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We present a sharp uniform-in-bandwidth functional limit law for the increments of the Kaplan-Meier empirical process based upon right-censored random data. We apply this result to obtain limit laws for nonparametric kernel estimators of local functionals of lifetime densities, which are uniform with respect to the choices of bandwidth and kernel. These are established in the framework of convergence in probability, and we allow the bandwidth to vary within the complete range for which the estimators are consistent. We provide explicit values for the asymptotic limiting constant for the sup-norm of the estimation random error.

1 Introduction and main results

An outline of our results

Let X = X 1 , X 2 , . . . be independent and identically distributed [iid] positive lifetimes jointly defined on a probability space (Ω, A, P). We assume that these random variables [rv] . . iid positive censoring times independent of X, X 1 , X 2 , . . ., with continuous df G(• ) := P(C ≤ • ). Let S F := sup{x : F (x) < 1} (resp. S G := sup{x : G(x) < 1}) be the upper endpoint of F (• ) (resp. G(• )), and fix [A, B] ⊆ [0, Θ], with Θ = min(S F , S G ) > 0. In the right censorship model, the data set is given by the rv's {(T i , δ i ) : 1 ≤ i ≤ n}, where, for i = 1, . . . , n,

T i = X i ∧ C i , δ i = ½ {X i ≤C i } ,
and ½ E denotes the indicator function of E. Our assumptions imply that T has df H(• ) := P(T ≤• ) = 1 -(1 -F (• ))(1 -G(• )). The nonparametric maximum likelihood estimators of F (• ) and G(• ) are the product-limit estimators introduced by Kaplan and Meier [START_REF] Kaplan | Nonparametric estimation from incomplete observations[END_REF], and defined, for x ∈ R , by (see, e.g., (1.1) and (1.2) in Deheuvels and Einmahl [START_REF] Deheuvels | Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications[END_REF])

F n (x) := 1 - T i,n ≤x 1≤i≤n 1 - δ i,n n -i + 1 (1) 
and

G n (x) := 1 - T i,n ≤x 1≤i≤n 1 - 1 -δ i,n n -i + 1 , (2) 
where, for all n ≥ 1, T 1,n < . . . < T n,n are the almost surely [a.s.] distinct order statistics of T 1 , . . . , T n , and for each i = 1, . . . , n, δ i,n is the a.s. uniquely defined indicator δ j for which T i,n = T j . The Kaplan-Meier empirical process {α KM n (x) : x ∈ R} is given by

α KM n (x) := n 1/2 (F n (x) -F (x)),
for n ≥ 1 and x ∈ R. For each bandwidth h ≥ 0 and t ∈ R , introduce the increment function ξ KM n (h, t; s)

:= α KM n (t + sh) -α KM n (t), s ∈ R. (3) 
In §1.2 below, we present a limit law for the nonparametric kernel estimator of the lifetime density, which is uniform with respect to the choices of bandwidth and kernel (see, e.g., Theorem 1). This first result follows from a functional limit law for the increments of the Kaplan-Meier empirical process, which is stated in §1.3 (see, e.g., Theorem 2). Proofs of Theorems 1-2 are postponed until §2.1 and §2.2. We shall make an instrumental use of a functional limit law due to Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF] which is described in §2.2.1. In §2.2.2- §2.2.5, we present some preliminaries needed in our proofs. In §3, we give some further applications of Theorem 1. We expose a generalization of Theorem 1 to kernel estimators of local functionals of lifetime densities in §3.1 (see, e.g., Theorem 3). As a consequence of this last result, we provide a limit law for the kernel failure rate estimator in §3.2 (see, e.g., Theorem 4). In §3.3, we construct uniform asymptotic certainty bands for these kernel estimators (see, e.g., Corollary 2).

Kernel lifetime density estimation

Consider the right censorship model of §1.1. Let K denote a collection of kernels, namely right-continuous functions K(• ) on R, of bounded variation and compact support on R, such that R K(t)dt = 1 and there exists an 0 < M < ∞ such that sup K∈K R |dK| ≤ M . The kernel estimator of f (• ) (see, e.g., Watson and Leadbetter [27,[START_REF] Watson | Hazard analysis[END_REF], Tanner and Wong [START_REF] Tanner | The estimation of the hazard function from randomly censored data by the kernel method[END_REF]) is defined, for each K ∈ K, h > 0 and x ∈ R, by

f n,K,h (x) := 1 h ∞ -∞ K x -t h dF n (t), (4) 
where F n (• ) is as in [START_REF] Berlinet | Comparison of kernel density estimates[END_REF]. Fix a non degenerate interval I := [C, D] ⊂ J. Theorem 1 below, describing the uniform in bandwidth and kernel consistency of f n,K,h (•), will be shown to follow from a functional limit law stated in Theorem 2 in the forthcoming §1.3.

Theorem 1 Let 0 < a n ≤ b n ≤ 1 be such that, as n → ∞, b n → 0 and na n log n → ∞. (5) 
Then, with

H n = [a n , b n ], we have, as n → ∞, sup h∈Hn sup K∈K nh 2 log + (1/h) 1/2 sup x∈I ± {f n,K,h (x) -E (f n,K,h (x))} × 1 -G(x) f (x) 1/2 - R K 2 (t)dt 1/2 = o P (1). ( 6 
)
Remark 1 1 • ) It easy to see that, under (5), the limit law (6) holds with the formal replacement of

± {f n,K,h (x) -E (f n,K,h (x))} by |f n,K,h (x) -E (f n,K,h (x))|.
2 • ) Weighted versions of (6), in the spirit of Theorem 3 in §3.1, may be obtained by the same arguments.

