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Mobile robot control on uneven and slippery ground:

an adaptive approach based on a multi-model observer

Roland Lenain1 and Benoit Thuilot2,3

Abstract—This paper proposes an algorithm dedicated to
off-road mobile robot path tracking at high speed. In order to
ensure a high accuracy, a predictive and adaptive approach is
developed to face the various perturbations due to this context
(mainly the bad grip conditions and the terrain geometry).
The control law is based on previous work, and requires the
knowledge of sideslip angles, which cannot be directly mea-
sured. As a result, an observer based on two levels of modeling
(kinematic and dynamic) is proposed to ensure a relevant and
fast estimation. If the kinematic part is independent from
the terrain geometry, the dynamic model used in this paper
requires to take explicitly into account the influence of the
terrain geometry on mobile robot dynamic. It is achieved by
the introduction of the lateral robot inclination, which is on-line
estimated via a Kalman filter and integrated into the dynamical
model. The advantages of the proposed contribution to path
tracking control are investigated through full-scale experiments
achieved at high speed (up to 6m/s) on an uneven and grass
field.

I. INTRODUCTION

The growing social demand in terms of security and pro-

ductivity makes new needs arise for off-road mobile robots.

The increasing capabilities of unmanned vehicles indeed

indicate the possible benefits in various fields of applications,

such as transportation, defense or agriculture. Nevertheless,

in order to be efficient, such automatic devices must be

accurate and fast, whatever the ground conditions (nature and

geometry) and the path they must follow. Despite numerous

work in off-road mobile robotics (see for instance [1]), the

accurate control of mobile robots in natural environment

is still a challenging problem, especially at high speed.

High dynamics and varying grip conditions encountered

indeed constitute important perturbations, which have to be

accounted in order to preserve a satisfactory accuracy.

Specifically, from a path tracking point of view, classical

control laws (such as initiated in [2]), assuming rolling

without sliding conditions, are not convenient. In such a

context, they indeed lead to large tracking errors. As a result,

new methods have to be considered in order to preserve the

motion accuracy, and several strategies are investigated to

face this problem. Robust control (see for instance [3] or [4]),

considering sliding as a perturbation to be rejected, can be

applied, improving tracking error, but appearing to be conser-

vative with an oscillating behavior. If this can be acceptable
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when moving slowly, the use of such approaches at high

speed may lead to instability. A second way consists in taking

sliding explicitly into account via control laws based solely

on dynamic models (see for instance [5] or [6]). Nevertheless

it requires the knowledge of numerous parameters which

appear to be varying in off-road conditions, as well as the

use of huge perception systems [11].

In this paper, an alternative control strategy, based on adap-

tive and predictive control principles is proposed. More

precisely, the bad grip conditions are accounted inside the

control law by sideslip angles introduced in an extended

kinematic model (such as initiated by [7] and generalized

in [8]). These angles can be on-line estimated via an observer

based only on the proposed kinematic representation [9].

This is relevant at relatively low speed (below 4m/s with the

experimental testbed described in this paper) and particularly

suitable, as it does not require a huge perception system.

Nevertheless, such an approach appears to be not reactive

enough when moving at high speed. As a consequence, a

partial dynamic observer used together with the previous

control strategy has been proposed in [10], using a 2D

dynamic model. It permits to obtain accurate performances

on a flat ground at high speed (up to 8 m/s), but does not

provide satisfying results when the mobile robot moves on an

uneven ground. The lateral contribution of the gravity during

a motion on an uneven ground is indeed neglected in the

proposed model and does not permit a correct estimation of

sideslip angles. In order to ensure an accurate path tracking

at high speed on sloping fields, such a multi-model observer

strategy is here generalized. A new observer, allowing to take

also into account the influence of terrain geometry on mobile

robot behavior, is proposed in this paper. This is achieved by

considering the robot roll angle, and therefore requires its on-

line estimation.

The different levels of modeling used in this paper are first

presented. The paper then details the observation algorithm

in a second part. In particular, the different steps for the

dynamic estimation of sideslip angles accounting for the roll

angle are described: preliminary kinematic estimation, robot

lateral inclination estimation, cornering stiffness adaptation,

and finally the observer based on adapted dynamic model.

