
HAL Id: hal-00766261
https://hal.science/hal-00766261v2

Submitted on 1 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Overlapping tile automata
David Janin

To cite this version:
David Janin. Overlapping tile automata. The 8th International Computer Science Symposium in
Russia (CSR), Jun 2013, Ekaterinburg, Russia. pp.431–443, �10.1007/978-3-642-38536-0_37�. �hal-
00766261v2�

https://hal.science/hal-00766261v2
https://hal.archives-ouvertes.fr


LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-1465-12 (revised february 2013)

Overlapping tile automata

March 1, 2013

David Janin,
LaBRI, IPB, Université de Bordeaux





Overlapping tile automata

David Janin⋆

Université de Bordeaux, LaBRI UMR 5800,
351, cours de la Libération, F-33405 Talence, FRANCE

janin@labri.fr

Abstract. Premorphisms are monotonic mappings between partially ordered monoids
where the morphism condition ϕ(xy) = ϕ(x)ϕ(y) is relaxed into the condition ϕ(xy) ≤

ϕ(x)ϕ(y). Their use in place of morphisms has recently been advocated in situations
where classical algebraic recognizability collapses. With languages of overlapping tiles,
an extension of classical recognizability by morphisms, called quasi-recognizability, has
already proved both its effectiveness and its power. In this paper, we complete the theory
of such tile languages by providing a notion of (finite state) non deterministic tile au-
tomata that capture quasi-recognizability in the sense that quasi-recognizable languages
correspond to finite boolean combinations of languages recognizable by finite state non
deterministic tile automata. As a consequence, it is also shown that quasi-recognizable
languages of tiles correspond to finite boolean combination of upward closed (in the
natural order) languages of tiles definable in Monadic Second Order logic.

Introduction

Motivations and background.
There are many ways to describe one-dimensional overlapping tiles : the ob-

jects which are studied in this paper. Arising in inverse semigroup theory, they
can be defined as (representations of) elements of a McAlister monoid [15], i.e.
linear and unidirectional birooted trees. Then they are used in studies [11, 12] of
the structure of tiling (in the usual sense with no overlaps) of the d-dimensional
Euclidian space R

d.
Overlapping tiles can also be seen as two way string objects extended by

extra history recording capacities that prevent a new letter from being placed in
a position where another distinct letter has already been positioned in the past.

For instance, starting from a given string object, say ab with two distinct
letters a and b, one can remove letter b from the right of that object. The resulting
object is denoted by abb−1. If these objects are treated just as standard string
objects, b−1 acts as the group inverse of b, and thus bb−1 = 1 henceforth abb−1 = a.

⋆ partially funded by the project CONTINT 2012 - ANR 12 CORD 009 02 - INEDIT



If these string objects are treated as strings extended with recording capacity as
mentioned above, then abb−1 6= a. In that case, b−1 acts as the pseudo-inverse of
b and bb−1 is seen rather as sort of a footprint of letter b that is kept on the right
side of letter a.

Now if one adds that same letter b to the right of abb−1 again, this leads
to build again the object abb−1b which, in both cases, equals the string object
ab. Indeed, adding letter b to the right of its footprint bb−1 merely amounts to
rebuilding b, i.e. we have bb−1b = b.

On the contrary, if one tries to add letter a - distinct from b - to the right of
abb−1 then the resulting object abb−1a equals 0: the undefined tile. Indeed, with
standard string objects the resulting value would be aa but with overlapping tiles,
no other letter than the original can be positioned on the right footprint bb−1 of
b hence bb−1a = 0 and thus abb−1a = 0.

Surprisingly, this extension of the string data type turns out to be a mathe-
matically well-founded and structurally rich extension of that type. Adding and
removing letters to the right or to the left of an extended string induces an asso-
ciative product: the underlying algebraic structure is the monoid of overlapping
tiles. The history recording mechanism induces a partial order relation: the nat-
ural order defined on tiles.

Recent modeling experiments in computational music [1, 10], conducted with
variants of overlapping tiles, further illustrate how the structural richness of the
monoid of tiles can be used to great benefit. Indeed many derived operators,
e.g. sequential or parallel compositions, can be defined from the inverse monoid
structure.

There is thus a need to develop a language theory for overlapping tiles. Such
a study has been initiated in [9].

Doing so, an immediate difficulty is that, as already observed for inverse
monoids [16, 19], classical language theory tools are not directly applicable. In-
deed, on birooted trees [19] or on positive overlapping tiles [9], the notion of rec-
ognizability defined via morphisms into finite monoids or, equivalently, defined
by via classical finite state (two way) automata, collapses in terms of expressive
power.

