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Abstract

We present a sharp uniform-in-bandwidth functional limit law for the increments of
the Kaplan-Meier empirical process based upon right-censored random data. We apply
this result to obtain limit laws for nonparametric kernel estimators of local functionals
of lifetime densities, which are uniform with respect to the choices of bandwidth and
kernel. These are established in the framework of convergence in probability, and we
allow the bandwidth to vary within the complete range for which the estimators are
consistent. We provide explicit values for the asymptotic limiting constant for the
sup-norm of the estimation random error.
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1 Introduction and main results

1.1 An outline of our results

Let X = X1,X2, . . . be independent and identically distributed [iid] positive lifetimes
jointly defined on a probability space (Ω,A,P). We assume that these random variables
[rv] have common continuous distribution function [df] F (·) := P(X ≤ ·) and density

f(· ) := ∂F (·)
∂· , continuous and positive on J := [A,B] ⊆ R . Denote by C,C1, C2, . . . iid

positive censoring times independent of X,X1,X2, . . ., with continuous df G(· ) := P(C ≤
· ). Let SF := sup{x : F (x) < 1} (resp. SG := sup{x : G(x) < 1}) be the upper
endpoint of F (· ) (resp. G(· )), and fix [A,B] ⊆ [0,Θ], with Θ = min(SF , SG) > 0. In the
right censorship model, the data set is given by the rv’s {(Ti, δi) : 1 ≤ i ≤ n}, where, for
i = 1, . . . , n,

{
Ti = Xi ∧ Ci,
δi = 1{Xi≤Ci},
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and 1E denotes the indicator function of E. Our assumptions imply that T has df H(· ) :=
P(T ≤· ) = 1− (1− F (· ))(1 −G(· )). The nonparametric maximum likelihood estimators
of F (· ) and G(· ) are the product-limit estimators introduced by Kaplan and Meier [19],
and defined, for x ∈ R , by (see, e.g., (1.1) and (1.2) in Deheuvels and Einmahl [9])

Fn(x) := 1−
∏

Ti,n≤x

1≤i≤n

{
1−

δi,n
n− i+ 1

}
(1)

and

Gn(x) := 1−
∏

Ti,n≤x

1≤i≤n

{
1−

1− δi,n
n− i+ 1

}
, (2)

where, for all n ≥ 1, T1,n < . . . < Tn,n are the almost surely [a.s.] distinct order statistics
of T1, . . . , Tn, and for each i = 1, . . . , n, δi,n is the a.s. uniquely defined indicator δj for
which Ti,n = Tj. The Kaplan-Meier empirical process {αKM

n (x) : x ∈ R} is given by

αKM
n (x) := n1/2(Fn(x)− F (x)),

for n ≥ 1 and x ∈ R. For each bandwidth h ≥ 0 and t ∈ R , introduce the increment
function

ξKM
n (h, t; s) := αKM

n (t+ sh)− αKM
n (t), s ∈ R. (3)

In §1.2 below, we present a limit law for the nonparametric kernel estimator of the lifetime
density, which is uniform with respect to the choices of bandwidth and kernel (see, e.g.,
Theorem 1). This first result follows from a functional limit law for the increments of the
Kaplan-Meier empirical process, which is stated in §1.3 (see, e.g., Theorem 2). Proofs of
Theorems 1–2 are postponed until §2.1 and §2.2. We shall make an instrumental use of
a functional limit law due to Deheuvels and Ouadah [12] which is described in §2.2.1. In
§2.2.2–§2.2.5, we present some preliminaries needed in our proofs. In §3, we give some
further applications of Theorem 1. We expose a generalization of Theorem 1 to kernel
estimators of local functionals of lifetime densities in §3.1 (see, e.g., Theorem 3). As a
consequence of this last result, we provide a limit law for the kernel failure rate estimator
in §3.2 (see, e.g., Theorem 4). In §3.3, we construct uniform asymptotic certainty bands
for these kernel estimators (see, e.g., Corollary 2).

1.2 Kernel lifetime density estimation

Consider the right censorship model of §1.1. Let K denote a collection of kernels, namely
right-continuous functions K(· ) on R, of bounded variation and compact support on R,
such that

∫
R
K(t)dt = 1 and there exists an 0 < M < ∞ such that supK∈K

∫
R
|dK| ≤ M .

The kernel estimator of f(· ) (see, e.g., Watson and Leadbetter [27, 28], Tanner and Wong
[25]) is defined, for each K ∈ K, h > 0 and x ∈ R, by

fn,K,h(x) :=
1

h

∫ ∞

−∞
K

(
x− t

h

)
dFn(t), (4)

where Fn(· ) is as in (1). Fix a non degenerate interval I := [C,D] ⊂ J . Theorem 1 below,
describing the uniform in bandwidth and kernel consistency of fn,K,h(·), will be shown to
follow from a functional limit law stated in Theorem 2 in the forthcoming §1.3.
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Theorem 1 Let 0 < an ≤ bn ≤ 1 be such that, as n→ ∞,

bn → 0 and
nan
log n

→ ∞. (5)

Then, with Hn = [an, bn], we have, as n→ ∞,

sup
h∈Hn

sup
K∈K

∣∣∣∣∣

{
nh

2 log+(1/h)

}1/2

sup
x∈I

(
± {fn,K,h(x)− E (fn,K,h(x))}

×

{
1−G(x)

f(x)

}1/2
)

−

{∫

R

K2(t)dt

}1/2
∣∣∣∣∣ = oP(1). (6)

Remark 1 1◦) It easy to see that, under (5), the limit law (6) holds with the formal
replacement of ±{fn,K,h(x)− E (fn,K,h(x))} by |fn,K,h(x)− E (fn,K,h(x))|.

2◦) Weighted versions of (6), in the spirit of Theorem 3 in §3.1, may be obtained by the
same arguments.