After recalling briefly the control law in a third part, the

capabilities of the proposed observer are investigated through

full-scale experiments.

II. ROBOT MODELS

In order to permit an accurate off-road path tracking at

high speed, the proposed control algorithm takes advantage
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of several levels of representation. In this section, the ex-

tended kinematic point of view is first detailed. Secondly, the

dynamical model accounting for the influence of the terrain

geometry is described.

A. Extended kinematic model

The extended kinematic model, enabling to preserve a

kinematic structure while describing the influence of sliding

on the robot motion is depicted in figure 1. As achieved

in [12], the robot is here considered as a bicycle. As the

objective is to develop a path tracking algorithm, the motion

is described with respect to a reference trajectory Γ. The
robot position and orientation are then defined in terms of

lateral and angular deviations : y and θ̃. Control variables

are the velocity v (here considered as a measured parameter

- the velocity control is not investigated in this paper), and

the front steering angle δF . In addition to these classical

Fig. 1. Extended kinematic model

variables, two sideslip angles representative of wheel sliding

are added: βF and βR, for the front and the rear axle respec-

tively. A sideslip angle is representative of the difference

between the tire and the actual speed vector orientations.

Using these notations, the expression of the mobile robot

kinematic model, the computation of which is detailed in [9],

can be expressed as:



















ṡ = v
cos(θ̃+βR)
1−c(s) y

ẏ = v sin(θ̃ + βR)

˙̃
θ = v [cos(βR)λ1 − λ2]

(1)

with : λ1 = tan(δF−βF )−tan(βR)
L

, λ2 = c(s) cos(θ̃+βR)
1−c(s) y

This kinematic representation permits to derive easily a con-

trol law, as discussed in section IV. Moreover, the estimation

of sideslip angles at low speed can be proceeded thanks to

this model (see section III), but dynamical effects are then

neglected. As a consequence, a dynamic model is required

for sideslip angle estimation when moving fast.

B. Dynamic model

In order to account for mobile robot dynamics encountered

at high speed, the dynamical model depicted in figure 2(a)

is considered.

(a) Yaw frame (b) Roll frame (α definition)

Fig. 2. Dynamic model used for sideslip angle observation

This model is also based on the bicycle assumption,

as achieved in [13]. In addition to variables used for the

kinematic representation, the global sideslip angle β and

the robot global heading θ are introduced. Since the path

tracking task is here supposed to be performed with a slow

varying velocity, the longitudinal forces are neglected. As

a result, only the lateral component of contact forces is

considered: FF and FR (for the front and rear axles). An

expression of these forces can be obtained by complex

interaction models, such as Pacejka ([14]), which introduces

an important number of parameters, pending on contact

properties. These properties are moreover varying in off-road

context, and such models then appear to be hardly tractable.

In order to preserve the simplicity of the contact model, each

of the contact forces is considered to be proportional to the

corresponding sideslip angle, such as:

{

FF = CF (.)βF

FR = CR(.)βR
(2)

However, in order to account for contact variability and

tire non-linearity, coefficients CF,R(.) (cornering stiffnesses),
are considered as varying, and have then to be on-line

estimated. In addition, the weight has also an influence on the

robot dynamic. Indeed, when moving on a sloping field, the

gravity has a non-null contribution on the robot yaw frame.

Since a lateral motion control is solely investigated in this pa-

per, only the contribution of the gravity to the lateral motion

is here considered. This is achieved by introducing the term

m.g.sinα, where α is the roll angle of the suspended robot

mass (as described in figure 2(b)). This angle α is then not

representative of the terrain bank angle, but expresses the

lateral robot inclination, and reflects the orientation of the

gravity in the robot frame (G, y, z).
Finally, the model depicted in figure 2(a) also requires

the knowledge of dynamic parameters: the robot mass m,

vertical inertia Iz and the longitudinal position of the centre

of gravity (point G) described by the front and rear half

wheelbases LF and LR. Using these notations and assump-

tions, the yaw dynamic model can be expressed as (see [15]

for details):
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θ̈ = 1
Iz

(−LFFF cos(δF ) + LRFR)

