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Abstract—Smartphones, tablets, netbooks and laptops are
intensively used every day by a large part of the population. These
devices—which are equipped with Wi-Fi interfaces—can form
disconnected mobile ad hoc networks (DMANETs) dynamically.
These networks may allow service providers, such as local
authorities, to deliver new kinds of services in a wide area (e.g.,
a city) without resorting to the infrastructure-based networks of
mobile phone operators. This paper1 presents OLFServ, a new
location-aware forwarding protocol dedicated to service-oriented
opportunistic computing in DMANETs. This protocol implements
several self-pruning heuristics allowing mobile nodes to decide
whether they efficiently contribute in the message delivery. The
protocol has been implemented in a service-oriented middleware
platform, and has been validated through simulations, which
proved its efficiency.

Keywords—Opportunistic Computing, Mobile Ad hoc Net-
works

I. INTRODUCTION

Over the last years, handheld devices such as smartphones

or tablets have become widely spread and used through the

population. These devices, which are equipped with wire-

less communication interfaces—often complemented by GPS

(Global Positioning System) receivers and various sensors—,

allow their users to connect to the Internet and to use services

hosted in remote servers just as if they were at home using

a wired connection. This kind of service provision knows a

great development, but it relies on a fixed and often heavy

infrastructure, and is not without constraints for the client

when considering for instance the cost of resorting to licensed

frequency bands (Universal Mobile Telecommunications Sys-

tem, General Packet Radio Service) or the limited geographical

scope of a Wi-Fi hotspot.

An alternative has been envisioned since several years

through mobile ad hoc networking. Mobile handheld devices

can form mobile ad hoc networks spontaneously, and this

ability can be exploited in order to artificially extend networks

composed of some sparsely distributed infostations with a view

to offering a wide service access to end-users. An illustration

of this kind of network is shown in Figure 1: devices with

Wi-Fi interfaces operated in ad hoc mode are present in the

environment; most of them are hold by mobile users and few

of them, the infostations, are fixed. In practice, because of

the potentially low density of devices, their mobility and the

1This paper is an extended version of a previous description of our work [1].
It gives a more detailed explanation of the rationale and mechanics of the
proposed protocol, as well as complementary experimentation results.

short communication range of wireless interfaces, the topology

of such networks suffers from frequent and unpredictable

changes. The network is regularly fragmented in several

distinct communication islands thus entailing an intermittent

connectivity between devices and the impossibility to ensure

an end-to-end connectivity. For these reasons, this type of

network is called a DMANET for Disconnected Mobile Ad

hoc Network.

In DMANETs, devices can communicate directly only when

they are in range of one another. Intermediate nodes can

be used to relay a message from a source to its destination

following the “store, carry and forward” principle. The routes

are therefore computed dynamically at each hop while the

messages are forwarded towards their destination(s). Each

node receiving a message for a given destination is thus

expected to transmit a copy of the message to one or several

of its neighbors. When no forwarding opportunity exists (e.g.,

no other nodes are in the transmission range, or the neighbors

are evaluated as not suitable for that communication) the node

stores the message and waits for future contact opportunities

with other devices to forward the message. Thanks to this

principle, a message can be delivered even if the client and

the destination are not present simultaneously in the network,

or if they are not in the same network island at emission time.

Devising an efficient routing based on the “store, carry, and

forward” principle has been the subject of many research ef-

forts in the so-called domain of Opportunistic Networking [2].

The main problem is to establish a compromise between

the speed at which the message reaches its destination and

the resources consumed globally in the network, namely the

storage space required in the intermediate devices and the

bandwidth used when transmitting messages between devices.

Flooding the network with copies of the message is known to

be the fastest way to attain the destination in theory but its cost

is considered prohibitive. On the other hand, keeping a single

copy of the message in the network and passing it from one

device to its neighbor when possible is an economical solution

but tends to slow down—if not jeopardize—the propagation

of the message towards its destination. A common approach

is to allow an intermediate device to generate a limited

number of copies of the message and leverage on contextual

information for selecting the best devices to which these copies

are conveyed. The considered context can take various forms,

related for instance to records of encounters with other devices

or to device’s location.

Although routing is a key aspect in DMANETs, it should not



Figure 1. Illustration of a disconnected MANET formed by infostations and
devices carried by people strolling in a city.

be considered as the ultimate objective but rather as a first step

towards middleware tools adapted to distributed application

development. Indeed, legacy applications (often based on

strong connectivity assumptions) cannot be straightforwardly

transposed into the specific context of DMANETs, or do

not take full benefit of the pervasive aspect of DMANETs.

The effective emergence of new applications is dependent on

the capacity to discover, compose and exploit heterogeneous

resources spread on a disconnected network. The notion of

Opportunistic Computing has been introduced to emphasize

the gap between issues related to opportunistic networking,

that mainly aims at forwarding message packets, and those

related to application design and implementation [3], [4].

Because of its intrinsic loosely-coupled nature well adapted

to opportunistic computing, a first obvious paradigm to inves-

tigate is service provisioning: hardware or software resources

available in the network are abstracted as services. A service

is hosted by a device that plays the role of service provider.