3 • ) Our theorem provides uniform asymptotic certainty bands for E(f n,K,h (• )), in the spirit of that given in Deheuvels [START_REF] Deheuvels | One bootstrap suffices to generate sharp uniform bounds in functional estimation[END_REF] (see, e.g., Corollary 2 in §3.3).

We discuss below, the motivation and relevance of Theorem 1, with respect to the literature on functional estimation. Uniform-in-bandwidth results such as that given in Theorem 1, are motivated by the need of describing the limiting behavior of kernel estimators when their bandwidth is possibly random or data-dependent. Many elaborate schemes have been proposed in the statistical literature for constructing bandwidth sequences with asymptotically optimal properties (see, e.g., sections 2.4.1 and 2.4.2 in Deheuvels and Mason [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF], and Berlinet and Devroye [START_REF] Berlinet | Comparison of kernel density estimates[END_REF]). The use of bandwidths h of the form h n := Z n n -1/5 where Z n is a random sequence, stochastically bounded away from 0 and ∞, is often suggested. It turns out that Theorem 1 allows the description of the limiting behavior of the corresponding kernel lifetime density estimators. In the uncensored case, we refer to Einmahl and Mason [START_REF] Einmahl | Uniform in bandwidth consistency of kerneltype function estimators[END_REF], and Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF], for discussions and references on this subject. We should mention that some authors (see, e.g., Epanechnikov [START_REF] Epanechnikov | Non-parametric estimation of a multivariate probability density[END_REF], Marron and Nolan [START_REF] Marron | Canonical kernels for density estimation[END_REF]) have introduced optimal choices of kernels (in a minimum variance sense) such as the Epanechnikov kernel, or canonical kernels, wich fall into K, the general class of kernels we consider. To illustrate the sharpness of the conditions (5) implying [START_REF] Deheuvels | Uniform-in-bandwidth functional limit laws for multivariate empirical processes[END_REF], we set H n = [h n , h n ] in Theorem 1, and observe that, whenever {h n : n ≥ 1} are constants fulfilling, as n → ∞, nh n /log n → ∞, and h n → 0, [START_REF] Deheuvels | Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme[END_REF] and with a fixed kernel function K ∈ K, then, as n → ∞,

nh n 2 log + (1/h n ) 1/2 sup x∈I ± {f n,K,hn (x) -E (f n,K,hn (x))} × 1 -G(x) f (x) 1/2 P → R K 2 (t)dt 1/2 . ( 8 
)
Almost sure versions of (8) have been established, under various sets of assumptions, by Diehl and Stute [START_REF] Diehl | Kernel density and hazard function estimation in the presence of censoring[END_REF] (for c = ∞), Deheuvels and Einmahl [START_REF] Deheuvels | On the strong limiting behavior of local functionals of empirical processes based upon censored data[END_REF][START_REF] Deheuvels | Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications[END_REF], and Giné and Guillou [START_REF] Giné | On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals[END_REF]. We note that (8) and hence [START_REF] Deheuvels | Uniform-in-bandwidth functional limit laws for multivariate empirical processes[END_REF] do not hold almost surely for arbitrary choices of the continuous density f (•) on J, and bandwidth sequences {h n : n ≥ 1} fulfilling [START_REF] Deheuvels | Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme[END_REF]. If we assume, in addition to [START_REF] Deheuvels | Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme[END_REF], that

log(1/h n )/ loglog n → c ∈ (0, ∞], h n ↓ 0, and nh n ↑ ∞, (9) 
then, setting (c + 1)/c := 1 when c = ∞, by Theorem 1.1, pp. 1304-1305 in Deheuvels and Einmahl [START_REF] Deheuvels | Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications[END_REF], we get, a.s., lim sup

n→∞ nh n 2{log + (1/h n ) + loglog n} 1/2 × sup x∈I ± {f n,hn (x) -E (f n,hn (x))} 1 -G(x) f (x) 1/2 = c + 1 c 1/2 R K 2 (t)dt 1/2
, and lim inf

n→∞ nh n 2{log + (1/h n ) + loglog n} 1/2 × sup x∈I ± {f n,hn (x) -E (f n,hn (x))} 1 -G(x) f (x) 1/2 = R K 2 (t)dt 1/2
. This last result is known not to hold in general when the first condition in ( 9) is not fulfilled. Viallon [START_REF] Viallon | Processus empiriques, estimation non paramétrique et données censurées[END_REF] (see, e.g., Maillot and Viallon [20] [26]) has used the theory of empirical processes indexed by functions to obtain a uniform-in-bandwidth convergence theorem in the spirit of [START_REF] Deheuvels | Uniform-in-bandwidth functional limit laws for multivariate empirical processes[END_REF], without the condition of uniformity with respect to kernels. He showed that, for a specified K ∈ K, we have a.s. as n → ∞,

sup h∈Hn nh 2 log + (1/h) 1/2 sup x∈I ± {f n,K,h (x) -E (f n,K,h (x))} × 1 -G(x) f (x) 1/2 P → R K 2 (t)dt 1/2 . ( 10 
)
Here

H n = [h ′ n , h ′′ n ]
, and h ′ n , h ′′ n are sequences of constants fulfilling ( 7)-( 9) together with the additionnal condition 29) below. Independently of the conditions imposed on H n in either Viallon [START_REF] Viallon | Processus empiriques, estimation non paramétrique et données censurées[END_REF] or [START_REF] Deheuvels | Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications[END_REF], which are more strenuous than (5), we should point out that this last result is a much weaker statement than [START_REF] Deheuvels | Uniform-in-bandwidth functional limit laws for multivariate empirical processes[END_REF]. Indeed, the asymptotic limiting constant in [START_REF] Deheuvels | Functional laws of the iterated logarithm for the increments of empirical and quantile processes[END_REF] relies on a specific h ∈ H n , whereas the limit law (6) provides the value of the asymptotic limiting constant for the sup-norm of the estimation random error, uniformly over h ∈ H n , and over K ∈ K.