β̇ = − 1
vm

(FF cos(β − δF ) + FR cos(β))

+ g sin(α)
v

− θ̇

βR = arctan(tanβ − LRθ̇
v cos(β) )

βF = arctan(tanβ + LF θ̇
v cos(β) )− δF

(3)

As it can be seen on equations (3), this model exists if the

velocity is not null, which is supposed to be true in the path

tracking application here considered. It can also be noticed

that sideslip angles are shared variables between extended

kinematic and dynamic models.

III. MULTI-MODEL OBSERVER

As mentioned before, the extended kinematic model (1)

permits to compute the control law expression for front

steering wheels as soon as sideslip angles βF and βR are

known. The other variables v, δ, y and θ̃ can be measured

by the sensors on-boarded, described in section V-A. As

there is no available measures for sideslip angles, an indirect

estimation must be achieved. It must be accurate and reactive

enough to be efficient at high speed.

Fig. 3. Global scheme of observation strategy

This is achieved thanks to the observation strategy de-

scribed by the scheme depicted in figure 3. The global ob-

server is decomposed into several parts. First, a preliminary

observation based on the kinematic model (1) is achieved.

An estimation of βF and βR is then obtained thanks to the

convergence of kinematic model outputs to the measured

lateral and angular deviations, as detailed in section III-A.

As the effect of the robot inclination is reflected in these

measurements, this observer naturally accounts for the terrain

geometry. Alas, dynamical effects are neglected, leading to

a slow-varying sideslip angle estimation, unsuitable when

moving at high speed. Dynamic model (3) must be used to

allow a faster adaptation. Nevertheless, such a model must

be fed with relevant values of cornering stiffnesses CF and

CR, and has to take explicitly into account the influence of

terrain geometry. This is achieved thanks to the contribution

of gravity in the robot lateral behavior: it can indeed be

noticed that if the term mg sinα is neglected, model (3)

cannot reflect the influence of slope on sideslip angles and

these latter variables would be misestimated. As a result,

the mobile robot roll angle is first estimated as detailed in

section III-B. Together with the preliminary sideslip angle

observer (supplying a reference value, relevant in steady

state), the adaptation of the dynamic model parameters (CF

and CR) can then be processed (as described in section III-

C). The dynamic model is then totally known, and is finally

used to build an observer for the fast estimation of the

required sideslip angles. This last step is depicted by the

box “Dynamic model-based observer” in figure 3, and the

equations are detailed in section III-D.

A. Sideslip angle kinematic-based observer

This preliminary observation using only model (1) is

detailed in [9], where several experimental results can be

found at relatively low speed (below 4m/s) and for different

kinds of terrain geometry. Detailed equations are then not

presented here, but the general description is summarized

in figure 4. The objective is to compute the front and rear

Fig. 4. Extended kinematic model-based observer

sideslip angles hereafter denoted β̄F and β̄R ensuring the

convergence of the observed model outputs (X̂ =
[

ŷ
ˆ̃
θ

]

)

to the measured outputs X̄ . Sideslip angles thus estimated

are then representative of any differences between kinematic

description and the measured robot motion, mainly due to

sliding. They take implicitly into account the different phe-

nomena inducing sliding (motion on slope or bends on a low

grip ground). However, such an observer does not account

for dynamical behavior on sideslip angle evolution and is

then low reactive, depreciating the tracking accuracy when

moving fast. As a result, an observer based on a dynamic

model is required to move at higher speed. Nevertheless, this

preliminary observer supplies reference steady state values

(and especially the global sideslip angles β̄) allowing the

adaptation of slow-varying parameters of a dynamic model,

which can then be used to build a sideslip angle observer

based on a dynamic model.

