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Abstract—We study flow optimization in Delay Tolerant Net-
works (DTNs), which we model using Capacity Region Evolving
Graphs (CREGs). CREGs consist of different instances (called
replicas) of the network graph in cascade; each replica is
associated with a distinct time period (called epoch) and its own
Capacity Region. Although CREGs can model any DTN, they are
particularly well suited for the study of wireless ones. We define
a single-commodity utility maximization problem in a CREG of
T replicas that contains as special cases various interesting flow
maximization problems. Using dual decomposition, we cast the
maximization as a dual problem that can be solved iteratively
and where in each iteration a set of T problems, T times smaller
than the original, are solved, potentially (if multiple processors
are available) in parallel. In addition, we propose two suboptimal
utility maximization heuristics that operate on an epoch-by-epoch
basis and we discuss a multi-commodity extension to the problem.

I. INTRODUCTION

We study Delay Tolerant Networks (DTNs), where very
large delays in the delivery of data, comparable with the
time it takes the topology to change appreciably, are either
unavoidable or acceptable [1]. In the last few years, a large
number of routing protocols have been devised for use in
DTNs [2], [3], [4]. Complementing the design of protocols,
research on optimal routing, in the graph theoretic sense, has
been undertaken, using evolving graphs [5] and related tools
developed in the context of dynamic flows [6], [7].

An important class of DTNs are Store-Carry-and-Forward
wireless networks, where data arrive at their destination partly
through wireless forwarding and partly through physical trans-
port by intermediate nodes [8]. A striking feature of this net-
working paradigm is that nodes are expected to buffer transient
packets for significant amounts of time, while their physical
transport takes place. Thus, buffer sizes, and their efficient
management, become key parameters for the performance of
such networks, in contrast to the conventional wisdom in
ordinary networks that buffer sizes do not matter provided
that they are not too small.

In Section II, we develop a DTN model that we term the Ca-
pacity Region Evolving Graph (CREG). As with the Evolving
Graphs introduced in [5], CREGs capture the evolution of the
network topology by discretizing time into a set of T epochs,
each associated with its own replica subgraph. However, with
respect to Evolving Graphs, CREGs are augmented to include
additional nodes in between the replicas as well as joint
constraints on the replica arc capacities in terms of capacity
regions. We assume that all packets are of the same type,

i.e., there is a single commodity. We define the DTN Utility
Maximization (DTNUM) Problem as follows: we assume a
convex cost incurred to each node for having a given volume
of data at the start of the first epoch, and a concave utility
derived by each node from having a given volume of data at
the end of the last epoch. The DTNUM Problem is then the
maximization of the sum of all utilities, minus the sum of all
costs, given the buffer storage constraints. By appropriately
selecting the utilities and costs, we can address a variety of
interesting cases, such as maximizing the flow between one or
more sources and one or more sinks.

In Section III we convert this problem, using a dual de-
composition technique, into a dual problem that is solved
iteratively. Each iteration consists of T smaller problems, each
problem corresponding to a different epoch. The T problems
are independent of each other, permitting their parallel process
inside each iteration.

Note that, due to coupling over time, in order to find
the optimal flow in any epoch we need to know the topol-
ogy in all epochs, both preceding and succeeding. This is
clearly restricting, however we note that there exist DTNs
whose evolution is known a priori (such as DTNs where the
changes in the topology are induced by periodic movements
of nodes [9]). It is also helpful to know the performance of
the optimal routing schedule, even if it impossible to apply
it, in order to use it as a benchmark for the performance
of practicable, causal routing schemes. Finally, studying the
optimal non-causal routing schedules provides intuition that
can be used for the efficient design of good causal ones.
Indeed, in Section V two such causal schemes, motivated by
our dual decomposition, are presented.

In Section VI we extend our formulation to the case where
there are multiple commodities and costs associated with the
use of links and the storage of data at node buffers. As we
show, a dual decomposition approach is still possible.

In Section VII related work is discussed, notably in the areas
of dynamic flows, utility maximization, and capacity regions.
We conclude in Section VIII.