h ′′ n ≤ [(B -D) ∧ (1 -H 1 (D))] for each n ≥ 1, and H 1 (• ) is as in (

A functional limit law

In this section, we provide a uniform-in-bandwidth functional limit law for the increments of the Kaplan-Meier empirical process. As a consequence of this result, we obtain a uniform-in-bandwidth limit law for the modulus of continuity of this process (see Theorem 2 and Corollary 1 below). Throughout, we will denote by ψ(• ) a specified continuous and positive function on J. Examples of such functions are provided in §3.1. We assume that ψ n is a locally of bounded variation measurable estimator of ψ such that, as n → ∞,

sup x∈I |ψ n (x)/ψ(x) -1| → 0 in probability. ( 11 
) Set log + s := log(s ∨ e) for s ∈ R. Let 0 < a n ≤ b n ≤ 1, n = 1, 2, .
. . be positive constants, and fix

H n := [a n , b n ].
We are concerned with the limiting behavior, as n → ∞, of the set of functions

F KM n,I (h, ψ n ) := ξ KM n (h, t; •) 2h log + (1/h) × ψ n (t) × 1 -G(t) f (t) 1/2 : t ∈ I , (12) 
where h > 0 is restricted to vary in

H n . Denote, by (B[0, 1], U ) (resp. (AC[0, 1], U ))
the set of bounded (resp. absolutely continuous) functions on [0, 1], endowed with the uniform topology U , induced by the sup-norm

f := sup u∈[0,1] |f (u)|. For each ǫ > 0 and f ∈ B[0, 1], set N ǫ (f ) := {g ∈ B[0, 1] : f -g < ǫ}, and, for each A ⊆ B[0, 1], set A ǫ := f ∈A N ǫ (f ), with the convention that ∅ (•) := ∅. Define the corresponding Hausdorff set-distance of A, B ⊆ B[0, 1], by ∆(A, B) = inf θ > 0 : A ⊆ B θ et B ⊆ A θ whenever such a θ exists, ∞ otherwise. ( 13 
) For each f ∈ AC[0, 1], denote by ḟ (u) = d du f (u) the Lebesgue derivative of f for u ∈ [0, 1]. Consider the Hilbert norm defined on B[0, 1] by |f | H :=    1 0 ḟ (u) 2 du 1/2 when f (0) = 0 and f ∈ AC[0, 1], ∞ otherwise.
For each λ > 0, set

S λ := {f ∈ B[0, 1] : |f | H ≤ λ} = {λ 1/2 f : f ∈ S 1 }. (14) 
Notice that S 1 =: S is the unit ball of the reproducing kernel Hilbert space of the usual Wiener process on [0, 1], shown by Strassen [START_REF] Strassen | An invariance principle for the law of the iterated logarithm[END_REF] to be the limit set in the functional law of the iterated logarithm for Wiener processes. Given these notations, our main result is the following uniform-in-bandwidth functional limit law.

Theorem 2 Let 0 < a n ≤ b n ≤ 1 be such that, as n → ∞, b n → 0 and na n log n → ∞. ( 15 
)
Then, with

H n = [a n , b n ], we have, as n → ∞, sup h∈Hn ∆ F KM n;I (h, ψ n ), S Λ = o P (1), ( 16 
)
where

Λ := sup x∈I ψ(x). ( 17 
)
Remark 2 1 • ) In the uncensored case, where G ≡ 0, ψ ≡ 1 and with X following the uniform distribution on [0, 1], Theorem 2 reduces to Theorem 1 (i) of Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF].

2 • ) Deheuvels and Einmahl [START_REF] Deheuvels | On the strong limiting behavior of local functionals of empirical processes based upon censored data[END_REF][START_REF] Deheuvels | Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications[END_REF] established functional limit laws in the spirit of ( 16), but without the uniformity in bandwidth. They considered the case

H n = [h n , h n ]. 3 • )
We shall mention that Viallon [START_REF] Viallon | Processus empiriques, estimation non paramétrique et données censurées[END_REF] obtained a uniform-in-bandwidth functional limit law in the spirit of ( 16), but under more stringent conditions than (15) (see, e.g., the previous discussion in section §1.2).

For the interval I and for any h > 0, consider the statistic

Ω ±KM n;I (h) = sup t∈I ±{α KM n (t + h) -α KM n (t)}.
We obtain the following corollary of Theorem 2.

Corollary 1 Let H n = [a n , b n ] be as in Theorem 2. Then, as n → ∞, we have

sup h∈Hn Ω ±KM n;I (h) 2h log + (1/h) -sup t∈I f (t) 1 -G(t) 1/2 = o P (1).
Remark 3 1 • ) Deheuvels and Einmahl [START_REF] Deheuvels | On the strong limiting behavior of local functionals of empirical processes based upon censored data[END_REF][START_REF] Deheuvels | Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications[END_REF] have given limit laws in the same spirit, but without the uniformity in bandwidth.

Proof. The proof being similar to that of Corollary 1 in Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF], is omitted.