B. Lateral inclination estimation

Roll angle α could be directly measured using an in-

clinometer. However the estimation is here obtained by

a Kalman filter, taking advantage of lateral and vertical

accelerations (denoted respectively ay and az), together with

roll rate α̇, all obtained thanks to a low cost IMU (see

section V-A for a list of sensors). This sensor is located on

the suspended mass in the frame depicted in figure 2(b), and

is then able to catch the gravitational acceleration along both

y and z axes. This permits a dynamic estimation of the roll

angle, avoiding the delays due to inclinometer technology.

Considering the definition of α, a measurement of this angle

may be obtained directly from the accelerations thanks to

equation (4).

ᾱ = arctan
ay−vθ̇

az
(4)
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where the term vθ̇ constitutes the inertial contribution to the

measured lateral acceleration ay , which is not representative

of the robot lateral inclination. Since equation (4) can lead

to a noisy signal and considering the availability of a

measurement of the roll angle derivative ˙̄α thanks to the on-

boarded IMU (see section V-A), a Kalman filter is designed.

Let us define by k the current iteration. The estimated roll

angle α̂[k|k] can be obtained as follows:

α̂[k|k−1] = α̂[k−1|k−1] + T ˙̄α[k]

α̂[k|k] = α̂[k|k−1] +Kα(ᾱ[k] − α̂[k|k−1])
(5)

where T is the sampling period of the IMU, and Kα is

the Kalman gain obtained from the Kalman filtering theory,

not here detailed. The filter is initialized using the first

measurements of ᾱ supplied by equation (4), as the robot

does not move during one second before starting. Using the

filter (5), an estimation of the roll angle α̂[k|k] is available,

hereafter denoted α.

C. Cornering stiffness adaptation

Once α, considered as a measured parameter, and β̄ are

known, the only unknowns in model (3) are the cornering

stiffnesses CF and CR. If these parameters are assumed

slow varying with respect to the mobile robot dynamic, the

low reactive estimation of global sideslip angle β̄ together

with the measurement of the yaw rate θ̇ allow the proper

adaptation of CF and CR. These two variables are here

regarded as the outputs of dynamic model (3), while α

is required in order to preserve the model relevancy with

respect to the robot motion when moving on slope. Cornering

stiffness estimation is achieved in two steps. First, front and

rear lateral forces are derived from a model whose state

vector is X1 =
[

θ̇1 β1

]T
, i.e. composed of the yaw rate

and the global sideslip angle. Using on-boarded sensors and

the estimation β̄ of the global sideslip angle, a measurement

X̄1 of this state is available. In view of model (3), the state

derivative can be written as :

Ẋ1 = A1(X1) +B1(δF ) [FF FR]
T (6)

where:

A1(X1) =

[

0
g sinα

v
− θ̇1

]

B1(δF ) =

[

−LF cos δF
Iz

LR

Iz

− cos δF
vm

− 1
vm

]

(7)

Since v 6= 0 and |δF | is mechanically limited to 22◦, the

matrix B1 is invertible. The objective of this first step is to

impose the convergence of the observed state X̂1 (derivative

of which can be deduced from (6)) to the measured state X̄1

thanks to the computation of the vector composed of lateral

forces [F̂F F̂R]
T . This can be reached by imposing:

[F̂F F̂R]
T = B1(δF )

−1
(

G1 X̃1 −A1(X̂1)
)

(8)

with X̃1 = X̂1 − X̄1 the observation error and G1 a

Hurwiz matrix representative of the observer dynamic. Ex-

pression (8) indeed imposes the following error dynamics:

˙̃
X1 = G1 X̃1 (9)

which ensures the exponential convergence of observation

error to zero. As a result, since they ensure a satisfactory

convergence of model output to the measured one, F̂F

and F̂R are representative of the actual forces applied at

wheel/ground contact. As a consequence, in view of (2),

and considering that cornering stiffnesses are slow varying,

a relevant estimation of coefficients Ĉi, i ∈ {F,R} should

satisfy the following relation:

F̂i = Ĉi β̄i (10)

The second step then consists in adapting Ĉi in order to

ensure relation (10). This is obtained using a sensitivity-

based gradient search algorithm. An adaptation law for

cornering stiffnesses can then be written as:

˙̂
Ci = −γ(F̂i − Ĉi β̄i)

∂(F̂i − Ĉi β̄i)

∂Ĉi

= −γ(F̂i − Ĉi β̄i)β̄i

(11)

where γ is a strictly positive tunable gain. Adaptation

law (11) is then able to adapt on-line the cornering stiff-

nesses ĈF,R, ensuring a relevant adequacy between dynamic

model (3) fed with force expression (2) and the preliminary

sideslip angle estimation.

