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Abstract

Premorphisms are monotonic mappings between partially ordered monoids
where the morphism condition ϕ(xy) = ϕ(x)ϕ(y) is relaxed into the condi-
tion ϕ(xy) ≤ ϕ(x)ϕ(y). Their use in place of morphisms has recently been
advocated in situations where classical algebraic recognizability collapses.

With languages of overlapping tiles, such an extension of classical recog-
nizability by morphisms, called quasi-recognizability, has already proved both
its effectiveness and its power; it is shown to essentially capture definability
in monadic second order logic.

In this paper, we complete the theory of languages of such tiles by pro-
viding a notion of (finite state) tile automaton that is proved to be both
sound and complete with respect to quasi-recognizability, i.e. every quasi-
recognizable languages of tiles is definable by a finite state tile automaton
and, conversely, every language of tiles definable by a finite state tile automa-
ton is quasi-recognizable.

1 Introduction

1.1 Motivations and background

There are many ways to describe one-dimensional overlapping tiles : the objects
which are studied in this paper. Arising in inverse semigroup theory, they can be
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defined as (representations of) elements McAlister monoid [13], linear and unidirec-
tional birooted trees, used in studies [9, 10] of the structure of tiling (in the usual
sense with no overlaps) of the d-dimensional Euclidian spaceI Rd.

Overlapping tiles can also be seen as two way string objects extended by extra
history recording capacities that prevent a new letter from being placed in a position
where another distinct letter has already been positioned in the past.

For instance, starting from a given string object, say ab with two distinct letters
a and b, one can remove letter b from the right of that object. The resulting object
is denoted by abb−1. If these objects are treated just as standard string objects, b−1

acts as the group inverse of b, and thus bb−1 = 1 henceforth abb−1 = a. If these
string objects are treated as strings extended with recording capacity as mentioned
above, then abb−1 6= a. In that case, b−1 acts as the pseudo-inverse of b and bb−1 is
seen rather as sort of a footprint of letter b that is kept on the right side of letter a.

Now if one adds that same letter b to the right of abb−1 again, this leads to
build the building of the new object abb−1b which, in both cases, equals the string
object ab. Indeed, adding letter b to the right of its footprint bb−1 merely amounts
to rebuilding b, i.e. bb−1b = b.

On the contrary, if one tries to add letter a - distinct from b - to the right of
abb−1 then the resulting object abb−1a equals 0: the undefined tile. Indeed, with
standard string objects the resulting value would be aa but with overlapping tiles,
no other letter than the original can be positioned on the right footprint bb−1 of b
hence bb−1a = 0 and thus abb−1a = 0.

Surprisingly, this extension of the string data type turns out to be a mathemat-
ically well-founded and structurally rich extension of that type.

Adding and removing letters to the right or to the left of an extended string
induces an associative product: the underlying algebraic structure is the monoid of
overlapping tiles. The history recording mechanism induces a partial order relation:
the natural order defined on tiles.

Recent modeling experiments [1], conducted with variants of overlapping tiles in
computational music, further illustrate how the structural richness of the monoid of
tiles can be used to great benefit. Indeed both sequential or parallel composition
operators can be derived from the monoid structure.

There is thus a need to develop a language theory for overlapping tiles. Such
a study has been initiated in [8]. However, an immediate difficulty is that, as
already observed for inverse monoids [14, 16], classical language theory tools are not
directly applicable. Indeed, on birooted trees [16] - in the free inverse monoids -
or even on positive overlapping tiles [8] - in a quasi-inverse monoid -, the notion
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of recognizability defined by morphisms into finite monoids - equivalently by finite
state automata - collapses in terms of expressive power.

As a remedy, the use of premorphisms instead of morphisms has been success-
fully proposed [7]. Indeed, this variant of algebraic recognizability, called quasi-
recognizability, is shown to essentially captures the expressive power of Monadic
Second Order Logic (MSO) over tiles [8].

The purpose of the present paper is to extend and strengten such an emerging
algebraic theory by providing it with an automata theoretical counterpart.

1.2 Outline

Overlapping tile automata are finite state word automata with a semantics that is
now defined in terms of overlapping tiles. In this paper, we prove that they cap-
ture the notion of quasi-recognizable languages of tiles [7]: every quasi-recognizable
languages of tiles is definable by a finite state tile automaton and, conversely, every
language of tiles definable by a finite state tile automaton is quasi-recognizable

Previously, our definition of recognizability by premorphisms was only defined
for languages of positive tiles. This new automata theoretical approach induces a
refined definition that, equivalent to our former proposal on positive tiles, is now
applicable to languages of arbitrary positive and negative tiles.