Proofs

Proof of Theorem 1

We provide below a proof of Theorem 1. We will need the following analytical result in the spirit of Lemma 1 in Deheuvels [START_REF] Deheuvels | Uniform-in-bandwidth functional limit laws for multivariate empirical processes[END_REF] (see, e.g., Lemma 1 in Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF]). Let M denote a subset of B[-T, T ], such that S λ ⊆ M ⊆ B[-T, T ], λ > 0, and let Γ denote a non-empty class of mappings Θ : M → R , continuous with respect to the uniform topology on M. We assume that Γ has the following equicontinuity property. For each ǫ > 0, there exists an η(ǫ) > 0 such that, for each φ ∈ M and g ∈ S λ , we have

φ -g < η(ǫ) ⇒ sup Θ∈Γ |Θ(φ) -Θ(g)| < ǫ.
Fact 1 For each ε > 0, there exists an η(ε) > 0 such that, for any F ⊆ M, we have

∆ (F, S λ ) < η(ε) ⇒ sup Θ∈Γ sup g∈F Θ(g) -sup f ∈S λ Θ(f ) < ε. ( 18 
)
Proof of Theorem 1. We follow some of the arguments of the proof of Theorem 2 in Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF]. We reduce the proof to the case where for some 0 < T < ∞, K(u) := K(-u) = 0 for all |u| ≥ T and K ∈ K. We need only (see, e.g., (4.2.5)-(4.2.6) in Deheuvels and Mason [START_REF] Deheuvels | Functional laws of the iterated logarithm for the increments of empirical and quantile processes[END_REF] and (1.22) in Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF]) consider the limiting behavior of

n 1/2 h (f n,K,h (x) -E (f n,K,h (x))) × 1 -G(x) f (x) 1/2 = - T -T α KM n (x + hu) -α KM n (x) × 1 -G(x) f (x) 1/2 d K(u), (19) 
for h ∈ H n , K ∈ K, and with x varying within I = [C, D]. Observe, via ( 19) and (3), that

n 1/2 h (f n,K,h (x) -E (f n,K,h (x))) × 1 -G(x) f (x) 1/2 = - T -T ξ KM n (h; x; u) × 1 -G(x) f (x) 1/2 d K(u).
It follows from Theorem 2 that, for each η 0 > 0, we have, as n → ∞,

P sup h∈Hn ∆ ξ KM n (h; x; • ) 2h log + (1/(h)) × 1 -G(x) f (x) 1/2 : x ∈ I , S 1 ≥ η 0 → 0. ( 20 
)
By Fact 1, taken with Θ(g) :=

T -T ∓g(u)d K(u) and M being the set of all integrable functions g(• ) on [-T, T ] with g(0) = 0, for each ε > 0, there exists an η > 0 fulfilling [START_REF] Giné | On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals[END_REF]. If we set η 0 = η in (20), we infer from ( 18) and ( 20) that, as n → ∞,

P sup h∈Hn sup K∈K sup x∈I ±n 1/2 h f n, K,h (x) -E f n, K,h (x) 2h log + (1/(h)) × 1 -G(x) f (x) 1/2 -sup f ∈S 1 T -T ∓f (u)d K(u) ≥ ε → 0. ( 21 
)
It is readily checked (see, e.g., (4.2.11) in Deheuvels and Mason [START_REF] Deheuvels | Functional laws of the iterated logarithm for the increments of empirical and quantile processes[END_REF]) that sup

f ∈S 1 T -T ∓f (u)d K(u) = R K 2 (u)du 1/2
.

Therefore, we obtain that, for all ε > 0, as n → ∞,

P sup h∈Hn sup K∈K nh 2 log + (1/h) 1/2 sup x∈I ± {f n,K,h (x) -E (f n,K,h (x))} × 1 -G(x) f (x) 1/2 - R K 2 (t)dt 1/2 ≥ ε → 0. ( 22 
)
This completes the proof of Theorem 1.

Proof of Theorem 2

2.2.1 A functional limit law in the uncensored case

We will make use of a functional limit law due to Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF]. The following notation is needed for the statement of this result, stated in Fact 2 below. Let U 1 , U 2 , . . . be iid random variables with a uniform distribution on (0, 1). Denote by

U n (u) := n -1 #{U i ≤ u : 1 ≤ i ≤ n} for u ∈ R, (23) 
the empirical df based upon the first n ≥ 1 of these observations, with # denoting cardinality. Let,

α n (u) := n 1/2 (U n (u) -u) for u ∈ R, (24) 
denote the uniform empirical process. For each choice of h > 0 and t ∈ [0, 1], consider, the increment function

ξ n (h; t; u) := α n (t + hu) -α n (t) for u ∈ R, (25) 
together with the set of functions, defined, for h > 0, by

F n,I,γ (h) := ξ n (γh; t; •) 2h log + (1/h) : t ∈ [0, 1 -h] ∩ I , (26) 
where γ > 0 and I := [r, s] ⊆ [0, 1] is a specified interval, with r < s. The functional limit law stated in Fact 2 below, is a version of Theorem 1 (i) in Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF]. 

Notation

In this section, we will adopt some basic notation taken from Deheuvels and Einmahl [START_REF] Deheuvels | Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications[END_REF]. For any locally of bounded variation function L(• ) (possibly discontinuous), we set L(x-) := lim t x L(t) and L(x+) := lim t x L(t). The distribution function of T , denoted for x ∈ R , by H(x) = H(x+), may be decomposed into

H(x) = 1 -(1 -F (x))(1 -G(x)) =: H 1 (x) + H 0 (x),
with

H 1 (x) := P (T ≤ x and δ = 1) = x 0 (1 -G -(t))dF (t) = H 1 (x+), (29) 
and H 0 (x) := P (T ≤ x and δ = 0) =

x 0 (1 -F -(t))dG(t) = H 0 (x+).
The empirical counterparts of H(• ), H 1 (• ) and H 0 (• ) are defined, for x ∈ R, by

H n (x) := n -1 #{T i ≤ x : 1 ≤ i ≤ n} =: H n,1 (x) + H n,0 (x), with H n,1 (x) := n -1 #{δ i T i ≤ x : 1 ≤ i ≤ n} and H n,0 (x) = n -1 #{(1 -δ i )T i ≤ x : 1 ≤ i ≤ n}.
Consider the empirical processes H n,j (x) := n 1/2 (H n,j (x) -H j (x)) for j = 0, 1 and x ∈ R.