D. Dynamic sideslip angle estimation

Once the cornering stiffnesses are known, as well as the

roll angle is estimated, the observation of sideslip angles

using a dynamic model can be proceeded. This is achieved by

considering the new state vector X2 =
[

θ̇2 β2 sinα
]

composed of the yaw rate, the global sideslip angle, and

the sine of the roll angle. Again, a measurement X̄2 of this

state is available. Considering dynamic model (3) and the

assumption of a small global sideslip angle, the derivative of

the state vector can be expressed as:

Ẋ2 = A2(CF , CR)X2 +B2(CF , CR)δF (12)

where:

A2 =









−L2

FCF−L2

RCR

vIz

−LFCF+LRCR

Iz
0

−LFCF−LRCR

v2m
− 1 −CF+CR

vm
g
v

0 0 0









,

B2 =









LFCF

Iz

CF

vm

0









(13)

As α has been previously estimated, the last line of matrices

A2 and B2 is only composed of zeros. An observer equation

associated with model (3) can then be defined as:

˙̂
X2 = A2(ĈF , ĈR)X̂2 +B2(ĈF , ĈR)δF +G2X̃2

(14)
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where X̃2 = X̂2 − X̄2 is the observation error and G2 is a

gain matrix defining the observer dynamics.

Provided that (ĈF , ĈR) are close to (CF , CR), it can be

deduced from (14) and (12) that this observer leads to the

differential equation (15):

˙̃
X2 = (A2 +G2)X̃2 (15)

The G2 matrix defined by:

G2 =





g1,1 g1,2 0
g2,1 g2,2 0
0 0 0



 (16)

is then chosen so that the matrix (A2 + G2) ensures the

exponential convergence of the two first components of X̃2 to

zero. The choice for G2 permits to favor the convergence of

the first term
˙̂
θ2 related to the measured yaw rate, rather than

the other one related to the estimated global sideslip angle

(which is slowly reactive). As a result, a new observation β̂2

of the global sideslip angle is then available. Finally, using

this last estimation, both front and rear sideslip angles can be

deduced using the two last equations of dynamic model (3):











β
Dyn
R = arctan(tan β̂2 −

LR
˙̂
θ2

v cos(β̂2)
)

β
Dyn
F = arctan(tan β̂2 +

LF
˙̂
θ2

v cos(β̂2)
)− δF

(17)

This new expression for sideslip angle estimation is obtained

thanks to dynamic representations. This ensures a reactive

sideslip angle estimation, improving the tracking capabilities

with respect the case where the control law was fed by

preliminary sideslip angle observer.

IV. CONTROL LAW DESCRIPTION

The control law associated with extended kinematic

model (1) is deeply detailed in [9], and only briefly described

in this section. It is based on an exact linearization of the

proposed kinematic model, specifically a conversion into a

chained form (see [2]). The control expression for steering

angle δF is then decomposed into two parts. The first is

reactive and relies mainly on current errors and observed

sideslip angles. It can then be considered as adaptive. The

second term consists in a predictive curvature servoing using

the knowledge of the reference trajectory. Based on Model

Predictive Control theory (see [16]), it considers the future

path curvature in order to anticipate for low level actuator

delays and mobile robot inertia. As a result, an expression

for this control is:

δF = δPred
Traj + δDeviation(y, θ̃, βF , βR) (18)

The reactive (and adaptive) term δDeviation(y, θ̃, βF , βR)
relies on the observed sideslip angles and can be fed by dif-

ferent observers. In the result section, several configurations

are used to investigate the interest of the proposed observer:

• Case A - Without sliding accounted. In order to high-

light the importance of taking sliding into account, this

control law considers that sideslip angles are negligible:

(βF , βR) = (0, 0)
• Case B - Extended kinematic observer. In this configu-

ration, the preliminary observation is only considered:

sideslip angles estimated via the kinematic based ob-

server are input in the control law: (βF , βR) = (β̄F , β̄R)
• Case C - Dynamic observer without slope accounted. In

order to investigate the effect of the terrain geometry,

the control law is here fed with dynamic sideslip angle

observation (βF , βR) = (βDyn
F , β

Dyn
R ), but without

considering the mobile robot inclination: α = 0
• Case D - Dynamic observer with slope accounted.