II. FLOW OPTIMIZATION FRAMEWORK

The network is modeled as a directed graph G = (N ,A)
consisting of a set N of N nodes 1, . . . , N , and a set A of A
directed arcs (i, j), where i, j ∈ N . Time is divided in epochs
t = 1, . . . , T .
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Fig. 1. An example Capacity Region Evolving Graph (CREG).

To model the storage constraints of individual nodes, we
assume that the maximum amount of data that a node i
can keep in its buffers during the transition between epochs
t − 1 and t, where t = 2, . . . , T , is the internal buffer
size Bi(t). Define the internal buffer size vectors B(t) ,
(Bi(t) : i ∈ N ), t = 2, . . . , T . Each arc (i, j) ∈ A is
associated at epoch t with a non-negative link flow xij(t),
which represents the volume of traffic (in bits per epoch)
that flows through link (i, j) during the whole duration of
the epoch t. Define then the link flow vector during epoch
t, x(t) , (xij(t) : (i, j) ∈ A). Vector x(t) is required
to belong to a given convex A-dimensional set called the

epoch’s capacity region R(t). In other words, it is possible
for all links to support simultaneously the volume of traffic
specified by x(t) iff x(t) ∈ R(t). Therefore, whether a link
can support a given volume of traffic or not depends on the
flows in other links in the network through the requirement that
they jointly belong to R(t). Observe that capacity regions are
fixed for the duration of an epoch, and that the variations in
the network topology (for example due to node movement, in
wireless DTNs) are modeled through the instantaneous change,
on epoch transitions, of the capacity region used.

We now create the Capacity Region Evolving Graph (see
Fig. 1 for an example): first, we create T replica subgraphs
indexed by t = 1, . . . , T . Each node i of the physical network
corresponds to T replica nodes i1, . . . , iT , and each arc (i, j)
corresponds to T replica arcs (i, j)1, . . . , (i, j)T . Replica t
models the network during epoch t, therefore the flow through
arc (i, j)t is xij(t), and the set of flows during that epoch is
the link flow x(t). Replicas are interleaved with T + 1 sets
of storage nodes {s1t , s2t , . . . , sNt }, for t = 1, . . . , T + 1, as
follows: for t = 1, . . . , T , node it is connected to storage
node sit+1 through a directed arc (it, s

i
t+1) and storage node

sit is connected to it through a directed arc (sit, it). The non-
negative input flow through (sit, it), coming into replica t
at node i, is denoted by yi(t), and the set of these flows
is denoted by the input flow vector y(t) , (yi(t) : i ∈
N ), t = 1, . . . , T . Similarly, the non-negative output flow
through (it, s

i
t+1), coming out of replica t at node i, is denoted

by zi(t), and the set of these flows is denoted by the output
flow vector z(t) , (zi(t) : i ∈ N ), t = 1, . . . , T .

We associate the input flows y(1) of the first replica with
a set of increasing, convex input cost functions Ci(yi(1)),
one for each node i. We associate the output flows of the
last replica with a set of increasing concave utility functions
Ui(zi(T )), one for each node i. Moreover, we define the
external buffer size vectors B(1), B(T + 1) as constraints
to the first input and last output flows:

y(1) ≤ B(1) , (B1(1), . . . , BN (1)),

z(T ) ≤ B(T + 1) , (B1(T + 1), . . . , BN (T + 1)).

Consider the following convex optimization problem, with
optimization variables x(t), y(t), z(t), t = 1, . . . , T .

Problem I: DTN Utility Maximization (DTNUM)

maximize:
∑N

i=1 Ui(zi(T ))−
∑N

i=1 Ci(yi(1)), (1)
subject to: x(t) ∈ R(t), ∀t, (2)

0 ≤ y(t) ≤ B(t), ∀t, (3)
0 ≤ z(t) ≤ B(t+ 1), ∀t, (4)[∑

j:(i,j)∈A xij(t) + zi(t)
]

−
[∑

j:(j,i)∈A xji(t) + yi(t)
]
= 0, ∀i, t, (5)

y(t+ 1) = z(t), t = 1, . . . , T − 1. (6)

The objective (1) equals the net profit the network makes by
selling to a hypothetical external market the data accumulated
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at the end of the last epoch minus the amount it spent to buy
data from that external market at the start of the first epoch.
The maximization of the profit is subject to (i) the capacity
constraints (2) for each epoch, (ii) the constraints (3), (4) on
the storage of data at the start and end of each epoch, (iii)
the flow conservation constraints (5) at all nodes during each
epoch, and (iv) the requirement (6) that the contents of the
buffers at nodes should not change at epoch transitions.