3◦) Our theorem provides uniform asymptotic certainty bands for E(fn,K,h(· )), in the spirit
of that given in Deheuvels [5] (see, e.g., Corollary 2 in §3.3).

We discuss below, the motivation and relevance of Theorem 1, with respect to the literature
on functional estimation. Uniform-in-bandwidth results such as that given in Theorem
1, are motivated by the need of describing the limiting behavior of kernel estimators
when their bandwidth is possibly random or data-dependent. Many elaborate schemes
have been proposed in the statistical literature for constructing bandwidth sequences with
asymptotically optimal properties (see, e.g., sections 2.4.1 and 2.4.2 in Deheuvels and
Mason [11], and Berlinet and Devroye [1]). The use of bandwidths h of the form hn :=
Znn

−1/5 where Zn is a random sequence, stochastically bounded away from 0 and ∞,
is often suggested. It turns out that Theorem 1 allows the description of the limiting
behavior of the corresponding kernel lifetime density estimators. In the uncensored case,
we refer to Einmahl and Mason [15], and Deheuvels and Ouadah [12], for discussions and
references on this subject. We should mention that some authors (see, e.g., Epanechnikov
[16], Marron and Nolan [21]) have introduced optimal choices of kernels (in a minimum
variance sense) such as the Epanechnikov kernel, or canonical kernels, wich fall into K,
the general class of kernels we consider. To illustrate the sharpness of the conditions (5)
implying (6), we set Hn = [hn, hn] in Theorem 1, and observe that, whenever {hn : n ≥ 1}
are constants fulfilling, as n→ ∞,

nhn/log n→ ∞, and hn → 0, (7)

and with a fixed kernel function K ∈ K, then, as n→ ∞,

{
nhn

2 log+(1/hn)

}1/2

sup
x∈I

(
± {fn,K,hn

(x)− E (fn,K,hn
(x))}

×

{
1−G(x)

f(x)

}1/2
)

P
→

{∫

R

K2(t)dt

}1/2

. (8)

Almost sure versions of (8) have been established, under various sets of assumptions, by
Diehl and Stute [13] (for c = ∞), Deheuvels and Einmahl [8, 9], and Giné and Guillou
[18]. We note that (8) and hence (6) do not hold almost surely for arbitrary choices of the
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continuous density f(·) on J , and bandwidth sequences {hn : n ≥ 1} fulfilling (7). If we
assume, in addition to (7), that

log(1/hn)/ loglog n→ c ∈ (0,∞], hn ↓ 0, and nhn ↑ ∞, (9)

then, setting (c+1)/c := 1 when c = ∞, by Theorem 1.1, pp. 1304-1305 in Deheuvels and
Einmahl [9], we get, a.s.,

lim sup
n→∞

{
nhn

2{log+(1/hn) + loglog n}

}1/2

× sup
x∈I

±{fn,hn
(x)− E (fn,hn

(x))}

{
1−G(x)

f(x)

}1/2

=

(
c+ 1

c

)1/2 {∫

R

K2(t)dt

}1/2

,

and

lim inf
n→∞

{ nhn
2{log+(1/hn) + loglog n}

}1/2

× sup
x∈I

±{fn,hn
(x)− E (fn,hn

(x))}

{
1−G(x)

f(x)

}1/2

=

{∫

R

K2(t)dt

}1/2

.

This last result is known not to hold in general when the first condition in (9) is not
fulfilled. Viallon [26] (see, e.g., Maillot and Viallon [20] [26]) has used the theory of
empirical processes indexed by functions to obtain a uniform-in-bandwidth convergence
theorem in the spirit of (6), without the condition of uniformity with respect to kernels.
He showed that, for a specified K ∈ K, we have a.s. as n→ ∞,

sup
h∈Hn

{
nh

2 log+(1/h)

}1/2

sup
x∈I

(
± {fn,K,h(x)− E (fn,K,h(x))}

×

{
1−G(x)

f(x)

}1/2
)

P
→

{∫

R

K2(t)dt

}1/2

. (10)

Here Hn = [h′n, h
′′
n], and h

′
n, h

′′
n are sequences of constants fulfilling (7)–(9) together with

the additionnal condition h′′n ≤ [(B −D) ∧ (1 −H1(D))] for each n ≥ 1, and H1(· ) is as
in (29) below. Independently of the conditions imposed on Hn in either Viallon [26] or
(9), which are more strenuous than (5), we should point out that this last result is a much
weaker statement than (6). Indeed, the asymptotic limiting constant in (10) relies on a
specific h ∈ Hn, whereas the limit law (6) provides the value of the asymptotic limiting
constant for the sup-norm of the estimation random error, uniformly over h ∈ Hn, and
over K ∈ K.

1.3 A functional limit law

In this section, we provide a uniform-in-bandwidth functional limit law for the increments
of the Kaplan-Meier empirical process. As a consequence of this result, we obtain a
uniform-in-bandwidth limit law for the modulus of continuity of this process (see Theorem
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2 and Corollary 1 below). Throughout, we will denote by ψ(· ) a specified continuous and
positive function on J . Examples of such functions are provided in §3.1. We assume that
ψn is a locally of bounded variation measurable estimator of ψ such that, as n→ ∞,

sup
x∈I

|ψn(x)/ψ(x) − 1| → 0 in probability. (11)

Set log+ s := log(s∨ e) for s ∈ R. Let 0 < an ≤ bn ≤ 1, n = 1, 2, . . . be positive constants,
and fix Hn := [an, bn]. We are concerned with the limiting behavior, as n→ ∞, of the set
of functions

FKM
n,I (h, ψn) :=

{
ξKM
n (h, t; ·)√
2h log+(1/h)

×

{
ψn(t)×

1−G(t)

f(t)