As a remedy, the use of premorphisms instead of morphisms has been success-
fully proposed [7]. Indeed, this variant of algebraic recognizability, called quasi-
recognizability, is shown to essentially captures the expressive power of Monadic
Second Order Logic (MSO) over tiles [9]. The purpose of the present paper is to



extend and strengthen such an emerging algebraic theory by providing it with an
automata theoretical counterpart.

Outline.
Overlapping tile automata are non deterministic finite state word automata

with a semantics (acceptance condition) that is now defined in terms of overlap-
ping tiles.

We first show that languages of tiles recognized by such finite state automata
correspond to upward closed (in some natural order) languages definable in MSO.
Then, we prove that they capture the notion of quasi-recognizable languages of
tiles [7] in the sense that quasi-recognizable languages of tiles correspond to finite
boolean combination of languages of tiles definable by finite state tile automata.

It must be mentioned that our former definition of recognizability by pre-
morphisms was only defined for languages of positive tiles. This new automata
theoretical approach induces a refined definition that, equivalent to our former
proposal on positive tiles, is now applicable to languages of arbitrary positive and
negative tiles.

The paper is organized as follows. Monoids of overlapping tiles and the related
notion of tile automata are presented in Section 1. They are shown to capture up-
ward closed (in the natural order) MSO definable languages of tiles (Theorem 2).

Special classes of premorphisms and partially ordered monoids, referred to
as adequate, are defined and studied in Section 2. They provide the appropriate
concepts for defining an effective notion of quasi-recognizability (Lemma 6).

Tile automata and quasi-recognizable languages are then related in Section 3.
It is shown that quasi-recognizable languages of tiles exactly correspond to finite
boolean combinations of languages recognizable by finite tile automata (Theo-
rem 9) or, equivalently, finite boolean combinations of upward MSO definable
languages of tiles (Corollary 10).

1 Overlapping tiles and their automata

Here we briefly give a description of the McAlister monoid [15] on the alphabet
A, or, as presented and studied in [9], the monoid of one-dimensional overlapping
tiles. Then we define and study the notion of overlapping tile automata.

1.1 Preliminaries

Let A be a finite alphabet A and let A∗ be the free monoid generated by A with
neutral denoted by 1. The concatenation of two words u and v is denoted by u · v



or simply uv. The monoid A∗
0 is defined as the extension of the free monoid A∗

with a zero with 0 · u = u · 0 = 0 for every u ∈ A∗
0.

Let ≤p (resp. ≤s) be the prefix (resp. the suffix) order over A∗
0, that is, for

every u and v ∈ A∗
0, u ≤p v (resp. u ≤s v) when there exists w ∈ A∗

0 such
that uw = v (resp. wu = v). Observe that for every u ∈ A∗

0, we have u ≤p 0
(resp. v ≤s 0). Let then ∨p be the (prefix) join operator defined, for every u and
v ∈ A∗

0, by u∨p v = v when u ≤p v, by u∨p v = u when v ≤p u and by u∨p v = 0
otherwise. One can check that ∨p is indeed the join for the set A∗

0 ordered by the
prefix order. The (suffix) join operator ∨s is defined symmetrically.

Given Ā a disjoint copy of A, let u 7→ ū be the syntactic dual mapping defined
by 1̄ = 1 and, for every every letter a ∈ A and every u ∈ (A+ Ā)∗, by ua = ū · ā
and uā = ū · a. The free group FG(A) generated by A is defined as the quotient
of (A + Ā)∗ by the least congruence ≃ such that, for every letter a ∈ A, aā ≃ 1
and āa ≃ 1. As usual, every element [u] ∈ FG(A) is represented by the unique
word v ∈ [u] that contains no factors of the form aā or āa.

1.2 Overlapping tiles

A one-dimensional overlapping tile, or just tile, over the alphabet A is a triple of
words x = (u1, u2, u3) ∈ A∗ × (A∗ + Ā∗) ×A∗ such that, if u2 ∈ Ā∗, the syntactic
inverse u2 ∈ A∗ is a suffix of the word u1 and a prefix of the word u3.

When u2 ∈ A∗ we say that x is a positive tile. When u2 ∈ Ā∗ we say that x
is a negative tile. When u2 = 1, i.e. when x is both positive and negative, we say
that x is a context tile. Sets TA, T+

A , T−
A and CA will respectively denote the set

of tiles, the set of positive tiles, the set of negative tiles and the set of context
tiles over A.

The (syntactic) inverse of a tile x ∈ TA is defined to be the tile x−1 =
(u1 · u2, ū2, u2 · u3), with the product defined in the free group FG(A). One can
easily check that the induced mapping x 7→ x−1 is an involution that maps
positive (resp. negative) tiles to negative (resp. positive) tiles and that, restricted
to context tiles, is the identity mapping.