Other devices in the network, acting as clients, will try to

discover provided services so as to be able to invoke them

remotely. An intermediate selection phase may take place

before invocation, when the client is able to choose between

several services. Service provisioning in connected networks

has been extensively explored (Web Services are a well-

known example) but in the framework of DMANETs, issues

regarding discovery, selection and invocation introduced by

this paradigm are seldom addressed2. The case in which

services are provided only by fixed infostations is particularly

interesting because the range of services susceptible to be

deployed on this kind of platforms is very large compared

with what can be done on mobile devices. Indeed, infostations

are stable, not as constrained as mobile devices in terms

of resources (primarily regarding power), and their potential

connection to the Internet allows an easy access to a huge

amount of information.

This paper presents OLFServ, a new opportunistic and

location-aware forwarding protocol we have designed in order

to support both service discovery and service invocation in

2To our knowledge, except in our previous work, service provisioning in
opportunistic networks has been specifically studied only by the European
SCAMPI project (http://www.ict-scampi.eu).

DMANETs. OLFServ is a key element of a middleware

platform we develop to investigate service provisioning in

DMANETs [5]. Based on the location data collected by the

platform from the wireless interface and/or the GPS receiver

of the device, OLFServ makes it possible to perform an

efficient and geographically-based broadcast of both service

advertisements and service discovery requests, as well as

a location-driven service invocation. OLFServ implements

several self-pruning heuristics allowing intermediates nodes

to decide themselves if they are “good” relays to deliver

the messages they receive from their neighbors (i.e., if they

contribute to bring a message closer to its destination). These

heuristics aim to

• progressively refine the area where a message can be

disseminated until reaching its destination;

• perform source routing when it is possible;

• support the client mobility by computing the area where

the client is expected to be when it receives its response;

• avoid message collisions by implementing a backoff

mechanism.

Thanks to these heuristics, only a small subset of relevant

intermediate nodes will forward the messages in given geo-

graphical areas or in given directions.

The remainder of the paper is organized as follows. Sec-

tion II brings to the fore the main issues that must be addressed

in order to discover and to deliver some services in DMANETs

efficiently. Section III presents the assumptions on which

protocol OLFServ is based, the detailed specifications of the

self-pruning heuristics it implements, and how it works on

an example. Section IV presents some simulations results we

obtained for OLFServ. Research works dealing with routing

protocols in DMANETs are presented in Section V. Section VI

summarizes our contribution.

II. RATIONALE FOR SERVICE-ORIENTED

OPPORTUNISTIC COMPUTING

When targeting DMANETs, the service-oriented oppor-

tunistic computing paradigm introduces new issues compared

to the mere provision of message passing. These issues pertain

namely to the discovery, the selection and the invocation

of pervasive services, imposing de facto the design of new

routing protocols suited to both discovery and delivery of

services, as well as the development of middleware platforms

supporting distributed computing tasks in environments where

disconnections and network partitions are the rule. These

aspects are discussed in the remainder of this section.

A. Service discovery

In disconnected, or partially connected, MANET, no device

is stable enough, or accessible permanently, to act as a service

registry. Mobile clients should therefore be responsible for dis-

covering the services offered in the network reactively and/or

proactively, and for maintaining their own list of services. The

reactive discovery is usually achieved by processing the unso-

licited service advertisements broadcast by service providers,

while the proactive discovery is performed by broadcasting



service discovery requests in the network and by processing

the advertisements returned in response by providers. In such

a distributed discovery process, all mobile nodes receiving

an advertisement or a discovery request are not expected to

rebroadcast this message systematically and immediately, be-

cause if they do so, they will generate too much network traffic

and could even lead to network congestion. To cope with this

problem, which is known as the broadcast storm problem [6],

some heuristics must be devised in order to reduce the number

of senders and to broadcast the messages asynchronously.

Moreover, based on the “store, carry and forward” principle,

the discovery messages can be disseminated in a wide area,

even if the services are relevant only in a restricted one.

Thus, it seems to be suitable to circumscribe the dissemination

of these messages geographically, as well as to limit their

dissemination in the network by defining a life time and a

maximum number of hops.

B. Service selection

A selection process may precede the invocation, when the

opportunity is given to the client application to choose among

several service providers. Thus, it could be interesting to

select a provider according to its location, and to transparently

select another one among a set of relevant ones when the

current provider becomes inaccessible. In previous works, we

proposed two different solutions for this issue: one that relies

on a content-based service invocation [7] and another one that

relies on a dynamic and transparent update of the service

references [5]. These two solutions have been implemented

in the service management layer of our middleware platform.

C. Service invocation

In opportunistic networks, no end-to-end routes are main-

tained between a client and a provider by an underlying

dynamic routing protocol such as AODV or OLSR. A priori,

a node does not know which is the best next forwarder

among its neighbors for reaching the destination. In order to

avoid a “blind” message forwarding, some solutions have been

proposed over the last years [8], [9], [10], [11], [12], [13].

These solutions mainly rely on the computation of a delivery

probability based on contextual properties [12], on a history

of contacts [10], or on both [13], [9]. Nevertheless, these

solutions often consider that nodes move following regular

mobility patterns, and that their future (direct or indirect)

encounters can be predicted. Computing such an history and

a prediction is a tricky problem, especially in an environment

where people often stroll and move randomly such as in a

city, questioning de facto such assumptions. Moreover, during

the invocation process, such probabilities must be computed

twice: once in order to deliver the invocation request to the

service provider, and another time to deliver the response to the

client. Indeed, the client and the intermediate nodes are likely

to move during this process, the forwarding path followed by

the response can therefore be different from that taken by the

request.