}1/2

: t ∈ I

}
, (12)

where h > 0 is restricted to vary in Hn. Denote, by (B[0, 1],U) (resp. (AC[0, 1],U))
the set of bounded (resp. absolutely continuous) functions on [0, 1], endowed with the
uniform topology U , induced by the sup-norm ‖f‖ := supu∈[0,1] |f(u)|. For each ǫ > 0
and f ∈ B[0, 1], set Nǫ(f) := {g ∈ B[0, 1] : ‖f − g‖ < ǫ}, and, for each A ⊆ B[0, 1],
set Aǫ :=

⋃
f∈ANǫ(f), with the convention that

⋃
∅(·) := ∅. Define the corresponding

Hausdorff set-distance of A,B ⊆ B[0, 1], by

∆(A,B) =

{
inf
{
θ > 0 : A ⊆ Bθ et B ⊆ Aθ

}
whenever such a θ exists,

∞ otherwise.
(13)

For each f ∈ AC[0, 1], denote by ḟ(u) = d
duf(u) the Lebesgue derivative of f for u ∈ [0, 1].

Consider the Hilbert norm defined on B[0, 1] by

|f |H :=





{∫ 1
0 ḟ(u)

2du
}1/2

when f(0) = 0 and f ∈ AC[0, 1],

∞ otherwise.

For each λ > 0, set

Sλ := {f ∈ B[0, 1] : |f |H ≤ λ} = {λ1/2f : f ∈ S1}. (14)

Notice that S1 =: S is the unit ball of the reproducing kernel Hilbert space of the usual
Wiener process on [0, 1], shown by Strassen [24] to be the limit set in the functional law
of the iterated logarithm for Wiener processes. Given these notations, our main result is
the following uniform-in-bandwidth functional limit law.

Theorem 2 Let 0 < an ≤ bn ≤ 1 be such that, as n→ ∞,

bn → 0 and
nan
log n

→ ∞. (15)

Then, with Hn = [an, bn], we have, as n→ ∞,

sup
h∈Hn

∆
(
FKM
n;I (h, ψn),SΛ

)
= oP(1), (16)

where
Λ := sup

x∈I
ψ(x). (17)
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Remark 2 1◦) In the uncensored case, where G ≡ 0, ψ ≡ 1 and with X following the uni-
form distribution on [0, 1], Theorem 2 reduces to Theorem 1 (i) of Deheuvels and Ouadah
[12].

2◦) Deheuvels and Einmahl [8, 9] established functional limit laws in the spirit of (16), but
without the uniformity in bandwidth. They considered the case Hn = [hn, hn].

3◦) We shall mention that Viallon [26] obtained a uniform-in-bandwidth functional limit
law in the spirit of (16), but under more stringent conditions than (15) (see, e.g., the
previous discussion in section §1.2).

For the interval I and for any h > 0, consider the statistic

Ω±KM
n;I (h) = sup

t∈I
±{αKM

n (t+ h)− αKM
n (t)}.

We obtain the following corollary of Theorem 2.

Corollary 1 Let Hn = [an, bn] be as in Theorem 2. Then, as n→ ∞, we have

sup
h∈Hn

∣∣∣∣∣
Ω±KM
n;I (h)

√
2h log+(1/h)

− sup
t∈I

{
f(t)

1−G(t)

}1/2
∣∣∣∣∣ = oP(1).

Remark 3 1◦) Deheuvels and Einmahl [8, 9] have given limit laws in the same spirit, but
without the uniformity in bandwidth.

Proof. The proof being similar to that of Corollary 1 in Deheuvels and Ouadah [12], is
omitted.�

2 Proofs

2.1 Proof of Theorem 1

We provide below a proof of Theorem 1. We will need the following analytical result in
the spirit of Lemma 1 in Deheuvels [6] (see, e.g., Lemma 1 in Deheuvels and Ouadah
[12]). Let M denote a subset of B[−T, T ], such that Sλ ⊆ M ⊆ B[−T, T ], λ > 0, and
let Γ denote a non-empty class of mappings Θ : M → R , continuous with respect to the
uniform topology on M. We assume that Γ has the following equicontinuity property. For
each ǫ > 0, there exists an η(ǫ) > 0 such that, for each φ ∈ M and g ∈ Sλ, we have

‖φ− g‖ < η(ǫ) ⇒ sup
Θ∈Γ

|Θ(φ)−Θ(g)| < ǫ.

Fact 1 For each ε > 0, there exists an η(ε) > 0 such that, for any F ⊆ M, we have

∆(F ,Sλ) < η(ε) ⇒ sup
Θ∈Γ

∣∣∣∣∣supg∈F
Θ(g)− sup

f∈Sλ

Θ(f)

∣∣∣∣∣ < ε. (18)

Proof of Theorem 1. We follow some of the arguments of the proof of Theorem 2 in
Deheuvels and Ouadah [12]. We reduce the proof to the case where for some 0 < T <∞,
K̃(u) := K(−u) = 0 for all |u| ≥ T and K ∈ K. We need only (see, e.g., (4.2.5)–(4.2.6) in
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Deheuvels and Mason [10] and (1.22) in Deheuvels and Ouadah [12]) consider the limiting
behavior of

n1/2h (fn,K,h(x)− E (fn,K,h(x)))×

{
1−G(x)

f(x)

}1/2

= −

∫ T

−T

(
αKM
n (x+ hu)− αKM

n (x)
)
×

{
1−G(x)

f(x)

}1/2

dK̃(u), (19)

for h ∈ Hn, K ∈ K, and with x varying within I = [C,D]. Observe, via (19) and (3), that

n1/2h (fn,K,h(x)− E (fn,K,h(x)))×

{
1−G(x)

f(x)

}1/2

= −

∫ T

−T
ξKM
n (h;x;u) ×

{
1−G(x)

f(x)

}1/2

dK̃(u).