This consists in using the control law with the ob-

servation strategy proposed in this paper: (βF , βR) =
(βDyn

F , β
Dyn
R ).

V. EXPERIMENTAL RESULTS

A. Experimental robot and on-boarded sensors

In order to study the capabilities of the proposed adaptive

control strategy on uneven ground, the mobile robot depicted

in figure 5 is used. This electrical vehicle can reach an 8m/s

velocity and is able to climb slopes up to 30◦. Its weight is

450Kg (comprising on-boarded sensors).

Fig. 5. Experimental robot and embedded sensors

The sensors used in the framework of this paper are:

• An RTK-GPS (Magellan Proflex 500 receiver). The

mobile antenna is settled up to the middle of the rear

axle, providing an absolute position accurate to within

±2cm with a 10Hz sampling frequency. Thanks to this

sensor, deviations with respect to the desired path y

and θ̃, as well as the velocity v are known. They

are computed thanks to the absolute position of the

robot with respect to the available reference trajectory

composed of successive coordinates (previously com-

puted or recorded during a preliminary manual driving).

The control law fed with the preliminary estimation

of sideslip angles can then be applied, and robot path

tracking at low speed can be achieved. It is assumed

that there is no multi-path interferences depreciating the

position accuracy delivered by the GPS. This problem

could be taken into account by using punctually inertial
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navigation, but such a situation is not addressed in this

paper.

• A low cost IMU (Xsens MTi device). This sensor

provides three accelerations and three angular velocities,

allowing to estimate lateral inclination and feed the

observer with the yaw rate θ̇. This sensor can be used

solely to obtain a direct estimation of the robot attitude

(3D orientation) up to some drift. Some devices permit

to combine IMU data with GPS ones, via a proprietary

algorithm. In this paper, IMU raw data are favored, so

that this sensor can be used with any considered robot.

Other sensors depicted in figure 5 (cameras and laser) are

not used in the application described in this paper. With this

testbed, two sets of experiments are proposed. The first one

is achieved at low speed on a slope, in order to compare

the different approaches. The second is performed at high

speed (6m/s) on a terrain with a varying geometry and with

a curved-shape for the path to be followed. This second set

permits to show the efficiency of the proposed algorithm.

B. Comparison of observation strategies (low speed)

This first set of tests consists in tracking a straight line on

a varying-sloping field (wet grass). The path to be followed

is perpendicular to the slope, inducing a lateral inclination

for the mobile robot. As depicted at the top in figure 6, the

path to be tracked starts on an almost even ground. Next, the

roll angle is rising up to 15◦, and then is decreasing. Four

path tracking experiments with control law (18) have been

achieved with a desired 2m/s velocity, using the four config-

urations (A to D) described in section IV. Performances are

compared at the bottom in figure 6.

Fig. 6. Tracking error comparison w.r. to observation strategies

It can first be noticed that when a classical control (Case

A, depicted in black plain line) is used, the tracking error

reaches -30 cm. This maximal deviation corresponds to the

maximum lateral inclination along the reference trajectory.

Since the nature of the soil, together with the robot tires, do

not ensure perfect grip conditions, the lateral slope generates

sliding. Since sideslip angles are neglected, the control

law is not able to compensate for such a perturbation and

important errors can be observed in relationship with the

robot inclination.