In order to increase the message delivery ratio and to reduce

the delivery time, several copies of a message are usually

generated in the network. In order not to process a request or

a response several times, such a redundancy should be hidden

from both the client applications and the software services,

and be controlled by the routing protocol itself. Moreover, a

mobile node should stop forwarding a request for which it has

already received a response.

Opportunistic communications introduce a certain delay

in the service discovery and invocation processes. Although

client applications must be able to tolerate this delay and

to deal with extended disconnection periods, it is suitable to

devise solutions that provide end-users with a certain quality of

service in term of responsiveness. Consequently, the protocol

should not implement a purely periodic and proactive message

emission, but instead should adopt a reactive behavior as far

as possible. It should be sensitive to events such as the arrival

of a new neighbor, the reception of a new message or the

location changes.

Finally, like the service discovery messages, the service

invocation requests and the service responses must be circum-

scribed to the area where the service must be offered. Both a

lifetime and a maximum number of hops must also be assigned

to these messages in order to reduce their propagation.

III. THE OLFSERV PROTOCOL

In the remainder of this section, we present OLFServ,

an opportunistic and location-aware forwarding protocol we

have designed so as to address the issues identified in the

previous section. OLFServ aims at supporting the discov-

ery and the invocation of software services in DMANETs

such as those formed by fixed infostations and handheld

devices used by nomadic people. It implements an efficient

and geographically-constrained broadcast of both service ad-

vertisements and service discovery requests, as well as a

location-driven forwarding of service invocation requests and

service responses. OLFServ is a key element of an OSGi

service-oriented middleware platform we have developed in

order to support service provision in ”challenging” pervasive

environments. This platform provides some facilities in order

to compute the location of a mobile node according to the

coordinates generated by the embedded GPS receiver or to

the Wi-Fi signal and the location properties exhibited by the

neighbor nodes as presented in [5].

A. Assumptions

The OLFServ protocol relies on 3 main assumptions:

1) Both mobile hosts and fixed infostations are aware of

their geographical location and able to compare their

location with that of another host. Mobile hosts are

expected to indicate their destination/direction if they

know them.

2) Mobile hosts are able to perceive their one-hop neigh-

borhood. This neighborhood is obtained using specific

messages (beacons) sent by each node periodically.

3) Each mobile host is able to temporarily store the mes-

sages it receives, and can associate to each of them

some pieces of information, and especially the IDs of

the nodes that are known to have received them.



B. Overview of the protocol

1) Heurisitics:

OLFServ is an event-driven protocol that implements self-

pruning heuristics. The originality of this protocol resides in

the adaptation of several well known heuristics to the context

of service provisioning in DMANETs, and their combination

in a coherent platform. The main implemented heuristics are

the following:

Contention resolution in message forwarding: Like DFCN

(Delayed Flooding with Cumulative Neighborhood) [14],

which proposes a bandwith-efficient broadcast algorithm for

MANETs, OLFServ introduces a backoff mechanism in order

to avoid message collisions at message reforwarding time.

From this point of view, a node is expected to compute a

forwarding delay for each message it receives, and to forward

messages when their delay expires. Moreover, a node will

abstain from forwarding a message if it perceives that all

of its neighbors have already received it (the message was

forwarded by at least one of its neighbors before it forwards

the message itself, and its one-hop neighborhood is a subset of

the set of nodes that are expected to have received the message

yet). In addition, in OLFServ, this forwarding delay has two

components: one that is inversely proportional to the distance

from the last forwarder and another one that is a random

value (used in the backoff mechanism). Therefore, only the

farther nodes are likely to forward a message, thus improving

the geographical propagation of messages while reducing the

number of emissions.

Geographically-driven message forwarding: At each step,

a message will be forwarded only by the nodes closer to the

destination.

Content-based message forwarding: Mobile nodes can es-

tablish some correlations between the discovery requests and

the advertisements, as well as between the invocation requests

and the responses. Thanks to this heuristic, a mobile node

receiving an invocation request is expected to send back to

the client the response it previously stored for this request

instead of forwarding it towards its destination, obviously if

this one is still valid.

Source routing forwarding: Nodes can estimate if a mes-

sage was forwarded quickly (i.e., if a message was relayed

following an end-to-end path), and to perform source routing

if so. OLFServ is thus able to exploit end-to-end routes when

they exist, reducing the propagation time and the number

of message copies. If the source routing failed, because an

intermediate node becomes unreachable, the selective and

controlled broadcast is used. These last two heuristics aims

at improving the quality of service offered to end-users in

term of responsiveness.

2) Events:

In OLFServ, five kinds of events are considered:

• the reception of a message;

• the expiration of the forwarding delay associated with a

message;

• the location changes;

• the arrival of a new neighbor;

• the failure in the source routing process.

The first and the last events induce a reactive behavior of the

protocol regarding the message forwarding, whereas the other

events induce a proactive behavior.

Before giving a detailed specification of the OLFServ pro-

tocol, let’s see how the above-mentioned heuristics operate in

both the service discovery process and the service invocation

phase. From this point of view, let us consider the disconnected

MANET depicted in Figure 2, which will, for the sake of

illustration, be composed of a set of mobile devices carried by

pedestrians and a fixed infostation I that offers a service that is

relevant only in the geographical area represented by the dotted

rectangle. Moreover, let’s suppose that one of these mobile

hosts, namely node C, is interested in the service proposed

by I. The network, which is currently composed of the six

distinct communication islands shown in Figure 2, is expected

to evolve in an unpredictable manner according to the nodes’

mobility. Nevertheless, in order to illustrate our purposes, we

will consider subsequently that node C and node N6 follow

the materialized paths so as to reach different destinations at

times t1, t2, t3 and t4.

a) Service discovery: The invocation of a remote service

is conditioned by the preliminary discovery of this service.