The word domain of a tile x = (u1, u2, u3) is the word u1·u2·u3 ∈ A∗ with prod-
uct performed in FG(A). The directed root of the tile x is the word u2 ∈ A∗ + Ā∗.
A positive tile x = (u1, u2, u3) is conveniently drawn as a (linear, unidirectional
and left to right) Munn’s birooted word tree [17] with dangling arrows to identify
the input vertex and the output vertex that marks the extremities of the directed
root of x.



• • • •
u1 u2 u3

(x)

The negative tile x−1 = (u1u2, u2, u2u3) is obtained from x by just inverting the
input and the output vertices.

• • • •
u1 u2 u3

(x−1)

The product x · y of two tiles x = (u1, u2, u3) and y = (v1, v2, v3) ∈ TA is
defined in two steps: the output vertex of x is first positioned (or synchronized)
with the input vertex of y, then, if possible, the word domains of x and y are
merged letter by letter. The input vertex (resp. output vertex) of the resulting
product x · y is then defined to be the input vertex of x (resp. the output vertex
of y).

In the case x = (u1, u2, u3) ∈ T+
A and y = (v1, v2, v3) ∈ T+

A , these two phases
can be depicted as follows:

(x) • • • •
u1 u2 u3

(y) • • • •
v1 v2 v3

(x · y) • • • •
(u1u2 ∨s v1)ū2 u2v2 v̄2(u3 ∨p v2v3)

Formally, the (partial) product of two non-zero tiles x = (u1, u2, u3) and y =
(v1, v2, v3) is defined as

x · y = ((u1u2 ∨s v1)u2, u2v2, v2(u3 ∨p v2v3))

when both pattern matching conditions, u1u2 ∨s v1 6= 0 and u3 ∨p v2v3 6= 0, when
evaluated in FG(A), are satisfied.

Adding an undefined tile denoted by 0, this product is completed by x · y = 0
when any of the pattern matching condition is not satisfied with x · 0 = 0 = 0 · x
for every x ∈ TA.

For instance, with A = {a, b, c} we have (a, b, a) · (b, a, c) = (a, ba, c) while
(a, b, a)·(a, a, c) = 0 since a 6= b. Another example is given by (1, a, 1)·(ba, c, ab) =
(b, ac, ab). It illustrates the fact that the left and the right parts of the resulting
product can arbitrarily come from any of the two product components.



As a special case of product, when x = (u1, u2, 1) and y = (1, v2, v2) the
product x · y is always non zero. In that case, we say that the product x · y is a
disjoint product.

The resulting set T 0
A equipped with the above product is a monoid with unit

1 = (1, 1, 1) that is shown [9, 4] to be isomorphic to the McAlister monoid [15]
generated by A. Extending the inverse mapping to 0 by taking 0−1 = 0, for
every tile x ∈ T 0

A, the tile x−1 is the unique tile such that both xx−1x = x and
x−1xx−1 = x−1. The monoid T 0

A is thus an inverse monoid [14].
As such, the idempotent elements are the elements of the form xx−1 (equiv-

alently x−1x) and the natural order associated with the inverse monoid T 0
A is

defined by x ≤ y when x = xx−1y (or, equivalently x = yx−1x). One can easily
check that for every non zero tile x = (u1, u2, u3) and y = (v1, v2, v3), we have
x ≤ y if and only if u1 ≥s v1, u2 = v2 and u3 ≥p v3. One can also check that for
every x ∈ T 0

A, x ≤ 1 if and only if x · x = x. In the sequel, idempotent tiles are
thus also called subunits.

For every non zero tile x = (u1, u2, u3) ∈ TA, we define the left projection
xL = x−1x = (u1u2, 1, u3) and the right projection xR = xx−1 = (u1, 1, u2u3).
One can check that xR · x = x = x · xL. Even more, the tile xR (resp. xL) is
the least (in the natural order) idempotent tile z ∈ T 0

A such that z · x = x (resp.
x = x ·z). As an immediate consequence of the definition, for every x and y ∈ T 0

A,
the product x · y is a disjoint product if and only if x · y 6= 0 and 1 is the unique
idempotent element that is both above xL and yR in the natural order. These
notions of projections and disjoint products play a central role in the notion of
adequately ordered monoid and adequate premorphism that are presented below.

Last, one can observe that the mapping u 7→ (1, u, 1) from A∗ to TA is a
one-to-one morphism. In other words, the free monoid A∗ is embedded into the
McAslister monoid T 0

A of overlapping tiles. In the remainder of the text we may
use the same notation for words of A∗ and their images in T 0

A.

1.3 Tile automata

Definition 1. A non deterministic (finite) overlapping tile automaton is a triple
A = 〈Q, δ,K〉 with a (finite) set of states Q, a non deterministic transition
function δ : A → P(Q×Q) and an accepting set K ⊆ Q×Q.