It follows from Theorem 2 that, for each η0 > 0, we have, as n→ ∞,

P

(
sup
h∈Hn

∆

({
ξKM
n (h;x; · )√
2h log+(1/(h))

×

{
1−G(x)

f(x)

}1/2

: x ∈ I

}
,S1

)
≥ η0

)
→ 0. (20)

By Fact 1, taken with Θ(g) :=
∫ T
−T ∓g(u)dK̃(u) and M being the set of all integrable

functions g(· ) on [−T, T ] with g(0) = 0, for each ε > 0, there exists an η > 0 fulfilling
(18). If we set η0 = η in (20), we infer from (18) and (20) that, as n→ ∞,

P

(
sup
h∈Hn

sup
K̃∈K

∣∣∣∣∣ supx∈I

(
±n1/2h

{
f
n,K̃,h

(x)− E

(
f
n,K̃,h

(x)
)}

√
2h log+(1/(h))

×

{
1−G(x)

f(x)

}1/2
)

− sup
f∈S1

∫ T

−T
∓f(u)dK̃(u)

∣∣∣∣∣ ≥ ε

)
→ 0.

(21)

It is readily checked (see, e.g., (4.2.11) in Deheuvels and Mason [10]) that

sup
f∈S1

∫ T

−T
∓f(u)dK̃(u) =

{∫

R

K2(u)du

}1/2

.

Therefore, we obtain that, for all ε > 0, as n→ ∞,

P

(
sup
h∈Hn

sup
K∈K

∣∣∣∣∣

{
nh

2 log+(1/h)

}1/2

sup
x∈I

(
± {fn,K,h(x)− E (fn,K,h(x))}

×

{
1−G(x)

f(x)

}1/2
)

−
{∫

R

K2(t)dt
}1/2

∣∣∣∣∣ ≥ ε

)
→ 0.

(22)

This completes the proof of Theorem 1.�

7



2.2 Proof of Theorem 2

2.2.1 A functional limit law in the uncensored case

We will make use of a functional limit law due to Deheuvels and Ouadah [12]. The
following notation is needed for the statement of this result, stated in Fact 2 below. Let
U1, U2, . . . be iid random variables with a uniform distribution on (0, 1). Denote by

Un(u) := n−1#{Ui ≤ u : 1 ≤ i ≤ n} for u ∈ R, (23)

the empirical df based upon the first n ≥ 1 of these observations, with # denoting cardi-
nality. Let,

αn(u) := n1/2 (Un(u)− u) for u ∈ R, (24)

denote the uniform empirical process. For each choice of h > 0 and t ∈ [0, 1], consider,
the increment function

ξn(h; t;u) := αn(t+ hu)− αn(t) for u ∈ R, (25)

together with the set of functions, defined, for h > 0, by

Fn,I,γ(h) :=

{
ξn(γh; t; ·)√
2h log+(1/h)

: t ∈ [0, 1 − h] ∩ I

}
, (26)

where γ > 0 and I := [r, s] ⊆ [0, 1] is a specified interval, with r < s. The functional limit
law stated in Fact 2 below, is a version of Theorem 1 (i) in Deheuvels and Ouadah [12].

Fact 2 Assume that 0 < an ≤ bn ≤ 1 are such that, as n→ ∞,

bn → 0 and
nan
log n

→ ∞. (27)

Then, with Hn = [an, bn], for any γ > 0 and I = [u, v] ⊆ [0, 1] with u < v, we have, as
n→ ∞,

sup
h∈Hn

∆(Fn,I,γ(h),Sγ) = oP(1). (28)

2.2.2 Notation

In this section, we will adopt some basic notation taken from Deheuvels and Einmahl
[9]. For any locally of bounded variation function L(· ) (possibly discontinuous), we set
L(x−) := limt�x L(t) and L(x+) := limt�x L(t). The distribution function of T , denoted
for x ∈ R , by H(x) = H(x+), may be decomposed into

H(x) = 1− (1− F (x))(1 −G(x)) =: H1(x) +H0(x),

with

H1(x) := P (T ≤ x and δ = 1) =

∫ x

0
(1−G−(t))dF (t) = H1(x+), (29)

and

H0(x) := P (T ≤ x and δ = 0) =

∫ x

0
(1− F−(t))dG(t) = H0(x+).

8



The empirical counterparts of H(· ), H1(· ) and H0(· ) are defined, for x ∈ R, by

Hn(x) := n−1#{Ti ≤ x : 1 ≤ i ≤ n} =: Hn,1(x) +Hn,0(x), with

Hn,1(x) := n−1#{δiTi ≤ x : 1 ≤ i ≤ n}

and
Hn,0(x) = n−1#{(1− δi)Ti ≤ x : 1 ≤ i ≤ n}.

Consider the empirical processes

Hn,j(x) := n1/2 (Hn,j(x)−Hj(x)) for j = 0, 1 and x ∈ R. (30)

Introduce the empirical cumulated failure rate function defined by

Λn(x) =

∫ x

0

1

1−Hn−(u)
dHn,1(u) = Λn(x+) for x ≥ 0.

The Kaplan-Meier estimators Fn(· ) and Gn(· ) defined in (1) and (2) can be rewritten
into, for x ∈ R (see, e.g., p.295 in Shorack and Wellner [22]).

Fn(x) := 1−
∏

Ti,n≤x

1≤i≤n

{
1−

δi,n
n− i+ 1

}

=

∫ x

0
(1− Fn−(u)) dΛn(u)

=

∫ x

0

1

1−Gn−(u)
dHn,1(u),

and likewise

Gn(x) :=

∫ x

0

1

1− Fn−(u)
dHn,0(u).