Consequently, in order to call the service offered by I, node

C must discover this service. For the sake of illustration, let

us consider that infostation I has injected in the network an

advertisement A including its location, the geographical area

where the service can be accessed, a date of emission, a

lifetime, a maximum number of hops this advertisement is

allowed to make, and the set of nodes that are expected to

receive this advertisement (i.e., I, N1, N2, N3, N4 and N5).

Nodes N1, N2, N3, N4 and N5, which will receive message

A first, will store this message locally and will compute

a forwarding delay in order not to rebroadcast message A

simultaneously.

The coverage radio area of a node is partitioned in several

concentric rings. The forwarding delay algorithm (see Algo-

rithm 2) allows mobile nodes located approximately at the

same distance (i.e., in the same ring) from the last relay (or

from the initial sender) to compute a forwarding delay in a

same range of values. In the part of the network depicted in

Figure 2, nodes N1, N2 and N3 will thus compute a forwarding

delay in a same range of values. This delay will be less

than the one computed by N4, which itself will be less than

the one computed by N5. Moreover, a node perceiving that

all of its neighbors have already received the message it

plans to forward will cancel its forwarding process, and will

trigger it when it is notified of the arrival of a new node in

its vicinity. Thus in our scenario, node N5 will not forward

advertisement A, because this advertisement is rebroadcast

by node N4 first. If we consider that all the nodes have the

same communication range of radius R, we can deduce, based

on geometric properties, that, in favorable conditions, only

3 nodes will forward advertisement A the first time [15].

Consequently at hop n, in favorable conditions the number



Figure 2. Opportunistic communication in a DMANET with OLFServ.

of forwarders will be 3× n, and in the worst conditions

(i.e., when the selected forwarders moved before forwarding

their message, and become out of reach of each other), the

number of forwarders will be ∑
n
i=0 6n. This property is thus

independent of the density of the network.

By implementing the ”store, carry and forward” principle

and by exploiting the nodes’ mobility and contact opportu-

nities, advertisement A will be propagated in the whole area

specified by the infostation, and only in this area. Indeed, the

self-pruning heuristics implemented in our protocol prevent

mobile devices from forwarding messages outside the area

specified in the headers of these ones. For instance, node N6

that left the island of infostation I at time t1 and joined that

of client C at time t2 will broadcast advertisement A in this

new island. This message will be then broadcast by the other

nodes of this island whether it is still valid (i.e., the number

of hops is greater than zero and the lifetime has not expired

yet), except by node N7 because it is outside the area specified

by infostation I. Thus, node N8 will not receive message A.

b) Service invocation: After discovering the service of-

fered by infostation I, client node C can invoke this service by

sending an invocation request including namely the ID of the

infostation, the location of this one, and its own location. Let

us also consider that client C knows its speed and its direction

and that it has also included them in the request it sent, thus

allowing to compute with a better accuracy the area where it is

expected to be when it will receive the response. Indeed, when

the speed and the direction (or the destination) are unknown,

the “expected area” is a circle whose center is the current

position of the client and whose radius is proportional to a

predefined speed (of about 2 m/s for pedestrians) and to the

time expected for the response delivery (this time is estimated

from the request delivery time). The notion of “expected area”

was introduced in [16]. In contrast, when the speed and the

direction are known, the “expected area” is a circle centered

on the position computed from the speed and the direction

indicated by the client, and whose radius is proportional to

the inaccuracies of both the speed and the forwarding time

(see the dotted circle in Figure 2).

The request sent by C will be received by intermediate nodes

and broadcast by these ones towards infostation I following

a forwarding scheme that is quite similar to the discovery

forwarding scheme presented previously. The difference be-

tween these two schemes resides in the number of nodes that

will rebroadcast the messages. Indeed, since the invocation

process is usually achieved using a unicast communication

scheme, we have introduced additional self-pruning heuristics

in comparison to the service discovery process in order that

only the nodes closer to the destination than the previous hop

can forward the message towards the destination. Thus, the

area where the message is forwarded is progressively refined

until reaching the destination, and the number of messages that

are replicated in the network is reduced while having a good

message delivery ratio. A node, receiving a message from a

neighbor node closer to the message’s recipient than itself, will

store the message locally and will forward this message later

when it becomes closer to the recipient than this neighbor.

For example N7 and N8 will not broadcast the request sent

by node C at time t2 because they are farther than C from

infostation I. This invocation request will be received by node

N6 at time t2+∆t. If N6 joins the island of infostation I at time

t3 as shown in Figure 2, it will broadcast this request in this

island because it will discover new neighbors that have not

received this message yet. These neighbors will then forward

this request towards infostation I.