Regarding the costs, utilities, and external buffer sizes,
various choices are possible. For example, if we set

Ci(yi(1)) = 0 ∀i, Ui(zi(T )) =

{
0, i 6∈ T ,
zi(T ), i ∈ T ,

(7)

Bi(1) =

{
BS , i ∈ S,
0, i 6∈ S,

Bi(T + 1) =

{
0, i 6∈ T ,
BT , i ∈ T ,

(8)

then our problem corresponds to finding the maximum volume
of data that can be sent from a set of source nodes S to a set
of target nodes T , subject to the constraint that no source node
can send a volume of data greater than BS , and no target node
can receive a volume of data greater than BT .

Finally, we note that the problem may be augmented, with
no complication on the subsequent analysis, by permitting the
arrival and/or departure of traffic in intermediate storage nodes,
and not only on the first and last set. Traffic flows leaving
or arriving at the network at these storage nodes can also
be associated with costs and/or utilities. As this extension is
conceptually straightforward, we omit its consideration.

III. DUAL DECOMPOSITION

In each of the constraints (2)-(5), there is no coupling
between flows belonging to different epochs. This is not the
case, however, with constraint (6). As the objective function
is separable (i.e., it is the sum of functions of individual opti-
mization variables), had constraint (6) not existed, we would
have been able to solve the problem by maximizing separately
over each epoch. Such problems, with weak couplings among
the optimization variables, arise frequently in optimization
theory [10], [11]. Here, we solve the problem using a dual
decomposition method that is particularly appealing due to
our problem structure.

Let x, y, and z be the concatenated flow vectors, i.e.,
x , (x(t), t = 1, . . . , T ), y , (y(t), t = 1, . . . , T ), z ,
(z(t), t = 1, . . . , T ). We define the Lagrangian L(y, z;λ)
by inserting constraint (6) to the objective function:

L(y, z;λ) ,
N∑
i=1

Ui(zi(T ))−
N∑
i=1

Ci(yi(1))

+

T−1∑
t=1

λ(t) · [z(t)− y(t+ 1)] .

(a · b is the inner product of vectors a,b.) We call the
new N -dimensional vectors λ(1),λ(2), . . . ,λ(T − 1) the
price vectors, and the N × (T − 1) dimensional vector

λ = (λ(1),λ(2), . . . ,λ(T − 1)) the concatenated price
vector. Rearranging terms, the Lagrangian can be written as:

L(y, z;λ) =

T∑
t=1

`t(y(t), z(t);λ),

where

`t(y(t), z(t);λ)

,


λ(1) · z(1)−

∑N
i=1 Ci(yi(1)), t = 1,

λ(t) · z(t)− λ(t− 1) · y(t), 2 ≤ t ≤ T − 1,∑N
i=1 Ui(zi(T ))− λ(T − 1) · y(T ), t = T.

Consider the following relaxation of the DTNUM Problem,
that maximizes the Lagrangian:

Problem II: Relaxed DTNUM

maximize: L(y, z;λ),

subject to: x(t) ∈ R(t), 0 ≤ y(t) ≤ B(t), ∀t,
0 ≤ z(t) ≤ B(t+ 1), ∀t,[∑
j:(i,j)∈A xij(t) + zi(t)

]
−
[∑

j:(j,i)∈A xji(t) + yi(t)
]
= 0, ∀i, t.

The optimization variables are the flows x, y, z, whereas
the prices λ are fixed parameters. Intuitively, the network can
now maximize its net profit by buying input flows and selling
output flows at all epoch transitions, according to the price
vectors, in addition to the start of the first epoch and the end
of the last one.