On the contrary, the control law with kinematic estimation

of sideslip angles (Case B, depicted in blue dotted line)

permits to preserve a satisfactory level of accuracy at such

a speed (2m/s), as the tracking error stays close to zero. At

such a limited speed, the estimated variables βF and βR

ensure ensure that model (1) is consistent with the measured

outputs. As a result, the control law is able to compensate

for the encountered sliding. Nevertheless, since dynamical

effects are neglected, an important deviation (around -15cm)

is recorded between curvilinear abscissas 25m and 35m. This

shows the slow reactivity of this approach, compared to the

control law based on dynamic observation of sideslip angles

and accounting for mobile robot inclination α (Case D -

reported in magenta plain line in figure 6). The tracking

error obtained with the proposed approach indeed converges

quickly to zero as soon as the roll angle is observed. A

maximal error of 10 cm is then reached but for a very short

moment. This demonstrates the improvement brought by the

algorithm proposed in this paper by accounting slope and

using a multi-model based observer.

Such performances are explained by the faster observation

of sideslip angles, compared to the sole kinematic observer

based approach. A comparison of the estimated front sideslip

angles (βF ) is reported in figure 7. The estimation obtained

using the sole kinematic observer (Case B) is reported in

dashed blue line, while the sideslip angle computed from the

multi-model observer (Case D) is depicted in magenta plain

line. The two estimates are slightly different, highlighting the

better reactivity of the algorithm proposed in this paper. It

can indeed be noticed that between curvilinear abscissas 25

and 35m, the value provided by the dynamic observer reaches

faster the almost constant 1.5◦ value, while the extended

kinematic observer supplies delayed values, generating the

tracking error pointed out previously. The tracking error in

Case B indeed reaches null value (perfect tracking) only

when the kinematically estimated front sideslip angle reaches

the one dynamically estimated (around 40m, 55m and 65m).

Fig. 7. Comparison of observed front sideslip angles observed

The interest of taking the robot inclination into account

in the dynamic observer is also highlighted in both figures 6

and 7. When satisfactory results were obtained on flat ground

(see [10]), the dynamic observation without accounting for

the terrain geometry is clearly not suitable when moving

on an uneven ground. The tracking error recorded when
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controlling the robot with dynamic estimation of sideslip

angles, but neglecting for the lateral inclination α = 0
(Case C - results reported in green dotted line in both

figures 6 and 7), is similar to the one obtained without sliding

accounted (as reported in the figure 6). Since α has been set

equal to 0, the dynamic model (3) cannot generate non-null

sideslip angles when the vehicle moves on the sloping part

of the trajectory, even if a global sideslip angle β̄ has been

estimated by the preliminary observer (see section III-A).

As a result, the dynamic model cannot fit with the actual

behavior and the observer is unable to estimate relevant

sideslip angles. As it can be seen in figure 7, the front sideslip

angle observed in Case C (when neglecting robot inclination)

stays around zero during all the experiment, although the

important slope generates non-null actual sideslip angles.

The improvement at the limited speed 2m/s is noticeable,

but since sideslip angles do not change quickly, the track-

ing performances obtained when relying on the kinematic

observer might still be regarded as acceptable. At higher

speed, sideslip angles are fast varying, and the delay in their

estimation if a kinematic observer is used may then lead

to control instability. In that case, only the adaptive control

law based on the multi-model dynamic observer can ensure

meaningful results, as demonstrated in the following section.

C. Results at high speed on slope

The second set of experiments consists in tracking the

trajectory reported in black plain line in figure 8 at 6m/s on

a grass ground. It is composed of a straight line on a terrain

with a 20◦ slope angle, followed by a harsh bend, achieved

on slope and then on even terrain. This path is ended by a

small straight line part.

Fig. 8. Reference path and actual trajectory achieved

This trajectory has been followed using the proposed

dynamic observer accounting for the robot lateral inclination

at 6m/s 1. The actual trajectory during autonomous path

following is reported in magenta line in figure 8, while the

tracking error is plotted in figure 9.