An run of the automaton A on a word u = a1 · · · an ∈ A∗ from state p to state
q, which is denoted by p

u
→ q, is a sequence of n + 1 states q0 = p, q1, q2, . . . ,

qn = q ∈ Q such that for every 1 ≤ i ≤ n, we have (qi−1, qi) ∈ δ(ai).



A run of the automaton A on a positive tile x = (u, v, w) ∈ T+
A (resp. a

negative tile x = (uv, v̄, vw) ∈ T−
A ) is quadruple of states (s, p, q, e) ∈ Q × Q ×

Q × Q: a start state s, an input state p, an output state q and an end state e,
such that s

u
→ p, p

v
→ q and q

w
→ e (resp. s

u
→ q, q

v
→ p and p

w
→ e).

Such a run is an accepting run when (p, q) ∈ K. The set of tiles over which
there is an accepting run of the automaton A is denoted by L(A) ⊆ TA. It is the
language of tiles recognized by the automaton A.

Examples. Let us consider the tile automaton (graph) defined with the set of states
Q = {1, 2, 3} and transitions δ(a) = {(1, 1), (1, 2), (2, 3), (3, 3)} for every a ∈ A.
With K+ = {(1, 2)} or K+ = {(2, 3)} we recognize the language of all strictly
positive tiles. With K− = {(2, 1)} or K− = {(3, 2)} we recognize the language
of all strictly negative tiles. With K0 = {(2, 2)} we recognize the language of all
idempotent tiles.

As an immediate consequence of tile automata semantics, every language of
tiles recognized by a tile automaton is upward closed in the natural order. The
following theorem shows that this is actually the characteristic property of these
languages.

Theorem 2. For every language of tiles L ⊆ TA, the language L is recognizable
by a finite state overlapping tile automaton if and only if the language L is upward
closed (in the natural order) and definable in monadic second order logic.

Proof. This essentially follows from the characterization of MSO definable lan-
guages that is provided by Theorem 4 in [9]. 2

As far as complexity issues are concerned, one can easily check that, as for
a non deterministic word automaton, deciding if a tile x ∈ TA belongs to the
language L(A) for some finite state automaton can be done in time 2n · 2p with n
the size of x and p the number of states in A. Similarly, the language emptyness
problem can be solved in linear time in the size of automaton A. Indeed, this just
amounts to check that there is a path in the automaton graph from a state p to
a state q with (p, q) ∈ K.

2 Quasi-recognizable languages of tiles

We define in this section a notion of quasi-recognizability extending the one pro-
posed in [7]. The major difference is that in [7] our proposal was only defined for
languages of positive tiles.



2.1 Adequately ordered monoids

Let S be a monoid partially ordered by a relation ≤S (or just ≤ when there is no
ambiguity). We always assume that the order relation ≤ is stable under product,
i.e. if x ≤ y then xz ≤ yz and zx ≤ zy for every x, y and z ∈ S. The set U(S) of
subunits of the partially ordered monoid S is defined by U(S) = {y ∈ S : y ≤ 1}.

Definition 3 (Adequately ordered monoid). A partially ordered monoid S

is an adequately ordered monoid when all subunits of S are idempotents, and, for
every x ∈ S, both xL =

∧

{y ∈ U(S) : xy = x} and xR =
∧

{y ∈ U(S) : yx = x}
exist in U(S) with xRx = xxL = x. The subunit xL (resp. xR) is called the left
projection (resp. the right projection) of the element x.

Since subunits are assumed to be idempotents, one can check that they com-
mute and thus, ordered by the monoid order, form a meet semilattice with the
product as the meet operator. It follows that when x is itself a subunit, we have
x = xL = xR, i.e. both left and right projection mappings are indeed projection
mappings from S onto U(S).

Examples. Every monoid S extended with the trivial order x ≤ y only when
x = y is a adequately ordered monoid with xL = xR = 1 for every x ∈ S. Every
inverse monoid S ordered by the natural order relation defined by x ≤ y when
x = xx−1y (or equivalently y = yx−1x) for every x and y ∈ S is a adequately
ordered monoid with xL = x−1x and xR = xx−1. Especially, the monoid T 0

A is an
adequately ordered monoid. As shown in the next section, the relation monoid
P(Q×Q) ordered by inclusion is also an adequately ordered monoid.

Remark. For the reader familiar with the work initiated by Fountain [5], an or-
dered monoid S is adequately ordered exactly when it is U(S)-semiadequate in
the sense of [13]. This suggests that, conversely, a U -semiadequate can be called
adequately ordered when its natural order defined by x � y when x = xRyxL can
be extended into a partial order ≤ that is stable under product with U = U(S).
This is not necessarily the case. However, when such a extension exists, both
orders � and ≤ coincide on subunits.