2.2.3 Some useful facts

First, we decompose the Kaplan-Meier empirical process into (see, e.g., (4.18) in Deheuvels
and Einmahl [9])

αKM
n (x) =

∫ x

0

1

1−Gn−(u)
dHn,1(u) +

∫ x

0

βn−(u)

1−Gn−(u)
dF (u)

=: α′
n(x) + α′′

n(x). (31)

Throughout, we will work on the probability space of Deheuvels and Einmahl [8], defined
via the following fact.

Fact 3 On a suitably enlarged probability space (Ω,A,P), it is possible to define {Xn :
n ≥ 1} and {Yn : n ≥ 1} jointly with a sequence {Un : n ≥ 1} of iid random variables with
a uniform distribution on (0, 1), such that the following properties hold. We have, almost
surely,

Hn,1(x) = Un (H1(x)) for 0 < H1(x) < p

and
Hn,0(x) = Un (H0(x) + p)− Un(p) for 0 < H0(x) < 1− p,

where p = P(δ = 1) and Un(· ) is as in (23).
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In the next fact, (32) follows from the Dvoretzky, Kiefer and Wolfowitz type inequality for
the Kaplan-Meier estimator (see, e.g., Theorem 2 in Földes and Rejtő [17], and Theorem
1 in Bitouzé et al. [2]). Denote by {βKM

n (t) : t ∈ R} the Kaplan-Meier empirical process
for censoring times, defined, for n ≥ 1 and x ∈ R, by

βKM
n (x) := n1/2(Gn(x)−G(x)).

Fact 4 For any specified 0 ≤ R < Θ, we have, for all n ≥ 1,

sup
0≤t≤R

∣∣βKM
n (t)

∣∣ = OP(1). (32)

2.2.4 Preliminaries lemmas

In this section, we provide three lemmas in the spirit of Lemmas 4.1–4.3 in Deheuvels and
Einmahl [9]. The first lemma allows us to evaluate the modulus of continuity of α′

n(· ).
The second lemma shows that the oscillations of α′′

n(· ) can be neglected in forthcoming
evaluations needed in our proofs. The third lemma provides an approximation of the
increments ξKM

n (h, t; s) for any h ∈ Hn. We work throughout on the probability space of
Fact 3. In view of (24) and (30), we set,

ωn,1(h) := sup
s,t∈I

|t−s|≤h

|Hn,1(t)−Hn,1(s)|

= sup
s,t∈I

|t−s|≤h

|αn (H1(t)) − αn (H1(s))| , h > 0 (33)

and

ω∗
n,1 := sup

h∈Hn

ωn,1(h)√
2h log+(1/h)

. (34)

Now, in view of (31), for s, t ∈ R , consider (see, e.g., (4.25) in Deheuvels and Einmahl
[9])

An,1(s, t) := α′
n(t)− α′

n(s)−
1

1−G−(s)

∫ t

s
dHn,1(u)

=

(
1

1−Gn−(t)
−

1

1−G−(s)

)
{Hn,1(t)−Hn,1(s)}

−

∫ t

s
{Hn,1(u)−Hn,1(s)}d

{
1

1−Gn−(u)

}
. (35)

Lemma 1 We have, as n→ ∞,

sup
h∈Hn

sup
s,t∈I

|t−s|≤h

|An,1(s, t)|√
2h log+(1/h)

= ω∗
n,1 × oP(1). (36)

Proof. Making use of Fact 4, for all n ≥ 1, we get

sup
t∈I

∣∣∣∣
1

1−Gn−(t)
−

1

1−G−(t)

∣∣∣∣ = OP(n
−1/2). (37)

Since G(· ) is continuous on J , we see that, as n→ ∞,

sup
h∈Hn

sup
s,t∈I

|t−s|≤h

∣∣∣∣
1

1−G−(t)
−

1

1−G−(s)

∣∣∣∣ = oP(1). (38)
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By combining the definition (34) of ω∗
n,1 with the observations (37) and (38), as n → ∞,

we get the relations

sup
h∈Hn

sup
s,t∈I

|t−s|≤h

1√
2h log+(1/h)

∣∣∣∣
(

1

1−Gn−(t)
−

1

1−G−(s)

)
{Hn,1(t)−Hn,1(s)}

∣∣∣∣

≤ ω∗
n,1 ×

{
sup
t∈I

∣∣∣∣
1

1−Gn−(t)
−

1

1−G−(t)

∣∣∣∣+ sup
h∈Hn

sup
s,t∈I

|t−s|≤h

∣∣∣∣
1

1−G−(t)
−

1

1−G−(s)

∣∣∣∣

}

= ω∗
n,1 ×

{
OP(n

−1/2) + oP(1)
}

= ω∗
n,1 × oP(1).

Likewise, we observe that, as n→ ∞,

sup
h∈Hn

sup
s,t∈I

|t−s|≤h

1√
2h log+(1/h)

∣∣∣∣
∫ t

s
{Hn,1(u)−Hn,1(s)}d

{
1

1−Gn−(u)

}∣∣∣∣

≤ ω∗
n,1 × sup

h∈Hn

sup
s,t∈I

|t−s|≤h

∣∣∣∣
1

1−Gn−(t)
−

1

1−Gn−(s)

∣∣∣∣

= ω∗
n,1 ×

{
2OP(n

−1/2) + oP(1)
}

= ω∗
n,1 × oP(1).

We combine the two above inequalities to conclude (36). �

Lemma 2 Fix any 0 < R < Θ. Then, for all n ≥ 1, we have uniformely over all
0 ≤ s ≤ t ≤ R,

∣∣α′′
n(t)− α′′

n(s)
∣∣ =

∣∣∣∣
∫ t

s

βKM
n− (u)

1−Gn−(u)
dF (u)

∣∣∣∣ = OP(1) × |t− s|. (39)

Proof. Set c(R) = sup0≤u≤R |f(u)|. Making use of Fact 4 , we obtain for all n ≥ 1,

∣∣∣∣
∫ t

s

βKM
n− (u)

1−Gn−(u)
dF (u)

∣∣∣∣ ≤
1

1−Gn−(R)
× sup

0≤u≤R

∣∣βKM
n− (u)

∣∣× {F (t)− F (s)}

≤
c(R)

1−G(R)
×OP(1)× |t− s| = OP(1) × |t− s|.�

For each h ≥ 0 and t ∈ R, set

ξKM
n,1 (h; t; s) :=

1

1−G−(t)
{Hn,1(t+ hs)−Hn,1(t)}

=
1

1−G−(t)
{αn (H1(t+ hs))− αn (H1(t))} , for s ∈ R.