Introduce the empirical cumulated failure rate function defined by

Λ n (x) = x 0 1 1 -H n-(u) dH n,1 (u) = Λ n (x+) for x ≥ 0.
The Kaplan-Meier estimators F n (• ) and G n (• ) defined in ( 1) and ( 2) can be rewritten into, for x ∈ R (see, e.g., p.295 in Shorack and Wellner [START_REF] Shorack | Empirical processes with applications to statistics[END_REF]).

F n (x) := 1 - T i,n ≤x 1≤i≤n 1 - δ i,n n -i + 1 = x 0 (1 -F n-(u)) dΛ n (u) = x 0 1 1 -G n-(u) dH n,1 (u),
and likewise

G n (x) := x 0 1 1 -F n-(u)
dH n,0 (u).

Some useful facts

First, we decompose the Kaplan-Meier empirical process into (see, e.g., (4.18) in Deheuvels and Einmahl [START_REF] Deheuvels | Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications[END_REF])

α KM n (x) = x 0 1 1 -G n-(u) dH n,1 (u) + x 0 β n-(u) 1 -G n-(u) dF (u) =: α ′ n (x) + α ′′ n (x). (31) 
Throughout, we will work on the probability space of Deheuvels and Einmahl [START_REF] Deheuvels | On the strong limiting behavior of local functionals of empirical processes based upon censored data[END_REF], defined via the following fact.

Fact 3 On a suitably enlarged probability space (Ω, A, P), it is possible to define {X n : n ≥ 1} and {Y n : n ≥ 1} jointly with a sequence {U n : n ≥ 1} of iid random variables with a uniform distribution on (0, 1), such that the following properties hold. We have, almost surely,

H n,1 (x) = U n (H 1 (x)) for 0 < H 1 (x) < p and H n,0 (x) = U n (H 0 (x) + p) -U n (p) for 0 < H 0 (x) < 1 -p,
where p = P(δ = 1) and U n (• ) is as in [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF].

In the next fact, (32) follows from the Dvoretzky, Kiefer and Wolfowitz type inequality for the Kaplan-Meier estimator (see, e.g., Theorem 2 in Földes and Rejtő [START_REF] Földes | A LIL type result for the product limit estimator[END_REF], and Theorem 1 in Bitouzé et al. [START_REF] Bitouzé | A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator[END_REF]). Denote by {β KM n (t) : t ∈ R} the Kaplan-Meier empirical process for censoring times, defined, for n ≥ 1 and x ∈ R, by (32)

β KM n (x) := n 1/2 (G n (x) -G(x)).

Preliminaries lemmas

In this section, we provide three lemmas in the spirit of Lemmas 4.1-4.3 in Deheuvels and Einmahl [START_REF] Deheuvels | Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications[END_REF]. The first lemma allows us to evaluate the modulus of continuity of α ′ n (• ). The second lemma shows that the oscillations of α ′′ n (• ) can be neglected in forthcoming evaluations needed in our proofs. The third lemma provides an approximation of the increments ξ KM n (h, t; s) for any h ∈ H n . We work throughout on the probability space of Fact 3. In view of ( 24) and (30), we set,

ω n,1 (h) := sup s,t∈I |t-s|≤h |H n,1 (t) -H n,1 (s)| = sup s,t∈I |t-s|≤h |α n (H 1 (t)) -α n (H 1 (s))| , h > 0 (33)
and

ω * n,1 := sup h∈Hn ω n,1 (h) 2h log + (1/h) . (34) 
Now, in view of (31), for s, t ∈ R , consider (see, e.g., (4.25) in Deheuvels and Einmahl [START_REF] Deheuvels | Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications[END_REF])

A n,1 (s, t) := α ′ n (t) -α ′ n (s) - 1 1 -G -(s) t s dH n,1 (u) = 1 1 -G n-(t) - 1 1 -G -(s) {H n,1 (t) -H n,1 (s)} - t s {H n,1 (u) -H n,1 (s)}d 1 1 -G n-(u) . ( 35 
) Lemma 1 We have, as n → ∞, sup h∈Hn sup s,t∈I |t-s|≤h |A n,1 (s, t)| 2h log + (1/h) = ω * n,1 × o P (1). ( 36 
)
Proof. Making use of Fact 4, for all n ≥ 1, we get

sup t∈I 1 1 -G n-(t) - 1 1 -G -(t) = O P (n -1/2 ). ( 37 
)
Since G(• ) is continuous on J, we see that, as n → ∞,

sup h∈Hn sup s,t∈I |t-s|≤h 1 1 -G -(t) - 1 1 -G -(s) = o P (1). ( 38 
)
By combining the definition (34) of ω * n,1 with the observations (37) and (38), as n → ∞, we get the relations sup h∈Hn sup s,t∈I |t-s|≤h

1 2h log + (1/h) 1 1 -G n-(t) - 1 1 -G -(s) {H n,1 (t) -H n,1 (s)} ≤ ω * n,1 × sup t∈I 1 1 -G n-(t) - 1 1 -G -(t) + sup h∈Hn sup s,t∈I |t-s|≤h 1 1 -G -(t) - 1 1 -G -(s) = ω * n,1 × O P (n -1/2 ) + o P (1) = ω * n,1 × o P (1)
. Likewise, we observe that, as n → ∞,

sup h∈Hn sup s,t∈I |t-s|≤h 1 2h log + (1/h) t s {H n,1 (u) -H n,1 (s)}d 1 1 -G n-(u) ≤ ω * n,1 × sup h∈Hn sup s,t∈I |t-s|≤h 1 1 -G n-(t) - 1 1 -G n-(s) = ω * n,1 × 2O P (n -1/2 ) + o P (1) = ω * n,1 × o P (1) 
. We combine the two above inequalities to conclude (36).