In [7], only U -semiadequate monoids with stable natural order were considered
and shown to suffice for languages of positive tiles. Of course, every such monoid
is also an adequately ordered monoid. The more relaxed definition proposed here
copes with the fact that the natural order on the relation monoid P(Q×Q) is not
stable under product while the inclusion order, that extends the natural order, is
stable.



Lemma 4. Let S be an adequately ordered monoid. For every x and y ∈ S, if x
and y are R-equivalent (i.e. if x · S = y · S) then xR = yR and, symmetrically, if
x and y are L-equivalent (i.e. if S · x = S · y) then xL = yL.

In other words, left and right canonical local identities of a given element can be
seen as some approximation of its left and right Green’s classes.

Remark. We prove in [7] that every monoid S can be embedded into an adequately
ordered monoid Q(S): the quasi-inverse expansion of S, in such a way that, for
every (images of) two elements x and y ∈ S, we have xL = yL (resp. xR = yR) in
Q(S) if and only if x and y are L-equivalent (resp. R-equivalent). We will use a
similar idea in the proof of Theorem 9 below.

2.2 Premorphisms and adequate premorphisms

A mapping ϕ : S → T between two adequately ordered monoids is a premorphism
(or ∨-premorphism in [6]) when ϕ(1) = 1 and, for every x and y ∈ S, we have
ϕ(xy) ≤T ϕ(x)ϕ(y) and if x ≤S y then ϕ(x) ≤T ϕ(y).

Definition 5 (Adequate premorphisms). A premorphism ϕ is an adequate
premorphism when, for every x ∈ S, we have ϕ(xL) = (ϕ(x))L and ϕ(xR) =
(ϕ(x))R, and for every x and y ∈ S, if xy 6= 0 and xL ∨ yR = 1 then ϕ(xy) =
ϕ(x)ϕ(y). In that latter case we say that the product xy is disjoint.

Lemma 6. Let ϕ : T 0
A → S be an adequate premorphism. The restriction of ϕ

to (the overlapping tile image of) A∗ is a morphism and, for every positive tile
(u, v, w) ∈ T+

A one has ϕ((u, v, w)) = (ϕ(u))L · ϕ(v) · (ϕ(w))R.
Symmetrically, the restriction of ϕ to the inverses of (the overlapping tile

image of) A∗ is also a morphism and, for every negative tile (uv, v̄, vw) one has
ϕ((uv, v̄, vw)) = (ϕ(w))R · ϕ(v−1) · (ϕ(u))L = (ϕ(w−1))L · ϕ(v−1) · (ϕ(u−1))R.

As a consequence, when S is finite, for every tile x ∈ T 0
A, the image ϕ(x) of

x by ϕ is effectively computable, in time linear in the size of the tile x, from the
images of ϕ(A), ϕ(Ā) combined by product and right (or left) projection in S.

Proof. For every u ∈ A∗ we have ϕ((1, u, 1)) inductively computable by ϕ(1) = 1
and, for every v ∈ A∗ and a ∈ A, ϕ((1, av, 1)) = ϕ((1, a, 1)) · ϕ((1, v, 1)) since
the product (1, av, 1) = (1, a, 1) · (1, v, 1) is a disjoint product. By symmetry, the
same holds for inverses. Indeed, for every tile x and y, if xy is a disjoint product
then so is (xy)−1 = y−1x−1. It follows that ϕ((u, ū, u)) is also computable for
every u ∈ A∗,



Then, one can observe that for every tile x = (u, v, w) we have x = (u, 1, 1) ·
(1, v, 1) · (1, 1, w) with disjoint products and (u, 1, 1) = (1, u, 1)L and (1, 1, w) =
(1, w, 1)R. The adequacy assumption enables us to conclude. that ϕ((u, v, w)) =
(ϕ((1, u, 1)))L ·ϕ((1, v, 1)) ·(ϕ((1, w, 1)))R wich is thus computable. By symmetry,
we also have x−1 = (1, 1, w)·(v, v̄, v)·(u, 1, 1) with disjoint products and (1, 1, w) =
(w, w̄, w)L and (u, 1, 1) = (u, ū, u)R hence we conclude similarly.

In these computations, right projections (or left projections) suffice since
(u, ū, u)L = (1, u, 1)R and (u, ū, u)R = (1, u, 1)L for every u ∈ A∗. 2

2.3 Quasi-recognizable languages

Definition 7 (Quasi-recognizable languages). A language of tiles L ⊆ TA is
quasi-recognizable when there exists an adequate premorphism ϕ : T 0

A → S in a
finite adequately ordered monoid S such that L = ϕ−1(ϕ(L)).