As the constraints are now decoupled across time, i.e., each
one involves the flows of a specific replica, in order to solve
Problem II we can maximize each of the T terms of the
Lagrangian independently, arriving at a set of T independent
problems:

Problem III: Single Epoch Subproblem (SES) (t=1,. . . ,T)

maximize: `t(y(t), z(t);λ),

subject to: x(t) ∈ R(t), 0 ≤ y(t) ≤ B(t),

0 ≤ z(t) ≤ B(t+ 1),[∑
j:(i,j)∈A xij(t) + zi(t)

]
−
[∑

j:(j,i)∈A xji(t) + yi(t)
]
= 0, ∀i.

The optimization is over the flows x(t),y(t), z(t), with the
prices λ being a parameter.

Consider now

q(λ) , max
x,y,z

L(y, z;λ),

the optimal value of the relaxed Problem II. q(λ) is a function
of the prices but not the flows which are chosen to maximize
the Lagrangian. By standard duality theory (see, for example,
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Section 6.4.1 of [10]), there is a subgradient g(λ) of q(λ),
such that its component gi(t) corresponding to λi(t) equals
the violation of the respective equality constraint, i.e.,

gi(t) = zi(t)− yi(t+ 1), t = 1, . . . , T − 1, ∀i, (9)

where the values of yi(t + 1), zi(t) come from solving the
Relaxed DTNUM Problem for the given λ.

Furthermore, assuming that the DTNUM Problem has a
feasible solution with all link flow vectors strictly within their
respective capacity regions (this will be satisfied in all reason-
able cases), the optimal value of the original DTNUM Problem
equals the optimal value of the following, unconstrained dual
problem:

Problem IV: Dual DTNUM

minimize: q(λ),

where the minimization is over λ. Finally, the optimal flows,
x∗(t), y∗(t), z∗(t) of the original DTNUM Problem coincide
with the optimal flows of the Relaxed DTNUM Problem when
the prices λ are set to the optimal value λ∗ of the Dual
DTNUM Problem. Thus, to find x∗(t), y∗(t), and z∗(t) it
suffices to solve the Dual DTNUM Problem. Since we can
calculate a subgradient at each λ, solving the dual problem
is possible with any iterative optimization method that makes
use of the subgradient. One possible choice is the following
algorithm:

DTNUM Algorithm
INPUT: (i) R(t), t = 1, . . . , T , (ii) B(t), t = 1, . . . , T + 1,
(iii) Ci(·) and Ui(·), i = 1, . . . , N .
STEP 1 (INITIALIZATION) Initialize prices to an arbitrary
initial concatenated price vector λ0.
STEP 2 Solve the Single Epoch Subproblems.
STEP 3 Update the prices, using their current values, the flows
found in STEP 2, and equations (9).
STEP 4 IF termination condition is not satisfied, GO TO
STEP 2, ELSE END.

Regarding STEP 3, various price update rules are possible.
A common one, used in our simulations, is to set λk+1 =
λk + αkg(λk), where k is the iteration number, λk and
g(λk) are the price vector and the subgradient in the k-th
iteration respectively, and αk is a step size small enough to
guarantee convergence (see Section 6.3.1 of [10]). Regarding
the termination condition of STEP 4, various choices are
possible, e.g., terminate when the improvement to the value of
the dual function over a set number of iterations is less than
some ε > 0.

IV. NUMERICAL EVALUATION

Let us now divert from theory to present a few preliminary
numerical results in an illustrative wireless setting.

A. Network Model

At the start of time, N nodes are placed into a square area
of side length B. All epochs have duration D. During each
epoch, the nodes remain immobile, and jump to new positions
on epoch transitions. To model the evolution of node positions,
we sample, at the transition times, an underlying smooth
mobility model, under which all nodes move continuously with
a fixed common speed s and with random, uniformly chosen
directions that remain constant; when a node hits the square
boundaries, it gets perfectly reflected.