Lemma 2 Fix any 0 < R < Θ. Then, for all n ≥ 1, we have uniformely over all

0 ≤ s ≤ t ≤ R, α ′′ n (t) -α ′′ n (s) = t s β KM n-(u) 1 -G n-(u) dF (u) = O P (1) × |t -s|. (39) 
Proof. Set c(R) = sup 0≤u≤R |f (u)|. Making use of Fact 4 , we obtain for all n ≥ 1,

t s β KM n-(u) 1 -G n-(u) dF (u) ≤ 1 1 -G n-(R) × sup 0≤u≤R β KM n-(u) × {F (t) -F (s)} ≤ c(R) 1 -G(R) × O P (1) × |t -s| = O P (1) × |t -s|.
For each h ≥ 0 and t ∈ R, set

ξ KM n,1 (h; t; s) := 1 1 -G -(t) {H n,1 (t + hs) -H n,1 (t)} = 1 1 -G -(t) {α n (H 1 (t + hs)) -α n (H 1 (t))} , for s ∈ R. (40) 
Lemma 3 As n → ∞, we have

sup h∈Hn sup t∈I 1 2h log + (1/h) ξ KM n (h; t; • ) -ξ KM n,1 (h; t; • ) = ω * n,1 × o P (1) + O P b n 2 log + (1/a n ) =: A n + B n . (41) 
Proof. In view of the definitions (3), (31), ( 35) and (40), observe that sup

h∈Hn sup t∈I ξ KM n (h; t; • ) -ξ KM n,1 (h; t; • ) ≤ sup h∈Hn sup t∈I s∈[0,1] α ′′ n (t + hs) -α ′′ n (t) + sup h∈Hn sup t∈I s∈[0,1]
|A n,1 (t, t + sh)| , and combine (36) of Lemma 1 with (39) of Lemma 2. This completes our proof.

Approximations and a functional limit law

The purpose of this section is to approximate (3) the increment function of the Kaplan-Meier empirical process, by a specified increment function of the uniform empirical process (see, e.g., [START_REF] Tanner | The estimation of the hazard function from randomly censored data by the kernel method[END_REF], , in view of an application of (50) a new functional limit law, we provide in Lemma 6. For

I = [u, v] ⊆ [0, 1] with u < v, consider the statistic ω ± n (h, I) := sup s,t∈I |t-s|≤h ±{α n (t) -α n (s)}. ( 42 
)
In view of Fact 2, the following fact hold (see, e.g., Corollary 1 in Deheuvels and Ouadah [START_REF] Deheuvels | Uniform in bandwidth functionnal limit laws[END_REF]).

Fact 5 Let H n = [a n , b n ] and I be as in Fact 2. Then, as n → ∞, for any γ > 0, we have 

sup h∈Hn ω ± n (γh, I) 2h log + (1/h) -γ 1/2 = o P (1). (43) 
Proof. Set

κ = max u∈I ϕ(u) := max u∈I f (u)(1 -G(u)) > 0. (45) 
By [START_REF] Zhang | A law of the iterated logarithm for kernel estimators of hazard functions under random censorship[END_REF] and the mean value theorem, we have uniformly over s, t ∈ I,

|H 1 (t) -H 1 (s)| ≤ κ|t -s|. (46) 
This inequality, when combined with the definitions (33) and (42) implies that for all h ∈ H n , ω n,1 (h) ≤ ω ± n (κh, I). Whence, by (34) the definition of ω * n,1 and (43) of Fact 5, for each ε 0 > 0, as n → ∞

P ω * n,1 ≥ ε 0 + κ 1/2 → 0.
By combining the previous observation with the fact that by condition [START_REF] Watson | Hazard analysis[END_REF],

B n = O P b n 2 log + (1/a n ) = o P (1) ,
we see that, for each ε > 0, as n → ∞,

P (|A n + B n | ≥ ε) → 0,
with A n defined in (41). Hence, we infer from (41) that, as n → ∞, (44) holds.

Let N ≥ 1 be an arbitrary fixed integer. 