It must also be mentioned that, although we restrict our presentation to linear
shaped tiles: avoiding the combinatorial complexity that would be induced by tree
shaped tiles, further studies provide evidences that our proposed construction gener-
alizes to birooted trees [15] and to (bottom or top-down) finite state tree automata.

This paper is organized as follows. After a series of preliminary remarks that
essentially serve fix notations for classical concepts, the monoid of overlapping tiles
is briefly presented in the following section. Special classes of premorphisms and
ordered monoids, referred to as adequate, are defined and studied in the third sec-
tion: they provide the appropriate concepts for defining an effective notion of quasi-
recognizability. Tile automata are defined in the fourth section where we also prove
that they capture quasi-recognizable languages. Several research perspectives are
outlined as a conclusion.

1.3 Preliminaries

Given a finite alphabet A, A∗ denotes the free monoid generated by A, 1 denotes
the neutral element. The concatenation of two words u and v is denoted by u · v or
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simply uv. More generally, given a monoid S, the neutral element of S is denoted
by 1 and the product of two elements x and y ∈ S is also denoted by x · y or simply
xy.

Relation ≤p (resp. ≤s) stands for the prefix (resp. suffix) order over A∗ with ∨p

(resp. ∨s) denoting the joint operator for the prefix (resp. suffix) order. It follows
that u ∨p v (resp. u ∨s v) is the least word whose both u and v are prefixes (resp.
suffixes) for every word u and v ∈ A∗.

The extended monoid A∗ + {0} (with 0 · u = u · 0 = 0 for every word u), ordered
by ≤p (extended with u ≤p 0 for every word u), is a lattice; in particular, u∨p v = 0
whenever neither u is a prefix of v, nor v is a prefix of u. Symmetric properties hold
in the suffix lattice.

Given Ā a disjoint copy of A, u 7→ ū denotes the mapping from (A+ Ā)∗ to itself
inductively defined by 1̄ = 1, for every letter a ∈ A, ā is the copy of a in Ā and
¯̄a = a, and, for every word u ∈ (A + Ā)∗, au = ū · ā. By definition, for every word
u and v ∈ (A+ Ā)∗ one has ū = u and uv = v̄ · ū.

The free group FG(A) generated by A is the quotient of (A + Ā)∗ by the least
congruence ≃ such that, for every letter a ∈ A, aā ≃ 1 and āa ≃ 1. As well known,
every class [u] ∈ FG(A) contains a unique element red(u) (the reduced form of u)
that contains no factors of the form aā or āa.

2 The monoid of overlapping tiles

Here we briefly give a description of the monoid of overlapping tiles as presented
and studied in [8].

A tile over the alphabet A is a triple of words x = (u1, u2, u3) ∈ A∗×(A∗+Ā∗)×A∗

such that, if u2 ∈ Ā∗, its inverse u2 is a suffix of u1 and a prefix of u3.
When u2 ∈ A∗ we say that x is a positive tile. When u2 ∈ Ā∗ we say that x is a

negative tile. When u2 = 1, i.e. when x is both positive and negative, we say that
x is a context tile. Sets TA, T+

A , T−
A and CA will respectively denote the set of tiles,

the set of positive tiles, the set of negative tiles and the set of context tiles over A.
The domain of a tile x = (u1, u2, u3) is the reduced form of u1u2u3 (always a

word of A∗); its root is the word u2.

A positive tile x = (u1, u2, u3) is conveniently drawn as a (linear, unidirectional
and left to right) Munn’s birooted word tree [15]:

u1 u3u2
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where the dangling input arrow (marking the beginning of the root) appears on the
left of the dangling output arrow (marking the end of the root). The corresponding
negative tile x−1 = (u1u2, u2, u2u3) ∈ A∗ × Ā∗ ×A∗ is also drawn as a birooted word
tree

u1 u3u2

where the dangling input arrow appears on the right of the dangling output ar-
row. The mapping that maps very tile x = (u1, u2, u3) to x−1 = (u1u2, ū2, u2u3) is
involutive. Tile x−1 is called the inverse of tile x.