Regarding the communications model, nodes that are within
a distance d ≤ d0 of each other can communicate di-
rectly through an arc a of capacity C(a) equal to C(a) =
WD log2(1+K/d

b) bits per epoch, where b is a parameter of
the environment (typical values are between 2 and 6) and W,K
are transceiver related parameters. To address interference, we
define a maximal communication cliqueM of nodes to be a
node set such that every node in the clique can communicate
directly with everyone else and, in addition, no other node can
be added to the clique and maintain this property. Let A(M)
be the set of arcs that are either internal, or coming out of,
or coming into a clique M. We require the sum, over all arcs
a in this set, of their rates xa divided by the respective arc
capacities C(a), not to exceed unity:∑

a∈A(M)

xa
C(a)

≤ 1.

In other words, the flows through these arcs are jointly con-
strained as if these arcs were forced to use time division. We
impose this requirement on all maximal cliques that exist in the
network. The resulting set of inequalities forms the capacity
region. Although more refined capacity region models have
been put forth [12], we adopt this model only in the context
of this preliminary investigation; the precise characterization
of capacity regions is beyond our scope.

The parameters chosen for the plots in this work, unless
specified differently, are N = 10, B = 10, s = 1, d0 = 4,
W = 20, D = 1, K = 100, and b = 4. We place no constraints
on the internal buffer sizes.

B. Results

First, we consider a simple scenario of N = 10 nodes.
Regarding the costs, the utilities, and the buffer constraints,
we adopt the model of equations (7), (8), where the set T
consists of a single node acting as a base station, the set S is
comprised of all other nodes, BS = 100, and BT = 900.

In Fig. 2 we plot the convergence to the optimal value,
versus the iterations, of the dual function, the corresponding
feasible profit, and the maximum feasible profit discovered
in any of the past iterations. A total of T = 5 epochs
are assumed. As is typical with the subgradient method, the
convergence of the dual function to the optimal value is not
monotonous and relatively slow; however, as we show next,
the dual decomposition more that compensates for this slow
convergence. Furthermore, observe that the maximum feasible
profit discovered in any of the previous iterations converges
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the example network of Section IV with N = 10.

much faster to the optimal value. These trends observed in this
plot were typical of our other simulation results.

In Fig. 3 we assume the same network of N = 10 nodes and
we plot the maximum volume transported versus the number
of epochs T available, for all 10 possible choices for the base
station. Observe that each of the ten curves involves solving
the DTNUM Problem once for each choice of the total epochs.
Note that in all cases, given sufficient time, the base station
receives the maximum data volume of 9BS = BT = 900.
The average of these curves appears as curve (a) of Fig. 5.
In the same figure we plot the average assuming that nodes
move with one tenth their original speed. As expected, the
received data volume increases much slower, as now data are
primarily being wirelessly transmitted as opposed to physically
transported.

As discussed, the primary advantage of our method is that
it allows us to solve the DTNUM Problem simultaneously
using multiple processors. To evaluate the gains of our method,
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Fig. 4. Computation time t versus the number of epochs T and the number of
nodes N needed for solving the DTNUM Problem directly (top) and through
dual decomposition (bottom). Note the difference in the scale of the z axis.

we have solved the DTNUM Problem, using MATLAB, for a
variety of combinations of the number of epochs T and the
number of nodes N , and with two methods: directly, through
MATLAB’s generic optimization routine, and by using the
DTNUM Algorithm. A total of 8 processors were used. In
Fig. 4 we plot the times it took in each case for the solution to
be found. Observe that even for a problem with a modest size
N = 15, T = 10, the subgradient method is 30 times faster.
Greater gains are expected with the use of more advanced
techniques for solving the dual problem, such as the proximal
cutting plane method (which we are currently investigating).
Also observe that both plots are not perfectly smooth, as
the amount of time needed for the routines used to converge
depend to some extent on how close to the optimal flows the
initial conditions are.

V. TWO CAUSAL SCHEMES: GREEDY DTNUM AND
GEOGRAPHIC DTNUM

Observe that the optimal flow during each epoch depends
on the state of the network in all epochs, including future ones.
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Clearly, we would like to have a causal strategy for finding
a feasible flow that provides a large value for the objective
without looking into the future. To simplify the setting, we
make here the assumptions:

Ci(·) = 0, ∀i, Ui(·) ≥ 0, ∀i, Bi(t) ≤ Bi(t+ 1), ∀i, t.