As far as computability and complexity issues are concerned, the Lemma 6
ensures that this notion of quasi-recognizability is effective in the sense that
membership in a quasi-recognizable language L of tiles is computable. Deciding
if a tile x ∈ TA belongs to the language L can even be done in bilinear time in
the size of the tile x and in the size of the ordered monoid that quasi-recognizes
the language L.

It is also quite an immediate consequence of Lemma 6 above that the quasi-
recognizable languages of tiles are definable in MSO (see [9] for a definition of
MSO logic over tiles). What about the converse ? It is a consequence of [7] that
quasi-recognizability essentially capture MSO in the following sense. Given a new
letter # 6∈ A, given #(L) ⊆ TA+# defined for every language L⊆TA by #(L) =
{(#u, v, w#) : (u, v, w) ∈ L}, we have: language #(L) is quasi-recognizable if and
only if L is definable in MSO. Corollary 10, proved in the next section, provides
a complete logical characterization of quasi-recognizable languages of tiles.

3 Tile automata vs quasi-recognizability

In this section, we relate the notions of finite state tile automata and the notion
of quasi-recognizable languages of tiles.

3.1 From tile automata to quasi-recognizability

Let A = 〈Q, δ,K〉 be a finite non deterministic tile automaton. The run image
of the positive tile x = (u, v, w) ∈ T+

A is defined as the set of pairs of states



ϕA((u, v, w)) = {(p, q) ∈ Q × Q : ∃s, e ∈ Q, s
u

→ p, p
v

→ q, q
w
→ e}, i.e. the set of

all runs of the tile automaton A over u.

Theorem 8. Every language of tiles definable by a finite state tile automaton is
quasi-recognizable.

Proof. Let A = 〈Q, δ,K ⊆ Q×Q〉 be a tile automaton and let ϕA : TA → P(Q×Q)
be the run mapping induced by A. We essentially have to prove that P(Q × Q)
equipped with the product

X · Y = {(p, q) ∈ Q×Q : ∃r ∈ Q, (p, r) ∈ X, (r, q) ∈ Y }

and ordered by inclusion is an adequately ordered monoid and that ϕA extended
to 0 by taking ϕA(0) = ∅ is an adequate premorphism.

The fact that P(Q×Q) equipped with the relation product is a stable ordered
monoid with neutral element IQ = {(q, q) ∈ Q×Q : q ∈ Q} and inclusion ordered
is a classical result [18]. Since subunits are obviously idempotents, it suffices thus
to prove that canonical left and right identities exist.

Let X ∈ P(Q × Q) and let XR = {(p, p) ∈ Q × Q : ∃q ∈ Q, (p, q) ∈ X}
and let XL = {(q, q) ∈ Q × Q : ∃p ∈ Q, (p, q) ∈ X}. One can easily check that
X = XR ·X = X ·XL for every X ⊆ Q×Q. Let then Y ⊆ IQ such that Y ·X = X

(resp. X ·Y = X). It is an immediate observation that this implies XR ⊆ Y (resp.
XL ⊆ Y ). In other words, XL (resp. XR) is indeed the least right (left) local unit
for X.

The fact that ϕA extended to zero as defined above is an premorphism raises
no real difficulty. By definition, we have ϕA(1) = IQ and it is rather immediate
that ϕA(u) ⊆ ϕA(v) whenever u ≤ v in TA. The fact that we also have ϕA(uv) ≤
ϕA(u)ϕA(v) for every u and v ∈ T 0

A is a little more complex to check but with no
special difficulty.

The fact that ϕA is also adequate is somehow simpler and essentially fol-
lows from the definition. In particular, the disjoint product case just mimics the
classical case where ϕA is defined over words only. 2

As an immediate consequence of the definition of ϕA, writing X−1 = {(q, p) ∈
Q×Q : (p, q) ∈ X} for every relation X ⊆ Q×Q, we have ϕA(u−1) = (ϕA(u))−1

and thus we also have L−(A) = {u ∈ T−
A : (ϕA(u−1))−1 ∈ K}. In general,

this property is not satisfied by an arbitrary adequate premorphism. However, we
prove in Theorem 9 below that every adequate premorphism can still be translated
into an equivalent premorphism of the form ϕA for some finite state automaton
A.



3.2 From quasi-recognizability to tile automata

Theorem 9. For every quasi-recognizable language of tiles L ⊆ TA there exists
a finite state non deterministic tile automaton A such that L = ϕ−1

A (ϕA(L)), i.e.
the adequate premorphism induced by A recognizes the language L.