(40)

Lemma 3 As n→ ∞, we have

sup
h∈Hn

sup
t∈I

1√
2h log+(1/h)

∥∥ξKM
n (h; t; · ) − ξKM

n,1 (h; t; · )
∥∥

= ω∗
n,1 × oP(1) +OP

(√
bn

2 log+(1/an)

)
=: An +Bn. (41)
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Proof. In view of the definitions (3), (31), (35) and (40), observe that

sup
h∈Hn

sup
t∈I

∥∥ξKM
n (h; t; · ) − ξKM

n,1 (h; t; · )
∥∥

≤ sup
h∈Hn

sup
t∈I

s∈[0,1]

∣∣α′′
n(t+ hs)− α′′

n(t)
∣∣

+ sup
h∈Hn

sup
t∈I

s∈[0,1]

|An,1(t, t+ sh)| ,

and combine (36) of Lemma 1 with (39) of Lemma 2. This completes our proof.�

2.2.5 Approximations and a functional limit law

The purpose of this section is to approximate (3) the increment function of the Kaplan-
Meier empirical process, by a specified increment function of the uniform empirical process
(see, e.g., (25), Lemmas 4–5), in view of an application of (50) a new functional limit law,
we provide in Lemma 6. For I = [u, v] ⊆ [0, 1] with u < v, consider the statistic

ω±
n (h,I) := sup

s,t∈I
|t−s|≤h

±{αn(t)− αn(s)}. (42)

In view of Fact 2, the following fact hold (see, e.g., Corollary 1 in Deheuvels and Ouadah
[12]).

Fact 5 Let Hn = [an, bn] and I be as in Fact 2. Then, as n→ ∞, for any γ > 0, we have

sup
h∈Hn

∣∣∣∣∣
ω±
n (γh,I)√

2h log+(1/h)
− γ1/2

∣∣∣∣∣ = oP(1). (43)

Lemma 4 When Hn = [an, bn] verifies the assumption (27) of Fact 2, we have, as n→ ∞,

sup
h∈Hn

sup
t∈I

1√
2h log+(1/h)

∥∥ξKM
n (h; t; · ) − ξKM

n,1 (h; t; · )
∥∥ = oP(1). (44)

Proof. Set

κ = max
u∈I

ϕ(u) := max
u∈I

f(u)(1−G(u)) > 0. (45)

By (29) and the mean value theorem, we have uniformly over s, t ∈ I,

|H1(t)−H1(s)| ≤ κ|t− s|. (46)

This inequality, when combined with the definitions (33) and (42) implies that for all
h ∈ Hn,

ωn,1(h) ≤ ω±
n (κh,I).

Whence, by (34) the definition of ω∗
n,1 and (43) of Fact 5, for each ε0 > 0, as n→ ∞

P

(
ω∗
n,1 ≥ ε0 + κ1/2

)
→ 0.

By combining the previous observation with the fact that by condition (27),

Bn = OP

(√
bn

2 log+(1/an)

)
= oP (1) ,
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we see that, for each ε > 0, as n→ ∞,

P (|An +Bn| ≥ ε) → 0,

with An defined in (41). Hence, we infer from (41) that, as n→ ∞, (44) holds.�

Let N ≥ 1 be an arbitrary fixed integer. For 1 ≤ i ≤ N , set ti,N = C+(i−1)N−1(D−C),
where [C,D] = I, and recall the definitions (25) of the increment of the uniform empirical
process and (45) of the function ϕ(· ).

Lemma 5 When Hn = [an, bn] verifies the assumption (27) of Fact 2, for all N sufficiently
large, we have, as n→ ∞,

sup
h∈Hn

sup
t∈I

1√
2h log+(1/h)

∥∥∥∥ξ
KM
n,1 (h; t; · ) −

ξn(ϕ(ti,N )h;H1(t); · )

1−G(t)

∥∥∥∥ = oP(1).

(47)

Proof. Set

ǫN := max
1≤i≤n

(
sup

ti,N≤t≤ti+1,N+h
|f(t)(1−G(t)) − f(ti,N )(1−G(ti,N ))|

)
.

Making use of the mean value theorem in combination with the above definition, we see
that, for all 1 ≤ i ≤ N , t ∈ [ti,N , ti+1,N ] and s ∈ [0, 1], for all large n,

|H1(t+ sh)−H1(t)− sϕ(ti,N )h| ≤ ǫNh.

Therefore, in view of the definitions (25)–(40), we obtain the inequality

sup
h∈Hn

sup
t∈I

1√
2h log+(1/h)

∥∥∥∥ξ
KM
n,1 (h; t; · ) −

ξn(ϕ(ti,N )h;H1(t); · )

1−G(t)

∥∥∥∥

≤

{
1

1−G(D)

}
× sup

h∈Hn

ω±
n (ǫNh,I)√
2h log+(1/h)

.