1 2h log + (1/h) ξ KM n,1 (h; t; • ) - ξ n (ϕ(t i,N )h; H 1 (t); • ) 1 -G(t) = o P (1). ( 47 
)
Proof. Set

ǫ N := max 1≤i≤n sup t i,N ≤t≤t i+1,N +h |f (t)(1 -G(t)) -f (t i,N )(1 -G(t i,N ))| .
Making use of the mean value theorem in combination with the above definition, we see that, for all 1 ≤ i ≤ N , t ∈ [t i,N , t i+1,N ] and s ∈ [0, 1], for all large n,

|H 1 (t + sh) -H 1 (t) -sϕ(t i,N )h| ≤ ǫ N h.
Therefore, in view of the definitions ( 25)-( 40), we obtain the inequality

sup h∈Hn sup t∈I 1 2h log + (1/h) ξ KM n,1 (h; t; • ) - ξ n (ϕ(t i,N )h; H 1 (t); • ) 1 -G(t) ≤ 1 1 -G(D) × sup h∈Hn ω ± n (ǫ N h, I) 2h log + (1/h) .
This, when combined with (43) of Fact 5 and the fact that, by choosing N large enough, ǫ N > 0 may be rendered as small as desired, implies (47). Now, let R denote a continuous and positive function on J and define

M 1/2 := sup t∈I R(t) f (t) 1 -G(t) 1/2 . ( 48 
)
The next lemma concerns the joint in h ∈ H n limiting behavior, as n → ∞, of the set of functions 3 Some applications

G n,I (h, R) := R(t) 1 -G(t) × ξ n (ϕ(t i,N )h; H 1 (t); • ) 2h log + (1/h) : t ∈ I . (49 

A generalization of Theorem 1

We provide below a more general setup of Theorem 1. Introduce the following examples of continuous and positive functions on J (see, e.g., (1.13) in Deheuvels and Einmahl [START_REF] Deheuvels | Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications[END_REF]):

ψ (1) (x) = 1, ψ (2) (x) = 1 1 -G(x) , ψ (3) (x) = f (x), ψ (4) (x) = f (x) 1 -G(x) , ψ (5) (x) = f (x)ϕ(x) (1 -F (x)) 2 (1 -G(x)) , (53) 
where ϕ(• ) is an auxiliary continuous and positive function on J. We shall obtain ψ n (• ) a locally of bounded variation measurable estimator of ψ by replacing in (53) the functions

f (• ), F (• ) and G(• ) by f n,K,h (• ), F n (• ) and G n (• ), respectively. Recall that ψ n (• ) is such that, as n → ∞, sup x∈I |ψ n (x)/ψ(x) -1| → 0 in probability.
The next theorem describes the uniform in bandwidth and kernel consistency of a series of kernel estimators of local functionals of lifetime densities.

Theorem 3 Let H n = [a n , b n ] be as in Theorem 2. Then, as n → ∞, sup h∈Hn sup K∈K nh 2 log + (1/h) 1/2 sup x∈I ± {f n,K,h (x) -E (f n,K,h (x))} × ψ n (x) × 1 -G(x) f (x) 1/2 -σ(ψ, K) = o P (1), ( 54 
) with σ(ψ, K) := sup x∈I ψ(x) R K 2 (t)dt 1/2 . Remark 4 1 • ) The replacement of F (• ) by F n (• ) in ψ (5) (• )
, defined in (53), corresponds to an estimator of the hazard rate function λ n,K,h (• ) wich will be considered in §3.2. Our results also apply to this estimator.

Proof of Theorem 3. The proof is essentially identical to the proof of Theorem 1, taking into account the function ψ(• ) and its estimator ψ n (• ).

Kernel failure rate estimation

Denote the failure rate function pertaining to F (• ) by

λ(x) := f (x) 1 -F (x) for x ∈ R. (55) 
We consider λ n,K,h (• ) the estimator of λ(• ) defined, for K ∈ K, h > 0 and x ∈ R, by

λ n,K,h (x) := f n,K,h (x) 1 -F n (x) , (56) 
where f n,K,h (• ) is as in (4) and F n (• ) as in [START_REF] Berlinet | Comparison of kernel density estimates[END_REF]. The following theorem, describing the uniform in bandwidth and kernel consistency of λ n,K,h (•), follows from Theorem 3.

Theorem 4 Let 0 < a n ≤ b n ≤ 1 be such that, as n → ∞, b n → 0 and na n log n → ∞. Then, with H n = [a n , b n ], we have, as n → ∞, sup h∈Hn sup K∈K nh 2 log + (1/h) 1/2 sup x∈I ± λ n,K,h (x) - E (λ n,K,h (x)) 1 -F (x) × ψ n (x) × 1 -H(x) λ(x) 1/2 -σ(ψ, K) = o P (1), with σ(ψ, K) := sup x∈I ψ(x) R K 2 (t)dt 1/2 .
Remark 5 1 • ) The uniform consistency of λ n,K,h (•) over bounded intervals was investigated in Zhang [START_REF] Zhang | A law of the iterated logarithm for kernel estimators of hazard functions under random censorship[END_REF], and Deheuvels and Einmahl [START_REF] Deheuvels | Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications[END_REF].

2 • ) Our theorem can be used to construct uniform asymptotic certainty bands for λ(• ), in the spirit of that given in Deheuvels [START_REF] Deheuvels | One bootstrap suffices to generate sharp uniform bounds in functional estimation[END_REF] (see, e.g., §3.3).

Proof of Theorem 4. We will make use of the next fact, which is a Dvoretzky, Kiefer and Wolfowitz type inequality for the Kaplan-Meier empirical process (see, e.g., Theorem 2 in Földes and Rejtő [START_REF] Földes | A LIL type result for the product limit estimator[END_REF], and Theorem 1 in Bitouzé et al. [START_REF] Bitouzé | A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator[END_REF]). ≥ ε → 0.

Observe that

λ n,K,h (x) - E (f n,K,h (x)) 1 -F n (x) = λ n,K,h (x) - E (f n,K,h (x)) (F n (x) -F (x)) (1 -F n (x))(1 -F (x)) - E (f n,K,h (x)) 1 -F (x) .
We conclude by applying (57) to the second term in the right-hand side, combined with the fact that h ∈ H n follows (5).