The sequential product of two tiles x = (u1, u2, u3) and y = (v1, v2, v3) is defined
by their superposition in such a way that the end of the root of the first tile coincides
with the beginning of the root of the second tile. When both tiles are positive, this
can be drawn as follows:

u1 u3u2

v1 v3v2

sync

The product can be extended to arbitrary tiles, as illustrated by the following figure
(with positive x and negative y):

u1 u3u2

v1 v3v2

sync

Formally, we extend the set TA with a zero tile to obtain T 0
A = TA + {0}. The

sequential product of two non-zero tiles x = (u1, u2, u3) and y = (v1, v2, v3) is defined
as

x · y = ((u1u2 ∨s v1)u2, u2v2, v2(u3 ∨p v2v3))

when both pattern matching conditions u1u2∨sv1 6= 0 and u3∨pv2v3 6= 0 ar satisfied,
and x.y = 0 otherwise. Product is extended to zero by taking x · 0 = 0 · x = 0 for
every x ∈ T 0

A.
Set T 0

A equipped with the above product is a monoid [8] isomorphic to McAslister
monoid [13]. Extending the inverse mapping to 0 by taking 0−1 = 0, for every tile
x ∈ T 0

A, tile x−1 is the unique tile such that both xx−1x = x and x−1xx−1 = x.
Monoid T 0

A is thus an inverse monoid [12].
As such, idempotents are elements of the form xx−1 (equivalently x−1x) and

the natural order associated with the inverse monoid T 0
A is defined by x ≤ y when

x = xx−1y (or, equivalently x = yx−1x).
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One can easily check that for every non zero tile x = (u1, u2, u3) and y =
(v1, v2, v3), we have x ≤ y if and only if u1 ≥s v1, u2 = v2 and u3 ≥p v3. In particu-
lar, for every non zero tile x = (u1, u2, u3) ∈ TA, one has xL = x−1x = (u1u2, 1, u3)
and xR = xx−1 = (u1, 1, u2u3) that are idempotents.

An immediate property worth being mentioned: the mapping u 7→ (1, u, 1) from
A∗ to TA is a one-to-one morphism. In the remainder of the text we may use the
same notation for words of A∗ and their images in T 0

A.

3 Quasi-recognizable languages of tiles

We define in this section a notion of quasi-recognizability extending the one proposed
in [7, 6]. The major difference is that in [7, 6] our proposal was made for languages
of positive tiles only while here, it extension holds for languages of arbitrary tiles.

3.1 Adequately ordered monoids

Let S be a monoid partially ordered by a relation ≤S (or just ≤ when there is no
ambiguity). We always assume that the order relation ≤ is stable under product,
i.e. if x ≤ y then xz ≤ yz and zx ≤ zy for every x, y and z ∈ S. The set U(S) of
subunits of the partially ordered monoid S is defined by U(S) = {y ∈ S : y ≤ 1}.

A partially ordered monoid S is an adequately ordered monoid when all subunits
of S are idempotents, and, for every x ∈ S, both the minimum of right local units

xL = min{y ∈ U(S) : xy = x}

and the minimum of left local units

xR = min{y ∈ U(S) : yx = x}

exist and belong to U(S).
For every x ∈ S, the subunits xL and xR are also called the left projection and the

right projection of x. Since subunits are assumed to be idempotents, one can check
that they commute and thus, ordered by the monoid order, form a meet semilattice
with the product as the meet operators. It follows that when x is itself a subunit,
we have x = xL = xR. In other words, in an adequately ordered monoid, both left
and right projection mappings are indeed projections from S onto U(S).

Examples. Every monoid S extended with the trivial order x ≤ y when x = y is
a adequately ordered monoid wit xL = xR = 1 for every x ∈ S. These adequately
ordered monoids are called trivial.
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Every inverse monoid S ordered by the natural order relation defined by x ≤ y

when x = xx−1y (or equivalently y = yx−1x) for every x and y ∈ S is a adequately
ordered monoid with xL = x−1x and xR = xx−1.

As shown in the next section, the relation monoid P(Q×Q) ordered by inclusion
is also an adequately ordered monoid.

Remark. For the reader familiar with the work initiated by Fountain [5], an ordered
monoid S is adequately ordered exactly when it is U(S)-semiadequate [11].