Therefore, it always helps for nodes to initially stock up on
data, i.e., set y(1) = B(1), even if the data end up not being
transported because the capacity regions in future slots turn
out to be unfavorable. Also, running out of buffer space is
not possible. The assumptions are reasonable, and are actually
satisfied in the case of the equations (7), (8). Given these
assumptions, the following algorithm can be employed:

Greedy DTNUM Algorithm
INPUT: (i) Number of epochs T , (ii) Utility functions Ui(·),
(iii) Initial buffer constraints B(1).
STEP 1 (INITIALIZATION) Set y(1) = B(1) and t = 1.
STEP 2 Epoch t starts, R(t) and B(t+ 1) are given.
STEP 3 We solve the following maximization problem:

maximize:
∑N

i=1 Ui(zi(t)),

subject to: x(t) ∈ R(t), z(t) ≤ B(t+ 1),[∑
j:(i,j)∈A xij(t) + zi(t)

]
−
[∑

j:(j,i)∈A xji(t) + yi(t)
]
= 0, ∀i,

where the optimization variables are x(t), z(t). (y(t) has been
specified, either in STEP 1 or STEP 4.)
STEP 4 Set y(t + 1) = z(t), where z(t) was computed in
STEP 3. Set t = t+ 1.
STEP 5 IF t ≤ T , GO TO STEP 2, ELSE STOP.

Therefore, in each epoch we are greedily maximizing the
sum of utilities,

∑N
i=1 Ui(zi(t)), as if the epoch is the last

one. Observe that costs have been assumed to be zero and so
do not appear in the formulation.

In Fig. 5 we plot (curve (c)) the average data volume
transported versus the number of epochs available when the
Greedy DTNUM Algorithm is implemented in the example
network. The difference between the two curves is expected
as nodes cannot see into the future, and so cannot identify
communication opportunities at later epochs.

In a wireless setting, we can improve upon the greedy
strategy if we assume that nodes know the locations, speeds,
and utilities of all other nodes, using in STEP 3 the following
modified objective function:

N∑
i=1

Ui(zi(t))−zi(t)

 N∑
j=1

[k1dij(t) + k2vij(t)]U
′
j(yj(t))

.
In the above, the summation within the parenthesis is a
corrective price that, multiplied by zi(t), leads to a corrective
cost subtracted from the original utility of node i and depends
on that node’s distance and relative velocity to all other nodes,
and their utility. The cost is such, that nodes further away
and/or drifting apart from suitable destinations are penalized,
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Fig. 5. Curve (a) is the average of the curves in the center. Curves (b),
and (c), and (d) are the averages of the same curves but when the flows
are calculated using, respectively, the Geographic DTNUM Algorithm, the
Greedy DTNUM Algorithm, and the (optimal) DTNUM Algorithm when the
node speed is one tenth of its value for curve (a).

by adding to their own objective function a negative linear
term. In detail, dij(t) is the distance between nodes i and j,
vij(t) is their relative speed (positive, if they are drifting apart),
k1 and k2 are two non-negative parameters that calibrate the
effects of distance and relative speed respectively, and U ′j(·)
is the derivative of the function Uj(·), i.e., the rate with
which the utility at node j increases as more traffic arrives
there. When the derivative U ′j(yj(t)) is large, sending more
data to node j on top of the current volume yj(t) leads
to a large increase of the net utility, and therefore node j
is an attractive destination. We call the resulting algorithm
the Geographic DTNUM Algorithm. The algorithm may be
thought of as a generalized geographic routing algorithm in the
case when there are multiple destinations, and data link flows
are jointly constrained through the capacity regions. In Fig. 5
we plot (curve (b)) the average volume versus the number of
available epochs transported under the Geographic DTNUM
Algorithm in the example network. Note that the improvement
is modest. Methods for achieving greater gains are currently
under investigation.

VI. MULTIPLE COMMODITIES AND LINK/STORAGE COSTS

The framework of Sections II and III can be extended to the
case of multiple commodity flows. It can also be extended to
include costs in the links, and costs associated with storage.
Here, we provide a very brief sketch of this extension.