This, when combined with (43) of Fact 5 and the fact that, by choosing N large enough,
ǫN > 0 may be rendered as small as desired, implies (47).�

Now, let R denote a continuous and positive function on J and define

M1/2 := sup
t∈I

R(t)

{
f(t)

1−G(t)

}1/2

. (48)

The next lemma concerns the joint in h ∈ Hn limiting behavior, as n → ∞, of the set of
functions

Gn,I(h,R) :=

{
R(t)

1−G(t)
×
ξn(ϕ(ti,N )h;H1(t); · )√

2h log+(1/h)
: t ∈ I

}
. (49)

Lemma 6 When Hn = [an, bn] verifies the assumption (27) of Fact 2, we have, as n→ ∞,

sup
h∈Hn

∆(Gn,I(h,R),SM ) = oP(1). (50)

13



Proof. Fix any ǫ, ǫ0 > 0 and consider I = [C,D]. In view of (13) the definition of the
Haussdorf set-distance, we need only prove that, for each ǫ > 0, as n→ ∞,

(i) P (Gn,I(h,R) ⊆ S
ǫ
M : ∀h ∈ Hn) → 1, (51)

and

(ii) P (SM ⊆ Gn,I(h,R)
ǫ : ∀h ∈ Hn) → 1. (52)

Recall the set of functions (26). Since {H1(t) : t ∈ I} ⊆ [0, 1], we observe that, for all
h ∈ Hn,

{
ξn(ϕ(ti,N )h;H1(t); · )√

2h log+(1/h)
: t ∈ I

}
⊆ Fn,I,φ(ti,N )(h),

so that, as a consequence of (28) of Fact 2, for each t ∈ I and for each h ∈ Hn, there exists
a function g ∈ S (see definition (14)), such that

∥∥∥∥∥
ξn(ϕ(ti,N )h;H1(t); · )√

2h log+(1/h)
− ϕ(ti,N )1/2g(· )

∥∥∥∥∥ < ǫ0 := ǫ×
1−G(t)

R(t)
,

which entails that, for each t ∈ [ti,N , ti+1,N ], 1 ≤ i ≤ N and for each h ∈ Hn,
∥∥∥∥∥

R(t)

1−G(t)

ξn(ϕ(ti,N )h;H1(t); · )√
2h log+(1/h)

−
R(t)

1−G(t)
{f(ti,N )(1−G(ti,N )}1/2 g(· )

∥∥∥∥∥ < ǫ.

Therefore, by the above assertion and (48)–(49), the assertion (51)(i) holds. We now
establish (51)(ii). Considering a function gi ∈ Sϕ(ti,N ), 1 ≤ i ≤ N and each h ∈ Hn, by
(28), for all ǫ > 0, there exists a t0 ∈ I such that

∥∥∥∥∥
ξn(ϕ(ti,N )h; t0; · )√

2h log+(1/h)
− gi(· )

∥∥∥∥∥ < ǫ×
1−G(t)

R(t)
,

with a fixed t ∈ [ti,N , ti+1,N ], 1 ≤ i ≤ N . That implies, for each h ∈ Hn,
∥∥∥∥∥

R(t)

1−G(t)

ξn(ϕ(ti,N )h; t0; · )√
2h log+(1/h)

−
R(t)

1−G(t)
gi(· )

∥∥∥∥∥ < ǫ.

Consider the function g∗(· ) = R(t)
1−G(t)gi(· ), t ∈ [ti,N , ti+1,N ], 1 ≤ i ≤ N . Since gi ∈ Sϕ(ti,N ),

we observe that g∗ ∈ SM . Then, we just choose t0 = H1(t) to complete the proof of
(51)(ii).�

2.2.6 Proof of Theorem 2

We have now in hand all the necessary ingredients for proving Theorem 2. We have the
following relation

R(t) =

{
ψ(t)×

1−G(t)

f(t)

}1/2

⇔ ψ(t) = R(t)2 ×
f(t)

1−G(t)
.

Therefore, by (17) the definition of Λ and (48) the one of M , we see that

Λ = sup
t∈I

ψ(t) =M.

Considering the definitions (12)–(48) of the set of functions FKM
n,I (h, ψn) and M , we shall

combine the approximations (44) and (47) with the functional limit law (50). By (11), the
theorem holds for ψ(· ) replaced by ψn(· ).�
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3 Some applications

3.1 A generalization of Theorem 1

We provide below a more general setup of Theorem 1. Introduce the following examples
of continuous and positive functions on J (see, e.g., (1.13) in Deheuvels and Einmahl [9]):

ψ(1)(x) = 1, ψ(2)(x) =
1

1−G(x)
,

ψ(3)(x) = f(x), ψ(4)(x) =
f(x)

1−G(x)
,

ψ(5)(x) =
f(x)ϕ(x)

(1− F (x))2(1−G(x))
, (53)

where ϕ(· ) is an auxiliary continuous and positive function on J . We shall obtain ψn(· ) a
locally of bounded variation measurable estimator of ψ by replacing in (53) the functions
f(· ), F (· ) and G(· ) by fn,K,h(· ), Fn(· ) and Gn(· ), respectively. Recall that ψn(· ) is such
that, as n→ ∞,

sup
x∈I

|ψn(x)/ψ(x) − 1| → 0 in probability.

The next theorem describes the uniform in bandwidth and kernel consistency of a series
of kernel estimators of local functionals of lifetime densities.

Theorem 3 Let Hn = [an, bn] be as in Theorem 2. Then, as n→ ∞,

sup
h∈Hn

sup
K∈K

∣∣∣∣∣

{
nh

2 log+(1/h)

}1/2

sup
x∈I

(
± {fn,K,h(x)− E (fn,K,h(x))}

×

{
ψn(x)×

1−G(x)

f(x)

}1/2
)

− σ(ψ,K)

∣∣∣∣∣ = oP(1), (54)

with σ(ψ,K) :=
{
supx∈I ψ(x)

∫
R
K2(t)dt

}1/2
.

Remark 4 1◦) The replacement of F (· ) by Fn(· ) in ψ
(5)(· ), defined in (53), corresponds

to an estimator of the hazard rate function λn,K,h(· ) wich will be considered in §3.2. Our
results also apply to this estimator.