This means that, conversely, a U -semiadequate is an adequate monoid when its
natural order defined by x � y when x = xRyxL can be extended into a partial
order ≤ that is stable under product with U = U(S). In that case, both order �
and ≤ coincide on subunits.

In [7], only U -semiadequate monoids with stable natural order where considered
and shown to suffice for languages of positive tiles. Of course, every such a monoid
is also an adequately ordered monoid.

Our more relaxed definition comes from the fact that the natural order on relation
monoid P(Q×Q) is not itself stable under product.

Lemma 1 Let S be an adequately monoid. For every x and y ∈ S, if x and y are
R-equivalent (i.e. if x · S = y · S) then xR = yR and, symmetrically, if x and y are
L-equivalent (i.e. if S · x = S · y) then xL = yL.

In other words, left and right canonical local identities of a given element can be
seen as some approximation of its left and right Green’s classes.

Remark. It is worth being mentioned that [7]: every monoid S can be embedded
into an adequately ordered monoid Q(S), the quasi-inverse expansion of S, so that
every (images of) two elements x and y ∈ S, one has xL = yL (resp. xR = yL) in
Q(S) if and only if x and y are L-equivalent (resp. R-equivalent). We will use a
similar idea in the proof of Theorem 5 below.

3.2 Adequate premorphisms

A mapping ϕ : S → T between two adequately ordered monoids is a premorphism
when ϕ(1) = 1 and, for every x and y ∈ S, if x ≤S y then ϕ(x) ≤T ϕ(y) and
ϕ(xy) ≤T ϕ(x)ϕ(y).

A premorphism ϕ is an adequate premorphism when ϕ(xL) = (ϕ(x))L and
ϕ(xR) = (ϕ(x))R for every x ∈ S, and if xL ∨ yR = 1 then ϕ(xy) = ϕ(x)ϕ(y)
for every x and y ∈ S. In that latter case we say that the product xy is disjoint.
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Lemma 2 Let ϕ : T 0
A → S be an adequate premorphism. The restriction of ϕ to A∗

is a morphism and, for every positive tile (u, v, w) ∈ T+
A one has

ϕ((u, v, w)) = (ϕ(u))L.ϕ(v).(ϕ(w))R

Symmetrically, the restriction of ϕ to the inverses of A∗ is also a morphism and,
for every negative tile (uv, v̄, vw) one has

ϕ((uv, v̄, vw)) = (ϕ(w))R.ϕ(v−1).(ϕ(u))L

In particular, when S is finite, for every tile x ∈ T 0
A, the image ϕ(x) of x by ϕ

is effectively computable from the images of ϕ(A), ϕ(Ā) and the left and the right
canonical projections.

Proof. Every word of A∗ (seen as a tile) is the disjoint product of its letters (also
seen as tiles) hence, restricted to on A∗, mapping ϕ behave like a morphism. By
symmetry, the same holds for inverses of words of A∗. Indeed, for every tile x and
y, if xy is a disjoint product then so is y−1x−1.

Now, one can observe that for every tile x = (u, v, w) we have x = uL.v.wR with
only disjoint products. By symmetry, this also shows that x−1 = wR.v

−1.uL since
subunits are self inverses. Adequacy assumption enables us to conclude the proof
since ϕ(uL) = (ϕ(u))L and ϕ(wR) = (ϕ(w))R. 2

Remark. As opposed to our former definition [7], the actual definition of adequate
premorphism, built via disjoint products, is applicable to arbitrary tiles and, even
beyond the scope of that paper, to arbitrary birooted trees.

3.3 Quasi-recognizable languages

A language L ⊆ TA is a quasi-recognizable language of tiles when there exists an
adequate premorphism ϕ : T 0

A → S in a finite adequately ordered monoid S such
that L = ϕ−1(ϕ(L)).

Lemma 2 ensures that quasi-recognizable languages are MSO definable (see [8]
for a definition of MSO logic over tiles). The following Lemma (proved in [7]) tells
that quasi-recognizable languages of tiles are presumably not all MSO definable
languages of tiles since they satisfy some coherent context closure property.