If client C has specified its location, its speed and its

possible direction of movement, OLFServ can estimate the

area where C is expected to be when it should receive the

response from I. So when the response is returned, this area is

specified in a header of this message. The response will be then



routed towards this ”expected area” using a forwarding scheme

comparable to that used for the invocation. When the message

has reached the “expected area”, it will be disseminated in this

area following a broadcast scheme comparable to that used for

service discovery. This technique is used since the position

of the client cannot be computed with a good accuracy due

to the delay induced by opportunistic communication. When

a mobile device receives a response for an invocation it has

previously stored locally, it stops forwarding this request in

the network. In our scenario (Figure 2) the response will be

routed towards node C by nodes N2, N3 or N1 because they are

closer to the “expected area” than I. Moreover, if an invocation

request reaches the provider within a short amount of time

(i.e., if a end-to-end route is very likely to exist between the

client and the provider), OLFServ tries to follow the same

route by applying source routing. If the source routing process

failed because an intermediate node has moved, then the node

perform a broadcast towards the destination as mentioned

before. Finally, if a node stored previously a response for

the request sent by client C, it will send back this response

(if it is still valid) instead of forwarding the request towards

infostation I. For instance, N2 can return to client C the copy

of the response it holds locally, instead of forwarding the

request to I. Thus, the number of message roaming in the

network is reduced and the service invocation responsiveness

is improved. The same process is applied when a client is

looking for a service: an intermediate node can send back to

the client the advertisement it holds locally that “matches” the

service discovery request sent by the client.

C. Specification of the protocol

The remainder of this section presents how OLFServ reacts

when one of the above-mentioned events occurs.

1) Notations: The location of a node is subsequently iden-

tified as L, the one of the last relay as Lrelay and the one of the

destination as Lrecipient . The one-hop neighborhood of a node is

referred to as N. The local cache of a node is identified as C. Qs

and Qb are outgoing queues for the messages that must be sent

using source routing techniques and for the messages that must

be broadcast respectively. Km refers to the set of nodes that are

known to have received message m. ∆ is the set of messages

that must be forwarded and for which a forwarding delay

has been computed. Finally, the messages headers can include

several properties (the location of the recipient, the location of

the sender, a date of emission, a lifetime, a maximum allowed

number of hops, the geographical area where the message can

be disseminated, etc.). A given property of a message m is

identified as m[property].
2) Message reception: When receiving a message m, Al-

gorithm 1 is applied. First, if a node receives from one of

its neighbors a message it plans to forward, it checks if

all of its neighbors have received this message. If so, it

cancels its forwarding process. If the node has in its cache

an advertisement p for the service discovery request m (or

a response p for the invocation request m) then the node is

expected to forward p if this one is still valid. A forwarding

delay is computed for message p, and p is put in the set of

Algorithm 1 Reaction on message reception.

Input:

m: the incoming message
t: the current time
C, ∆, Km, N

1: if (m ∈ ∆ & N ⊆ Km) then

2: ∆← ∆−{m}
3: else

4: if (∃ p ∈ C / p is response for m

& p[li f etime]> t− p[date] & p[hops]> 0) then

5: compute forwarding delay for p

6: ∆← ∆∪{p}
7: else

8: if (∃ k ∈ C / m is response for k) then

9: C←C− {k}
10: if (k ∈ ∆) then

11: ∆← ∆− {k}
12: if (k ∈ Qs) then

13: Qs← Qs− {k}
14: else

15: Qb← Qb− {k}
16: end if

17: end if

18: if (t− k[reception date]< ε) then

19: m[source routing]← k[Lrelay]
20: end if

21: end if

22: if (m[li f etime]> t−m[date] & m[hops]> 0) then

23: C←C∪{m}
24: m[reception date]← t

25: Km← Km ∪{m[Km]}
26: if (N 6⊆ Km) then

27: compute forwarding delay for m

28: ∆← ∆∪{m}
29: end if
30: end if

31: end if

32: end if

messages that must be sent. Otherwise, if m is a response

for an invocation request k (or if m is an advertisement for

a discovery request k), k is removed from the local cache in

order not to be forwarded later, as well as from the set of

messages that must be forwarded. If message m is still valid

and if the number of hops is greater than 0, message m is put in

the local cache, and the set Km is updated (i.e., the set of nodes

that are known to have received message m yet). Message m

is put in the set of messages that must be forwarded and a

forwarding delay is computed for m. When the forwarding

delay δm expires, Algorithm 3 will be applied.

3) Computation and expiration of the forwarding delay:

Each mobile device computes a forwarding delay for each

message it receives. This delay prevents close devices from

forwarding messages simultaneously. As mentionned before,

in OLFServ the forwarding delay has both a random com-

ponent and a component that is inversely proportional to

the distance from the previous relay. So as to compute this

forwarding delay, the wireless communication range of each

device has been divided in several rings (see Figure 2), so

that the delays computed by hosts in ring i are greater than

those computed by hosts in ring i+1. The mobile hosts of a

given ring are considered as equivalent regarding the spatial

propagation of messages. The algorithm used to compute the

forwarding delay is described in Algorithm 2. This algorithm

has mainly three parameters: the wireless communication

range (W ), the ring size (rs) and α . This last parameter has



Algorithm 2 Computation of the forwarding delay.

Input:

m: the incoming message
rs: the ring size
R: the ring number
δ : the default forwarding period
W : the wireless communication range

Output: δm: the forwarding delay for message m

1: R← f loor((W −distance(L,m[Lrelay]))/rs)
2: δm← min(δ ,α ∗ random(R∗ rs,(R+1)∗ rs))

Algorithm 3 Expiration of the forwarding delay.