Assume K commodities, indexed by k = 1, . . . ,K. The
link, input, and output flow vectors of the k-th commodity
and t-th epoch are xk(t) = (xkij(t) : (i, j) ∈ A), yk(t) =
(yki : i ∈ N ), and zk(t) = (zki : i ∈ N ). Each commodity has
its own cost and utility function Ck

i (y
k
i (1)) and Uk

i (z
k
i (T )).

Assume, moreover, a cost incurred by using link (i, j)
during epoch t, equal to lij(t) per unit of flow and a cost
incurred by storing data at node i at the end of epoch t, equal
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to si(t) per unit of flow. (We associate no cost with input
flows, so as not to charge the same flow twice).

Problem V: Multicommodity/Cost DTNUM Problem

maximize:
∑K

k=1

{∑N
i=1

[
Uk
i (z

k
i (T ))− Ck

i (y
k
i (1))

]
−
∑T

t=1

∑
(i,j)∈A lij(t)x

k
ij(t)

−
∑T

t=1

∑N
i=1 si(t)z

k
i (t)

}
,

subject to:
∑K

k=1 x
k(t) ∈ R(t), ∀t, (10)

0 ≤
∑K

k=1 y
k(t) ≤ B(t), ∀t, (11)

0 ≤
∑K

k=1 z
k(t) ≤ B(t+ 1), ∀t, (12)[∑

j:(i,j)∈A x
k
ij(t) + zki (t)

]
−
[∑

j:(j,i)∈A x
k
ji(t) + yki (t)

]
= 0,∀i, t,K,(13)

yk(t+ 1) = zk(t), ∀t < T, ∀K. (14)

Thus, the sums of the commodity flows must satisfy the
capacity and storage constraints (10), (11), and (12), but
each commodity flow must satisfy its own flow conservation
constraints (13) and (14).

Again, this problem would have been separable, if it were
not for constraint (14) which couples flows belonging to
different epochs. If we dualize this constraint, introducing
one price λki (t) for each commodity k = 1, . . . ,K, node
i = 1, . . . , N , and epoch t = 1, . . . , T − 1, the objective
function becomes separable, and can be optimized by solving
the following single epoch subproblems:

Problem VI: Multicommodity/Cost
Single Epoch Subproblem (t = 2, . . . , T − 1)

maximize:
∑K

k=1

{
λk(t) · zk(t)− λk(t− 1) · yk(t)

−
∑

(i,j)∈A lij(t)x
k
ij(t)−

∑N
i=1 si(t)z

k
i (t)

}
,

subject to:
∑K

k=1 x
k(t) ∈ R(t),

0 ≤
∑K

k=1 y
k(t) ≤ B(t),

0 ≤
∑K

k=1 z
k(t) ≤ B(t+ 1),[∑

j:(i,j)∈A x
k
ij(t) + zki (t)

]
−
[∑

j:(j,i)∈A x
k
ji(t) + yki (t)

]
= 0,∀i,K.

(For t = 1 and t = T , the objective functions are different,
and contain the cost and utility functions respectively.) Solving
these problems for a fixed price vector λ = (λki (t) : i =
1, . . . , N, k = 1 . . . ,K, t = 1, . . . , T − 1), gives the value of
the dual function q(λ), and a set of flows xk(t), yk(t), zk(t),
which can be used to calculate a subgradient g(λ) of the dual
function using the formula

gki (t) = zki (t)− yki (t+ 1), ∀i, k, ∀t < T.

Therefore, we can form an iterative process that will eventually
yield the optimal prices, and through them the optimal flows.

VII. RELATED WORK

A. Dynamic Flows

In the context of Operations Research, our work is on dy-
namic flows and networks. In contrast to their more common,
static counterparts, dynamic flows are functions of time. Ever
since their introduction [13], dynamic flows have attracted
a steady interest, and an impressive volume of results has
been accumulated [11], [14]. The typical approach taken is to
convert the dynamic problem at hand to a problem involving a
static, but typically much larger in size, graph, usually called
space-time graph or time-expanded graph. This was also our
approach.

Typically, in dynamic networks, each arc is associated with
a positive propagation delay (or latency). However, there has
also been work on the special case of networks of zero
propagation delays, termed dynamic inventory networks in [11]
and evolving graphs in [15]. This is the assumption we make
here, as, in communication networks, packetization typically
leads to a propagation delay negligible with respect to the time
needed for the topology to change.