It can be seen that after initialization (up to curvilinear

abscissa 20m), the robot is able to reach the reference

1See the video of the automatic tracking on
ftp://ftp.clermont.cemagref.fr/pub/Tscf/Lenain/VideoIros2012/

Fig. 9. Tracking error at high speed on slope/even ground at 6m/s

trajectory (lateral deviation tends to zero) in the slope part,

despite bad grip conditions and harsh dynamical effects (as

it can be noticed in the joint video). The inertial effects

when entering into the curve, together with the perturba-

tion due to the transition between slope and even parts,

generate a transient overshoot at curvilinear abscissa 50m.

This transient lateral deviation is nevertheless quite limited

since the maximal tracking error recorded after initialization

(the mobile robot does not start on the reference path) is

60cm (corresponding at 6 m/s to the distance achieved during

0.1s). This satisfactory result has been obtained thanks to the

reactivity of the proposed observer and the consideration of

the robot inclination due to the slope. In contrast, the sideslip

angle obtained with the kinematic observer present large

delays, generating robot oscillations with important errors

beyond 2m. For security reasons, the robot is stopped when

the lateral error exceeds ±2m, so that experimental results

obtained in Case B cannot be reported. The bad performances

obtained with other configurations (Case A and C), also lead

to large errors and then only the results related to Case D

(proposed algorithm) is here presented.

Fig. 10. Comparison of front sideslip angle estimation (Kinematic vs
Dynamic estimation)

Nevertheless, the sideslip angles supplied by the kinematic

observer can be recorded and are compared in figure 10

to the ones obtained with the dynamic observer (only front

sideslip angles are shown). It can be seen in this figure that

dynamic estimation (depicted in plain magenta line) is much
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more reactive than kinematic estimation (depicted in blue

dashed line). As a result, the control law based only on

kinematic estimation (Case B) is unable to compensate for

fast sideslip angle variations occurring at high speed. Due to

delayed estimation, an oscillating behavior with large errors

is recorded. Such a control law is then not effective in these

conditions, since dynamic effects are here very important

for this robot at the considered speed on such a terrain.

The use of constant cornering stiffnesses in the proposed

algorithm has also been investigated: it still permits to catch

the fast variations in contact conditions, but misestimates

the value of sideslip angles. In figure 10, the front sideslip

angles estimated by the dynamic observer without updating

the cornering stiffnesses (equal to their initial value of

20000N/rad) is reported in red dotted line. The estimated

angle is around the half of the one obtained with on-line

adapted cornering stiffnesses. Such an error (more than 5

degrees) leads to a lateral deviation of more than 2m at

6m/s. Moreover, constant cornering stiffnesses do not permit

to account for grip condition variations, which are quite

significant in the context addressed in this paper. Finally,

only the control law fed with the observer proposed in this

paper is relevant to follow the proposed reference trajectory

at high speed in the encountered experimental conditions,

establishing the capabilities of the approach here detailed.

VI. CONCLUSIONS

This paper proposes a predictive and adaptive approach for

path tracking algorithms, enabling an accurate motion control

at high speed in off-road context. It takes advantage of sev-

eral levels of modeling (extended kinematic and dynamic).

The extended kinematic representation is used to derive a

control law, efficient as soon as sideslip angles are available.

These variables cannot be measured and are consequently

observed thanks to an observer taking advantage of kinematic

and dynamic models. In addition, the robot lateral inclination

is on-line estimated in order to feed the dynamic model.

This permits a fast and accurate reconstruction of sideslip

angles, ensuring an accurate path tracking, whatever the grip

conditions, the terrain geometry and the path to be followed.

This algorithm is dedicated to motion control at high speed

(results obtained at 6m/s show the relevancy of the approach).

However, moving at such speeds on natural environments

may lead to hazardous situations (such as rollover). In the

last presented experiment, one of the robot’s wheel indeed

lifts off during transition between slope and even parts. The

proposed control strategy does not ensure the robot integrity

with respect to such situations. Future work is then focused

on the extension of motion control moderation in order to

ensure robot stability. Beyond reactivity, obstacle avoidance

is also under investigation, but it requires the knowledge

of terrain geometry at high speed, which constitutes a

challenging problem. Moreover, the computation of a 3D

model implies an accurate pose estimation (3 positions and

3 orientations). The use of complete embedded solutions for

robot state measurement is then foreseen.
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