Input:

t: the current time
m: the message
C, N, Km, Qb, Qs

1: if (N−Km 6= /0 & in m[area] & m[li f etime]> t−m[date] & m[hops]> 0)
then

2: if (m[recipient] 6= ”∗ ”) then

3: dthis→recipient ← distance(L,m[Lrecipient ])
4: drelay→recipient ← distance(m[Lrelay],m[Lrecipient ])
5: if (dthis→recipient ≤ drelay→recipient) then

6: m[area]← (m[Lrecipient ],dthis→recipient)
7: m[Km]← m[Km]∪Km

8: m[Lrelay]← L

9: m[nb hops]← m[nb hops]−1
10: if (t−m[date]< ε) then

11: Qs← Qs ∪{m}
12: ∆← ∆−{m}
13: else

14: Qb← Qb ∪{m}
15: ∆← ∆−{m}
16: end if

17: end if

18: else

19: m[Km]← m[Km]∪Km

20: m[Lrelay]← L

21: m[nb hops]← m[nb hops]−1
22: Qb← Qb ∪{m}
23: ∆← ∆−{m}
24: end if

25: end if

been introduced in order to define a relevant delay δm: the

delay in the largest ring is of the order of a few milliseconds,

while in the smallest ring it is of the order of a few seconds

typically.

When the forwarding delay of a given message has expired,

Algorithm 3 is applied. If there are new nodes in the one-

hop neighborhood, if the client is in the area where the

message can be disseminated, if the message is still valid and

if the message has next hops, the message is then considered

as being forwardable. The headers of the message are then

updated. If the destination is known, the area where the

message can be propagated is updated in order to refine this

area progressively until reaching the destination. Moreover if

the destination is known, the mobile device checks whether it

is closed to the destination than the last forwarder, and if so, it

updates the number of hops, the location of the last forwarder

with its own location and the set of nodes that have already

received the message, and puts the message in the outgoing

message queue. If the message has expired or if the number

of hops equals to 0, the message is removed from the local

cache.

4) Location changes: When reaching a given location, a

mobile host can trigger the forwarding of some messages. For

Algorithm 4 Location changes.

Input:

t: the current time
m: the message that must be forwarded
C,Km

1: if (m[li f etime]> t−m[date] & m[hops]> 0 & N 6⊆ Km) then

2: if (m[type] = response & L in m[expected area]) then

3: m[recipient]← ”∗ ”
4: end if

5: compute forwarding delay for m

6: end if

Algorithm 5 Detection of new neighbor nodes.

Input:

t: the current time
n: the new neighbor
C, N

1: N← N∪{n}
2: for all m ∈C do

3: if (m[li f etime]> t−m[date] & m[hops]> 0) then

4: if (n /∈ Km & in m[area]) then

5: compute forwarding delay (m)
6: end if

7: else

8: C←C−{m}
9: end if

10: end for

instance, a mobile host that was far from the recipient of a

message it received can trigger the emission of this message

when it is at a given distance from the recipient. Similarly,

when entering the area where a client is likely to be receiving

its service response, a mobile host, acting as an intermediate

node, can both update the message headers in order that this

message can be broadcast in this whole area and trigger its

emission. When the mobile host has reached a given location,

Algorithm 4 is executed. We change the status of the response

in order that it is broadcast by the node in the whole area

specified by the provider. And for each message when we

become closer to the destination than the previous node (the

node from which we have received the message), we trigger

a message emission.

5) New neighbor detection: When a new neighbor node

is discovered, the mobile host computes a forwarding delay

for all the messages that are still valid, that have next hops,

if the new neighbor is not in the the list of nodes that have

already received the message and if the mobile host is in the

area where the message can be propagated. A new forwarding

delay is computed in order to prevent the emission of the same

messages by different nodes that simultaneously discover the

new neighbor node in their one-hop neighborhood.

IV. EXPERIMENTS AND RESULTS

In order to evaluate our protocol, we conducted a se-

ries of simulations using the Madhoc simulator (http://www-

sop.inria.fr/members/Luc.Hogie/madhoc), a metropolitan ad

hoc network simulator that features the components required

for both realistic and large-scale simulations, as well as the

tools essential to an effective monitoring of the simulated

applications. This simulator, which is written in Java, allows us

to run our middleware platform on it. In the current scenarios



Figure 3. Simulation environment.

we focus on, service providers are fixed infostations deployed

in a city, while clients are devices carried by humans.

A. Experiments and simulation setup

The simulation environment we consider is depicted in

Figure 3. It is an open area of about 1 km2. Four infos-

tations offering two different services are deployed in this

environment. These services can be discovered and invoked

in a circular area of a radius of 200 m. The first service

delivers the day’s weather forecast, while the second provides

an access to a “yellow page” service, which can be invoked

by nomadic people in order to find restaurants, shops, etc.

Mobile clients are thus expected to submit the same request

to the first service and different ones to the second service.

In our simulations, we have considered successively 50, 100,

500 and 1000 pedestrians carrying a PDA (Personal Digital

Assistant) equipped with both a Wi-Fi interface and a GPS

receiver. The communication range of both mobile devices and

infostations varies from 60 to 80 m. Some of the pedestrians

move randomly, while others follow predefined paths. Each

pedestrian moves at a speed between 0.5 and 2 m/s. In our

simulations, 30% of the mobile devices act as clients of the

above-mentioned services, whereas the others only act as inter-

mediate nodes. The service providers are expected to broadcast

service advertisements every 30 seconds when mobile devices

are in their vicinity. After discovering the services they are

looking for, the clients invoke these services every 3 minutes.

In our experiments, we have assigned to all the messages a

lifetime of 5 minutes and a maximum number of hops of

8. We present below the results we obtained for OLFServ

in these various configurations, and we compare OLFServ

with the Epidemic Routing Protocol (EPR) defined by Vahdat

and Becker [17]. The objective of these experiments was to

measure the ability to satisfy the client service discovery and

invocation efficiently with a small number of message copies.