Proof of Theorem 3. The proof is essentially identical to the proof of Theorem 1, taking
into account the function ψ(· ) and its estimator ψn(· ).�

3.2 Kernel failure rate estimation

Denote the failure rate function pertaining to F (· ) by

λ(x) :=
f(x)

1− F (x)
for x ∈ R. (55)

We consider λn,K,h(· ) the estimator of λ(· ) defined, for K ∈ K, h > 0 and x ∈ R, by

λn,K,h(x) :=
fn,K,h(x)

1− Fn(x)
, (56)

where fn,K,h(· ) is as in (4) and Fn(· ) as in (1). The following theorem, describing the
uniform in bandwidth and kernel consistency of λn,K,h(·), follows from Theorem 3.
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Theorem 4 Let 0 < an ≤ bn ≤ 1 be such that, as n→ ∞,

bn → 0 and
nan
log n

→ ∞.

Then, with Hn = [an, bn], we have, as n→ ∞,

sup
h∈Hn

sup
K∈K

∣∣∣∣∣

{
nh

2 log+(1/h)

}1/2

sup
x∈I

±

(
λn,K,h(x)−

E (λn,K,h(x))

1− F (x)

×

{
ψn(x)×

1−H(x)

λ(x)

}1/2
)

− σ(ψ,K)

∣∣∣∣∣ = oP(1),

with σ(ψ,K) :=
{
supx∈I ψ(x)

∫
R
K2(t)dt

}1/2
.

Remark 5 1◦) The uniform consistency of λn,K,h(·) over bounded intervals was investi-
gated in Zhang [29], and Deheuvels and Einmahl [9].

2◦) Our theorem can be used to construct uniform asymptotic certainty bands for λ(· ), in
the spirit of that given in Deheuvels [5] (see, e.g., §3.3).

Proof of Theorem 4. We will make use of the next fact, which is a Dvoretzky, Kiefer
and Wolfowitz type inequality for the Kaplan-Meier empirical process (see, e.g., Theorem
2 in Földes and Rejtő [17], and Theorem 1 in Bitouzé et al. [2]).

Fact 6 For any specified 0 ≤ R < Θ, we have, for all n ≥ 1,

sup
0≤t≤R

∣∣αKM
n (t)

∣∣ = OP(1). (57)

Consider first the relation (22) in the proof of Theorem 3, in which we include ψn(· ). For
all ε > 0, as n→ ∞, we have

P

(
sup
h∈Hn

sup
K∈K

∣∣∣∣∣
{ nh

2 log+(1/h)

}1/2
sup
x∈I

(
± {fn,K,h(x)− E (fn,K,h(x))}

×

{
ψn(x)×

1−G(x)

f(x)

}1/2
)

−
{
sup
x∈I

ψ(x)

∫

R

K2(t)dt
}1/2

∣∣∣∣∣ ≥ ε

)
→ 0.

We shall make the formal replacement of ψn(· ) by
{

1− F (· )

1− Fn(· )

}2

ψn(· ).

Thus, by (55)–(56) the definitions of λ(· ) and λn,K,h(· ), and the relation H ≡ 1 − (1 −
F )(1−G), we obtain, as n→ ∞,

P

(
sup
h∈Hn

sup
K∈K

∣∣∣∣∣
{ nh

2 log+(1/h)

}1/2
sup
x∈I

(
±

{
λn,K,h(x)−

E (fn,K,h(x))

1− Fn(x)

}

×

{
ψn(x)×

1−H(x)

λ(x)

}1/2
)

−
{
sup
x∈I

ψ(x)

∫

R

K2(t)dt
}1/2

∣∣∣∣∣ ≥ ε

)
→ 0.

Observe that

λn,K,h(x)−
E (fn,K,h(x))

1− Fn(x)
= λn,K,h(x)−

E (fn,K,h(x)) (Fn(x)− F (x))

(1− Fn(x))(1 − F (x))
−

E (fn,K,h(x))

1− F (x)
.

We conclude by applying (57) to the second term in the right-hand side, combined with
the fact that h ∈ Hn follows (5).�
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3.3 Asymptotic certainty bands

We shall now show how Theorem 1 may be used to construct asymptotic certainty bands
for E(fn,K,h(· )) (see, e.g. p.232–233 in Deheuvels and Mason [11], Deheuvels and Derzko
[7], Deheuvels [5]). Given h ∈ Hn fulfilling (5) a sequence of possibly data-dependent
bandwidths and K ∈ K, we consider positive possibly data-dependent functions of the
form

Ln,K,h(x) :=

{∫

R

K2(t)dt

}1/2

×

{
2 log+(1/h)

nh

}1/2

× 1/

{
(1−G(x))

f(x)

}1/2

, for x ∈ I.

It follows from Theorem 1, that for each choice of h ∈ Hn and K ∈ K, as n→ ∞, we have

sup
x∈I

±

{
1

Ln,K,h(x)

}
{fn,K,h(x)− E (fn,K,h(x))}

P
→ 1. (58)

Under (58), for each 0 < ε < 1, we have, as n→ ∞,

P(Efn,K,h(x) ∈ [fn,K,h(x)− (1 + ε)Ln,K,h(x),

fn,K,h(x) + (1 + ε)Ln,K,h(x)], for all x ∈ I,K ∈ K, h ∈ Hn) → 1,

P(Efn,K,h(x) ∈ [fn,K,h(x)− (1− ε)Ln,K,h(x),

fn,K,h(x) + (1− ε)Ln,K,h(x)], for all x ∈ I,K ∈ K, h ∈ Hn) → 0.

Corollary 2 When the two assertions above hold jointly for each 0 < ε < 1, we obtain
intervals which provide asymptotic certainty bands for Efn,K,h(x) over x ∈ I in the sense
of Deheuvels and Mason [11].
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