Asymptotic certainty bands

We shall now show how Theorem 1 may be used to construct asymptotic certainty bands for E(f n,K,h (• )) (see, e.g. p.232-233 in Deheuvels and Mason [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF], Deheuvels and Derzko [START_REF] Deheuvels | Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme[END_REF], Deheuvels [START_REF] Deheuvels | One bootstrap suffices to generate sharp uniform bounds in functional estimation[END_REF]). Given h ∈ H n fulfilling (5) a sequence of possibly data-dependent bandwidths and K ∈ K, we consider positive possibly data-dependent functions of the form 

L n,K,h (x) := R K 2 (t
P(Ef n,K,h (x) ∈ [f n,K,h (x) -(1 -ε)L n,K,h (x), f n,K,h (x) + (1 -ε)L n,K,h (x) 
], for all x ∈ I, K ∈ K, h ∈ H n ) → 0.

Corollary 2 When the two assertions above hold jointly for each 0 < ε < 1, we obtain intervals which provide asymptotic certainty bands for Ef n,K,h (x) over x ∈ I in the sense of Deheuvels and Mason [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF].

  have common continuous distribution function [df] F (•) := P(X ≤ •) and density f (• ) := ∂F (•) ∂• , continuous and positive on J := [A, B] ⊆ R . Denote by C, C 1 , C 2 , .

Fact 2

 2 Assume that 0 < a n ≤ b n ≤ 1 are such that, as n → ∞, b n → 0 and na n log n → ∞. (27) Then, with H n = [a n , b n ], for any γ > 0 and I = [u, v] ⊆ [0, 1] with u < v, we have, as n → ∞, sup h∈Hn ∆ (F n,I,γ (h), S γ ) = o P (1).

Fact 4

 4 For any specified 0 ≤ R < Θ, we have, for all n ≥ 1, sup 0≤t≤R β KM n (t) = O P (1).

Lemma 4

 4 When H n = [a n , b n ] verifies the assumption (27) of Fact 2, we have, as n → ∞, t; • )ξ KM n,1 (h; t; • ) = o P (1).

For 1 ≤Lemma 5

 15 i ≤ N , set t i,N = C + (i -1)N -1 (D -C), where [C, D] = I, and recall the definitions (25) of the increment of the uniform empirical process and (45) of the function ϕ(• ). When H n = [a n , b n ] verifies the assumption (27) of Fact 2, for all N sufficiently large, we have, as n → ∞, sup h∈Hn sup t∈I

) Lemma 6

 6 When H n = [a n , b n ] verifies the assumption (27) of Fact 2, we have, as n → ∞, sup h∈Hn ∆ (G n,I (h, R), S M ) = o P (1).(50)

Fact 6 1 - 2 ≥± 1 -

 6121 For any specified 0 ≤ R < Θ, we have, for all n ≥ 1relation[START_REF] Shorack | Empirical processes with applications to statistics[END_REF] in the proof of Theorem 3, in which we includeψ n (• ). For all ε > 0, as n → ∞, we have n,K,h (x) -E (f n,K,h (x))} × ψ n (x) × ε → 0.We shall make the formal replacement of ψ n (• ) by1 -F (• ) 1 -F n (• ) 2 ψ n (• ).Thus, by (55)-(56) the definitions of λ(• ) and λ n,K,h (• ), and the relationH ≡ 1 -(1 -F )(1 -G), we obtain, as n → ∞, λ n,K,h (x) -E (f n,K,h (x)) 1 -F n (x) × ψ n (x) ×

  )dtIt follows from Theorem 1, that for each choice of h ∈ H n and K ∈ K, as n → ∞, we havesup x∈I ± 1 L n,K,h (x) {f n,K,h (x) -E (f n,K,h (x))}Under (58), for each 0 < ε < 1, we have, as n → ∞,P(Ef n,K,h (x) ∈ [f n,K,h (x) -(1 + ε)L n,K,h (x), f n,K,h (x) + (1 + ε)L n,K,h (x)], for all x ∈ I, K ∈ K, h ∈ H n ) → 1,

	1/2	×	2 log + (1/h) nh	1/2	× 1/	(1 -G(x)) f (x)	1/2	, for x ∈ I.
						P → 1.		(58)

Proof. Fix any ǫ, ǫ 0 > 0 and consider I = [C, D]. In view of [START_REF] Diehl | Kernel density and hazard function estimation in the presence of censoring[END_REF] the definition of the Haussdorf set-distance, we need only prove that, for each ǫ > 0, as n → ∞,

(ii)

Recall the set of functions [START_REF] Viallon | Processus empiriques, estimation non paramétrique et données censurées[END_REF]. Since {H 1 (t) : t ∈ I} ⊆ [0, 1], we observe that, for all h ∈ H n ,

so that, as a consequence of (28) of Fact 2, for each t ∈ I and for each h ∈ H n , there exists a function g ∈ S (see definition ( 14)), such that

Therefore, by the above assertion and ( 48)-( 49), the assertion (51)(i) holds. We now establish (51)(ii). Considering a function

, for all ǫ > 0, there exists a t 0 ∈ I such that

Consider the function g

) , we observe that g * ∈ S M . Then, we just choose t 0 = H 1 (t) to complete the proof of (51)(ii).

Proof of Theorem 2

We have now in hand all the necessary ingredients for proving Theorem 2. We have the following relation

.

Therefore, by [START_REF] Földes | A LIL type result for the product limit estimator[END_REF] the definition of Λ and (48) the one of M , we see that

Considering the definitions ( 12)-(48) of the set of functions F KM n,I (h, ψ n ) and M , we shall combine the approximations (44) and (47) with the functional limit law (50). By [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF], the theorem holds for ψ(• ) replaced by ψ n (• ).