tn := Rn/Zn, called by "Liouville torus") on which the joint flow
of F becomes linear. We say that there exists local "action-angle coordinates". However, we have
maybe no global existence of these action-angle coordinates. A obstruction of that global existence
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is a geometrical invariant, called monodromy, given the first time in 1980 by J. Duistermaat in the
article [18]. For more on this monodromy, we can also see [46], [48].

Theorem 4.2 (Action-Angle theorem). Let F = (f1, . . . , fn) be completely integrable system and
Λc be a compact regular sheet of F . Then there exists a neighborhood Ω of Λc in M , a small open
disk D with center c in Rn and a symplectomorphism Ψ : Tn ×D → Ω such that:

(1) Ψ(Tn × {c}) = Λc.
(2) Ω is saturated, i.e all sheets that pass a point of Ω are tori, included in Ω.
(3) We have

F ◦Ψ(x, ξ) = ϕ(ξ)

for all x = (x1, . . . , xn) ∈ Tn, all ξ = (ξ1, . . . ξn) ∈ D and here ϕ : D → ϕ(D) in a
(local) diffeomorphism with ϕ(c) = c.
In particular, the flow of all fi in Ω is complete.
On Ω, (x, ξ) = Ψ−1 and we say that x ∈ Tn are (local) angle variables and ξ ∈ D ⊂ Rn
are (local) action variables.

Recall that c ∈ Rn is a regular value of F if all points of the fiber F−1(c) are regular points for
F . Let Ur ⊆ Rn be the set of regular values of de F . We assume more that F is proper (so that
the fibers are compact), Br and fiber F−1(c) are connected. In this case, we can apply the action-
angle theorem at each point of the set of regular sheets F−1(Br) ⊆ M . Moreover, there exists in
general a integer structure on the space of regular sheets (see [18], [48]): let Uα,Uβ are two any
small enough opens in Ur with nonempty intersections such that there are action-angle coordinates
associated on F−1(Uα) ⊂ M and F−1(Uβ) ⊂ M . With notation as in previous theorem, then on
Dα ∩Dβ 6= ∅, the function ϕαβ := ϕ−1

α ◦ ϕβ is a affine map: for ξ ∈ Dα ∩Dβ ,

ϕαβ(ξ) = Aαβ · ξ = Mαβ · ξ + Cαβ, (108)

with Mαβ is a integer constant matrix of GL(n,Z) and a constant Cαβ ∈ Rn.
On the other hand, for all c ∈ Ur, on Λc, as the flow of each fi is complete , then the joint flow

of F , denoted by ϕtF defines a locally free group action (Rn,+),

ϕtF : Rn × Λc → Λc.

We define the stabiliser of torus Λc, denoted by Sc, which is defined independently of the choice
of m in Λc:

Sc = {τ ∈ Rn : ϕτF (m) = m}. (109)

It is know that Sc is a discrete subgroup of rank n of Rn (so isomorphic to Zn) and the set of all
these stabilizers forms a bundle, called the period bundle over Ur, F : Sc → c ∈ Ur. It is locally
trivial by the action-angle theorem, but can be globally nontrivial.
Moreover, with notation as in action-angle theorem, for all b ∈ ϕ(D) ⊆ Br near c, a basic of Sb,
denoted by (τ)(b) is given by the formula:

(τ)(b) = (τ (1)(b), . . . , τ (n)(b)) = [d(ϕ−1)(b)].

Then, from previous relation and by noting the equation (108), we obtain that the transition func-
tion between two trivialization of the bundle F are {tM−1

αβ } inGL(n,Z)- the integer linear group.
On the other hand, by noting that a n−tuple τ = (τ1, . . . , τn) ∈ Rn such that the Hamiltonian

τ1f1 + · · ·+ τnfn admits on torus Λc a periodic flow of period 1 if and only if τ ∈ Sc, then we get
so an isomorphism between the stabiliser Sc and the homology group H1(Λc,Z):

Sc ' H1(Λc,Z).

The the bundle F can be identified with the homology bundleH1(Λc,Z)→ c ∈ Br. The possible
nontriviality of this bundle is called (linear classical) monodromy of completely integrable system
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F . This monodromy is equivalent to the global existence of integral action on the space of regular
sheets.

4.2. Relationship. We recall that the (linear) classical monodromy is given by J.Duistermaat [18]
(presented in the last section) is defined as a bundle H1(Λc,Z) → c ∈ U , associated with a
cocycle, denoted by [Mcl] in Ȟ1(U,GL(2,Z)) of transition functions:

{t(M cl
αβ)−1 = t(d(ϕ−1

α ◦ ϕβ))−1}.
The remark (3.32) gives us thus the following relationship between two monodromy types.

Theorem 4.3. The linear spectral monodromy is the adjoint of the linear classical monodromy

[Msp] = t[Mcl]
−1.

In other words,if the corresponding representations of monodromy of [Msp] and [Mcl] are

µsp : π1(U(ε)) → GL(2,Z)/{∼}
µcl : π1(U) → GL(2,Z)/{∼}, (110)

then µsp = t(µcl)−1.

Remark 4.4 A particular case when [P,Q] = 0, this implies {p, q} = 0. We can so have
two spectral monodromy types for Pε: the affine spectral monodromy, defined in section 2 and the
linear spectral monodromy, defined in this section. It is obvious that the linear spectral monodromy
is the linear part of the affine spectral monodromy.
Note also that in this case, by definition, the affine spectral monodromy is equal to the quantum
monodromy and it is know from a result of S. Vu Ngoc [45] that the last monodromy is adjoint
of classical monodromy. That asserts once again the result of previous theorem in the integrable
quantum case. 4
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