The majority of the literature in dynamic flows applies
combinatorial optimization techniques to solve either mini-
mum cost or maximum flow problems, however there has
been work on non-linear costs (see Section 5.6 of [11] and
references therein.) To the best of our understanding, a dual
decomposition technique similar to our own has not been
applied, possibly because the majority of the works assume
non-zero propagation delays, in which case the technique
cannot be applied. However, there have been efforts to use the
special structure of the space-time graphs and apply Dantzig-
Wolfe decomposition; it has also been observed that in many
cases dynamic networks have degeneracies, that lead to a
natural decomposition that can be used to speed up the
convergence of algorithms [16].

Next, we mention works related to our own. In the context
of dynamic flows research, Ford and Fulkerson define dynamic
flows in [13], and show algorithms for solving the max
flow problem when arc capacities do not change with time;
Hoppe and Tardos [17] develop polynomial-time algorithms
for solving the quickest transshipment problem, using chain
decomposable flows. In the context of communication net-
works, Ogier [18] presents a polynomial-time algorithm for
maximizing the flow in a single-source, single-sink setting
with piecewise linear capacities. Ferreira and his cowork-
ers [19], [5], [15] define evolving graphs and use them to solve
minimum cost problems and variants; Merugu et al. [6] use
space-time graphs to compute routes for minimizing end-to-
end message delivery delay. In the context of DTNs, Jain et
al. introduce a modification to Dijkstra’s algorithm suitable
for time varying graphs with propagation delays; Hay and
Giaccone [7] use a static graph of their own construction called
event-driven graph to devise optimal routing strategies under
various constraints; Laoutaris et al. [20] study the problem
of optimizing delay tolerant bulk transfers in the Internet, also
using space-time graphs.
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In the above works, the aim is to maximize the flow of data
transported by the network, whereas in this work we solve a
utility maximization problem that contains a variety of flow
maximization problems as special cases.

B. Capacity Regions and Utility Maximization

The problems of describing a capacity region and estab-
lishing if it can support a given combination of end-to-end
flows has attracted significant interest in the wireless network
community [21], [12], [22]. Research in the field has recently
been stimulated by Network Utility Maximization (NUM)
techniques extending the seminal work of Kelly et al. [23] in
the wireless domain. See, for example, [24] and other works
appearing on the same special issue on Nonlinear Optimization
of Communication Systems.

Unfortunately, calculating if a combination of rates belongs
in the capacity region or not, or trying to maximize the flow
through a wireless network, are fundamentally hard problems.
Indeed, even basic problems involving simple channel models
can be shown to be NP-complete [25]. This is due to the
inherent broadcast nature of the wireless channel, and the
multiplicity of degrees of freedoms available to the nodes
(in terms of who transmits, to whom, whose packets, etc.)
Therefore, in the wireless DTN setting, the proposed dual
decomposition is highly advantageous, as it means that, as
the number of epochs becomes larger, we do not have to
solve larger problems involving capacity regions, only more
of them, in parallel. Furthermore, the accumulated progress in
capacity region research can be immediately transfered in the
wireless DTN domain, using dual decomposition.

VIII. CONCLUSIONS

We study the DTNUM Problem, a single-commodity utility
maximization problem in DTNs, which we model in terms
of Capacity Region Evolving Graphs (CREGs). In CREGs,
rates of communication between nodes at each of T epochs
are coupled, through jointly belonging in a Capacity Region
associated with that epoch. Therefore, our formulation is
particularly well suited to the study of Wireless DTNs. We
show how to solve the problem by decomposing it into T
problems, each one involving a single epoch and its associated
Capacity Region. As capacity regions are very hard to describe
and solve problems with [22], this decomposition is highly
advantageous, as it means that we do not need to solve a
single problem involving T capacity regions, but a set of
T parallel problems, each involving one capacity region. As
discussed, we need to solve this set of problems repeatedly,
until the prices converge, however our preliminary numerical
investigation reveals a significant reduction of solving times.
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