Proof. Let ψ : T 0
A → S be an adequate premorphism into a finite adequately

ordered monoid S let Kψ ⊆ S and let L = ψ−1(Kψ). We want to build a finite
state automaton A = 〈Q, δ,K〉 such that ϕ−1

A (K) = ψ−1(Kψ).

To achieve this goal it is sufficient to define an automaton A that, given
any positive tile x = (u, v, w) (resp. negative tile x−1 = (uv, v̄, vw)) as input,
computes, via ϕA(x) (resp. ϕA(x−1)), the left ideal S · ψ(u) associated to ψ(u),
the right ideal ψ(w) · S associated to ψ(w) and the image ψ(v) of the root v of x
(resp. the image ψ(v−1) of the root v̄ of x−1).

Indeed, by Lemma 4, computing these left and right ideals is enough to com-
pute the expected left and right canonical identities ψ(uL) and ψ(wR). Then,
by applying Lemma 6, together with the value of ψ(v) (resp. ψ(v−1)), we can
compute the value ψ(x) of x (resp. ψ(x−1) of x−1) by the premorphism ψ.

Extending the idea described in the automata section in order to distinguish
positive from negative tiles, the automaton A is defined as follows.

The set of states Q is defined to be Q = S × S × S × M with set of modes
M = {P, S, PR,NR, c, p1, p2, n1, n2} where P , S, PR and NR respectively stand
for the “stable” automaton mode prefix, suffix, positive root and negative root
automaton modes, and c, p1, p2, n1 and n2 stand for the “frontier” modes that
occur at most once in between stable modes.

For every a ∈ A, the set δ(a) of transitions labeled by a is defined to be the
union of the following sets of transitions:

⊲ “prefix” transitions, from states in mode P to states in modem ∈ {P, c, p1, n1},
of the form {((x, y, z, P ), (x · ϕ(a), y, z,m) : x, y, z ∈ Q},

⊲ “positive root” transitions, from states in mode m ∈ {PR, p1} to states in
mode k ∈ {PR, p2}, of the form {((x, y, z,m), (x, y · ϕ(a), z, k)) : x, y, z ∈ S},

⊲ “negative root” transitions, from states in mode m ∈ {PN, n1} to states in
mode k ∈ {PN, n2}, of the form {((x, y, z,m), (x, ϕ(a−1) · y, z, k)) : x, y, z ∈
S},

⊲ “suffix” transitions, from states in mode m ∈ {S, c, p2, n2} to states in mode
S, of the form {((x, y, ϕ(a) · z,m), (x, y, z, S)) : x, y, z ∈ S}.



Of course, such an automaton will run freely on tiles regardless of whether it is
running on the prefix, the root or the suffix part of a tile. However, by watching
the states in frontier modes occurring at the extremities of the root, we can collect
all the information we need.

More precisely, the next step is then to keep from the set of all runs ϕA(x)
of A on any given input tile x ∈ TA only the relevant data. This is achieved by
the following mapping. For every X ⊆ P(Q × Q), we define the relevant image
f(X) ⊆ S × S × S of X “in” S by taking:

f(X) = {(x, 1, z) ∈ S × S × S : ((x, 1, z, c), (x, 1, z, c)) ∈ X} (1)

∪{(x, y, z) ∈ S × S × S : ((x, 1, z, p1), (x, y, z, p2)) ∈ X} (2)

∪{(x, y, z) ∈ S × S × S : ((x, 1, z, n2), (x, y, z, n1)) ∈ X} (3)

where line (1) treats the case of context tiles, line (2) treats the case of (strictly)
positive tiles and line (3) treats the case of (strictly) negative tiles.

With this construction, one can show that for every x = (u, v, w) ∈ T+
A we

have: f(ϕA(x)) = S ·ψ(u) × {ψ(v)} ×ψ(w) ·S and, for every x−1 = (uv, v̄, vw) ∈
T−
A we have f(ϕA(x−1)) = S · ψ(u) × {ψ(v−1)} × ψ(w) · S. In other words, for

every x ∈ TA, the finite value of f(ϕA(x)) completely characterizes ψ(x) thus we
conclude the proof by taking

K = f−1
(

{S · ψ(u) × {ψ(v)} × ψ(w) · S : ψ(uL) · ψ(v) · ψ(wR) ∈ Kψ}
)

f−1
(

{S · ψ(u) × {ψ(v−1)} × ψ(w) · S : ψ(wR) · ψ(v−1) · ψ(uL) ∈ Kψ}
)

By construction, for every tile x ∈ TA, we indeed have x ∈ ϕ−1
A (K) if and only if

x ∈ ψ−1(Kψ). 2

Observe that if we consider a language L ⊆ T+
A of positive tiles that is rec-

ognizable by a premorphism ψ from the monoid of positive tiles T+
A into an

adequately ordered monoid S then the above proof can easily be adapted so that
ϕA : T 0

A → P(Q×Q) still recognizes L. In other words, a quasi-recognizable lan-
guage of positive tiles is also quasi-recognizable as a language of arbitrary tiles.
This proves that the work presented here indeed generalizes the results formerly
obtained in [7].