B. Results

Figure 4 shows the service discovery delays we have ob-

served in the various simulation setups we have considered. As

expected, we can see that the discovery delays decrease when

the number of nodes increases. Indeed, in a dense environment

the connectivity disruptions are less frequent, and the impact of

the opportunistic communications are reduced. The discovery

process can be perceived as a long process. For instance, only

70% of the clients have discovered the service they require

after 20 minutes in the second setup (30 clients and 70 relays).

However, it should not be forgotten that the services can be

discovered and invoked by the clients only in restricted areas

and not in the whole environment (see Figure 3), with the

consequence that several minutes may elapse before the clients

have reached the restricted area of the service they are looking

for. However, the speed of discovery inside this restricted

area is significantly greater: we have observed that, in most

of the situations, the discovery time is less than 10 seconds

after the client has entered the area of the service it requires,

and that it lasts about 1 minute in the worst case. Finally,

the services are discovered more quickly with OLFServ than

with the epidemic routing protocol. In OLFServ the service

advertisements are broadcast by the mobile nodes, whereas

in the EPR, the nodes must first exchange summary vectors

with each of their neighbors before forwarding the service

advertisements themselves, thus introducing a latency in the

discovery process.

Figure 5 and Figure 6 present the simulation results for

the two kinds of services considered (the “weather forecast”

service S1 and the “yellow pages” service S2). Figure 5 gives

the average number of emissions for a service advertisement

(for S1 and S2) with OLFServ and with EPR. One can observe

that the number of emissions increases drastically with EPR,

while it remains relatively constant with OLFServ. Indeed, in

EPR, when two hosts come into communication range of one

another, they exchange their summary vectors to determine

which messages stored remotely have not been seen by the

local host. In turn, each host then requests copies of messages

that it has not seen yet. In contrast in OLFServ, service

advertisements are broadcast and not sent using a unicast com-

munication model. Moreover, only a subset of the neighbor

nodes are expected to rebroadcast these advertisements in turn.

For S2, the number of emissions of a given service invocation

request is less than the half of the number of emissions

of service advertisements (see Figure 6). These results are

consistent with those expected. Indeed, the invocation requests

are broadcast only by the nodes closer to the destination at

each hop. It must be noticed that the number of emissions

of invocation requests for S1 is less than that for S2. Again,

the results are consistent with those expected: all the clients

interested in the “weather forecast” service submit the same

request, and obtain in return the same response during the

simulation. The mobile nodes that have stored a request and

the associated response are able to establish a correlation
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Figure 4. Service discovery delays.

Figure 5. Service advertisement with OLFServ and EPR.

between these messages, and are expected to send back to

the client the stored response when they receive a new similar

request. The number of requests for S1 decreases according to

the number of clients. Such a phenomenon can be explained

by the fact that a request is not forwarded by a node towards

the destination if this node has already obtained the response

associated with this request. This correlation techniques is

further detailed in [5]. Finally, it must be noticed that the

mobility of nodes between the successive invocations does

not allow benefiting from source routing when forwarding a

request towards a provider. Nevertheless, source routing has

proved its efficiency in the forwarding of the responses, as

shown in Figure 5. Thus, the number of messages sent in the

network is reduced while offering a better service provision

(see Table I).

As shown in Table I, the number of clients that have

Figure 6. Service invocation with OLFServ.

discovered the service they are looking for is greater with EPR

than with OLFServ. Nevertheless, the invocation success ratio

with EPR is less than with OLFServ. Indeed, with OLFServ

messages are routed only in the areas where the services can

be discovered and invoked, whereas with EPR, messages are

routed in the whole simulation area. Consequently, with EPR,

services can sometimes be discovered by the clients, but not

invoked successfully due to the mobility of intermediate nodes,

to the periodic exchange of messages (every 20 seconds) and to

the fixed number of hops. In contrast, with OLFServ, messages

are forwarded few milliseconds after their reception instead

of being forwarded periodically. OLFServ thus offers a good

responsiveness and delivery ratio while producing a lower

network load.



EPR(50) EPR(100) EPR(500) EPR(1000) OLFServ(50) OLFServ(100) OLFServ(500) OLFServ(1000)

Average delay of successful invocations

to service S1 (seconds)
120 100 60 40 1,02 0,58 0,43 0,42

Average delay of successful invocations

to service S2 (seconds)
120 100 60 40 3,32 2,84 2,43 2,42

Average ratio of successful invocations 0.78 0,84 0,92 0,96 1 1 1 1

Table I
SIMULATION RESULTS FOR SERVICE INVOCATION.

V. RELATED WORK

Our work on OLFServ is related to works on broadcast

protocols [18], [19]. Indeed, some techniques that aim at

reducing the number of message forwarders are adapted or

integrated to the specific context of service provision in

opportunistic networks.

However, the research works that follow the same objectives

as OLFServ are mainly led in the opportunistic networking

and/or delay/disrupted tolerant networking domain. One of

the first protocol in this domain is the Epidemic Routing

Protocol [17], which can in a way be assimilated to a simple

flooding, not suitable for environments with high density

regions, since it would generate too much network traffic

and could even lead to network congestion. This drawback

is addressed by protocols implementing methods aiming to

assess the capability of a neighbor node to contribute to the

delivery of a given message. These methods usually use a

probabilistic metric, often called delivery predictability, that

reflects how a neighbor node will be able to deliver a message

to its final recipient [20]. Before forwarding (or sending)

a message, a mobile host asks its neighbors to infer their

own delivery probability for the considered message, and

then compares the probabilities returned by its neighbors and

chooses the best next carrier(s) among them. In CAR [12]

and GeOpps [8], the delivery probabilities are computed using

both utility functions and Kalman filter prediction techniques.

CAR assumes an underlying MANET routing protocol that

connects together nodes in the same MANET cloud. To reach

nodes outside the cloud, a sender looks for the node in its

current cloud with the highest probability of delivering the

message successfully to the destination. GeOpps, which is

a geographical delay-tolerant routing algorithm, exploits the

pieces of information provided by the vehicles’ navigation

system in order to route the messages to a specific location.

Like CAR, HiBOp [13] also exploits context information in

order to compute delivery probabilities. However, HiBOp can

be perceived as being more general than CAR since it does

not require an underlying routing protocol, and because it is

also able to exploit context for those destinations that nodes

do not know. HiBOp exploits history information in order to

improve the delivery probability accuracy, and does not make

predictions as CAR. Propicman [9], as for it, also exploits

context information and uses the probability of nodes to meet

the destination, and infers from it the delivery probability, but

in a different way. When a node wants to send a message to

another node, it sends to its neighbor nodes the information

it knows about the destination. Based on this information, the

neighbor nodes compute their delivery probability and return

it. In Prophet [10], the selection of the best neighbor node

is based on how frequently a node encounters another. When

two nodes meet, they exchange their summary vectors, which

contain their delivery predictability information. If two nodes

do not meet for a while, the delivery predictability decreaces.

When a node wants to send a message to another node, it

will look for the neighbor node that has the highest amount

of time encountering the destination, meaning that has the

highest delivery predictability to the destination. Furthermore,

this property is transitive. Unlike OLFServ, most of the above-

mentioned protocols rely on an history of contacts and a

prediction of encounters in order to select the best next car-

rier(s). Computing such an history and a prediction is a tricky

problem, especially in environments composed of numerous

mobile devices that move following irregular patterns, such as

those hold by pedestrians in a city. Although they implement

various strategies aiming to select the next best carriers(s) to

deliver a given message, the above-mentioned protocols are

not suited to service discovery. Indeed, they implement neither

self-pruning heuristics making it possible for mobile nodes to

decide if they should rebroadcast a message according to their

neighborhood perception, nor methods allowing to designate

which subset of neighbor nodes must rebroadcast a message. If

used to broadcast service advertisements or service discovery

requests network-wide, they will probably induce a storm of

messages and perhaps a network congestion.

Geographic routing protocols, such as GeRaf [21],

LAR [16] and Dream [22], propose forwarding techniques

similar to those implemented in OLFServ. Once a node has

a message to send, it broadcasts it while specifying its own

location and the location of the destination. All the nodes in

the coverage area will receive this message and will assess

their own capability to act as a relay, based on how close

they are to the destination. Dream and LAR also propose

some solutions in order to improve the message delivery in

MANETs. For instance, based on location information, they

can compute the area where the mobile clients are expected to

be when they receive their messages. Nevertheless, on contrary

to OLFServ, these protocols do not implement the “store,

carry and forward” principle and therefore are not suitable

for disconnected MANETs.

VI. CONCLUSION

The vision of opportunistic computing is to provide mobile

users with pervasive access to software services without rely-



ing on a fixed infrastructure but rather exploiting direct radio

contacts between mobiles devices in a disconnected MANET.

Opportunistic transmissions are performed during these con-

tacts, enabling routing of messages between services clients

and service providers. In this context, the work described

in this paper focused on routing in the case where service

providers are fixed infostations and where devices in the net-

work are endowed with the capacity to geolocalize themselves.

We proposed a new forwarding protocol called OLFServ,

suited for service provision in disconnected MANETs. This

protocol implements several self-pruning heuristics aiming to

efficiently control the dissemination of service advertisements

and service discovery requests, as well as to perform a

geographic and source-based routing allowing cost effective

delivery of service invocation requests and responses. Simula-

tion results show that OLFServ outperforms epidemic routing

in networks composed of numerous mobile devices moving

randomly with respect to delivery delay, delivery ratio and

number of emissions (reflecting the network throughput). In

the future, we would like to investigate new complementary

techniques, such as geometric localized forwarding and span-

ning trees, in order to forward a message from a source to

a destination along different paths while reducing again the

delay and the message copies, especially when some partitions

of the network are temporarily stable.
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[1] N. Le Sommer and Y. Mahéo, “OLFServ: an Opportunistic and

Location-Aware Forwarding Protocol for Service Delivery in Discon-

nected MANETs,” in Proceedings of the 5th International Conference

on Mobile Ubiquitous Computing, Systems, Services and Technologies

(UBICOMM’2011), Lisbon, Portugal, pp. 115–122, Xpert Publishing

Services, Nov. 2011.

[2] H. A. Nguyen and S. Giordano, “Routing in Opportunistic Networks,”

International Journal of Ambient Computing and Intelligence, vol. 1,

no. 3, pp. 19–38, 2009.

[3] M. Conti, S. Giordano, M. May, and A. Passarella, “From Opportunistic

Networks to Opportunistic Computing,” IEEE Communications Maga-

zine, vol. 48, no. 9, pp. 126–139, 2010.
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