Corollary 10. For every language of tiles L ⊆ TA, the language L ⊆ TA is
quasi-recognizable if and only if L is a finite boolean combination of upward closed
MSO-definable languages of tiles.

Proof. Immediate consequence of Theorem 2 and Theorem 9. 2



Conclusion

We have shown that the emerging notion of quasi-recognizability, defined in [7]
as a remedy to the collapse of classical recognizability by monoid morphisms, can
be equipped with quite a simple notion of finite state automata that, applied to
languages of overlapping tiles, captures its expressiveness. Extending the theory
of languages of words, this new theory of languages of tiles inherits several and
significantly robust features of that classical language theory.

Compared to our former proposal [7], the notion of quasi-recognizability has
also been refined - especially via the notion of disjoint products - and can now
be applied to more general settings. Forthcoming studies [8] even show that the
notion of recognizability by adequate premorphisms and the related notion of non
deterministic finite state automata can even be extended, with similar logical
characterizations, to languages of labeled birooted trees generalizing thus the
known algebraic characterizations of regular languages of finite trees.

Based on the notion of U -semiadequate monoids [13], the present work also
provides a rather unexpected application of the study of non regular semigroups
initiated by Fountain [5] in the 70’s. Our proposal still need to be further related
with the research lines developed in that field such as, for instance, the notion of
partial actions [2, 3].

References

1. F. Berthaut, D. Janin, and B. Martin. Advanced synchronization of audio or symbolic musical
patterns: an algebraic approach. International Journal of Semantic Computing, 6(4):1–19, 2012.

2. C. Cornock. Restriction Semigroups: Structure, Varieties and Presentations. PhD thesis, Departe-
ment of Mathematics University of York, 2011.

3. C. Cornock and V. Gould. Proper two-sided restriction semigroups and partial actions. Journal
of Pure and Applied Algebra, 216:935–949, 2012.

4. A. Dicky and D. Janin. Two-way automata and regular languages of overlapping tiles. Technical
Report RR-1463-12, LaBRI, Université de Bordeaux, 2012.

5. J. Fountain. Adequate semigroups. Proc. Edinburgh Math. Soc., 22(2):113–125, 1979.
6. C. D. Hollings. The Ehresmann–Schein–Nambooripad Theorem and its successors. European

Journal of Pure and Applied Mathematics, 5(4):414–450, 2012.
7. D. Janin. Quasi-recognizable vs MSO definable languages of one-dimensional overlaping tiles. In

Mathematical Foundations of computer Science (MFCS), volume 7464 of LNCS, pages 516–528.
Springer-Verlag, 2012.

8. D. Janin. Algebras, automata and logic for languages of labeled birooted trees. Technical Report
RR-1467-13, LaBRI, Université de Bordeaux, 2013.

9. D. Janin. On languages of one-dimensional overlapping tiles. In International Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM), volume 7741 of LNCS,
pages 244–256. Springer-Verlag, 2013.



10. D. Janin, F. Berthaut, M. DeSainte-Catherine, Y. Orlarey, and S. Salvati. The T-calculus : towards
a structured programming of (musical) time and space. Technical Report RR-1466-13, LaBRI,
Université de Bordeaux, 2013 (to appear).

11. J. Kellendonk. The local structure of tilings and their integer group of coinvariants. Comm. Math.
Phys., 187:115–157, 1997.

12. J. Kellendonk and M. V. Lawson. Universal groups for point-sets and tilings. Journal of Algebra,
276:462–492, 2004.

13. M. V. Lawson. Semigroups and ordered categories. i. the reduced case. Journal of Algebra,
141(2):422 – 462, 1991.

14. M. V. Lawson. Inverse Semigroups : The theory of partial symmetries. World Scientific, 1998.
15. M. V. Lawson. McAlister semigroups. Journal of Algebra, 202(1):276 – 294, 1998.
16. S. W. Margolis and J.-E. Pin. Languages and inverse semigroups. In ICALP, volume 172 of Lecture

Notes in Computer Science, pages 337–346. Springer, 1984.
17. W. D. Munn. Free inverse semigroups. Proceeedings of the London Mathematical Society, 29(3):385–

404, 1974.
18. J-.E. Pin. Chap. 10. Syntactic semigroups. In Handbook of formal languages, Vol. I, pages 679–746.

Springer Verlag, 1997.
19. P. V. Silva. On free inverse monoid languages. ITA, 30(4):349–378, 1996.