Lemma 3 For every language L ⊆ TA recognized by premorphism ϕ : TA → S, for
every (u, v, w) ∈ L, for every u′ ∈ A∗ (resp. w′ ∈ A∗), if S · ϕ(u′) = S · ϕ(u) (resp.
ϕ(w′) · S = ϕ(w) · S) then (u′, v, w) ∈ L (resp. (u, v, w′) ∈ L).
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However, quasi-recognizability essentially capture MSO in the following sense.
Given a new letter # 6∈ A, given #(L) ⊆ TA+# defined for every language L⊆TA by
#(L) = {(#u, v, w#) : (u, v, w) ∈ L}, we have: language #(L) is quasi-recognizable
if and only if L is definable in MSO.

Indeed, this follows from Theorem 4 presented below and the fact that, in pres-
ence of # on both sides of tile’s domain, the left and right equivalences induced by
any adequate premorphism recognizing #(L) are trivial.

4 Tile automata and quasi-recognizability

In this section, we define finite state tile automata and proved that they capture
quasi-recognizable languages of tiles.

4.1 Tile automata

A finite tile automaton is a triple A = 〈Q, δ,K〉 with a finite set of states Q,
transition function δ : A → P(Q×Q) and an accepting set K ⊆ P(Q×Q).

Given a word u ∈ A∗, we say that automaton A reads u from state p to state q,
which is denoted by p

u
→ q, when u = a1 · · · an, and there is n+ 1 states q0 = p, q1,

q2, . . . , qn = q ∈ Q such that for every 1 ≤ i ≤ n, (qi−1, qi) ∈ δ(ai).
A run of automaton A on a positive tile x = (u, v, w) ∈ T+

A is a pair of states
(p, q) ∈ Q × Q, the input state p and the output state q, such that there exist two
other states: a start state s and an end state e, such that s

u
→ p, p

v
→ q and q

w
→ e.

The run image of the positive tile x = (u, v, w) ∈ T+
A is then defined as the set

of pairs of states

ϕA((u, v, w)) = {(p, q) ∈ Q×Q : ∃s, e ∈ Q, s
u

→ p, p
v

→ q, q
w
→ e}

i.e. the set of all runs of the tile automaton A over u. Then we say that x is
accepted by A when ϕA(x) ∈ K. The set L+(A) ⊂ T+

A of positive tiles recognized
by automaton A is then defined as L+(A) = {x ∈ T+

A : ϕA(x) ∈ K}.
This definition is extended to negative tiles by saying that for every negative tile

x = (uv, v̄, vw):

ϕA((uv, v̄, vw)) = {(q, p) ∈ Q×Q : ∃s, e ∈ Q, s
u

→ p, p
v

→ q, q
w
→ e}

and we put L−(A) = {x ∈ T−
A : ϕA(x) ∈ K}.

The language L(A) ⊆ TA of tiles recognized by A is then defined by L(A) =
L+(A) + L−(A).

11



Remark. With such a definition, for all tile x ∈ TA, for every pair (p, q) ∈ ϕA(x),
there is a run of A on the domain of x such that state p is labeling the beginning of
the root of x and state q is labeling the end of the root of x regardless x is positive
or negative. This means that the inversion of roots, from positive to negative tiles,
is detectable by tile automata.

Indeed, the simplest automaton with two states Q = {1, 2} and transitions
δ(a) = {(1, 1), (1, 2), (2, 2)} for every a ∈ A will distinguish positive tiles with the
pair of states (1, 2) from negative tiles with the pair of states (2, 1).

4.2 From tile automata to quasi-recognizability

Theorem 4 Every language of tiles definable by a finite state tile automaton is
quasi-recognizable.

Proof. Let A = 〈Q, δ,K ⊆ Q×Q〉 be a tile automaton and let ϕA : TA → P(Q×Q)
be the run mapping induced by A. We essentially have to prove that P(Q × Q)
equipped with the product X.Y = {(p, q) ∈ Q × Q : ∃r ∈ Q, (p, r) ∈ X, (r, q) ∈ Y }
and ordered by inclusion is an adequately ordered monoid and that ϕA extended to
0 by taking ϕA(0) = ∅ is an adequate premorphism.

The fact P(Q × Q) equipped with the above product is a monoid with neutral
element IQ = {(q, q) ∈ Q × Q : q ∈ Q} is a classical result. The fact inclusion is
stable w.r.t. to product is also well known. It suffices thus to prove that canonical
left and right identities exist.

Let X ∈ P(Q × Q) and let XR = {(p, p) ∈ Q × Q : ∃q ∈ Q, (p, q) ∈ X}
and let XL = {(q, q) ∈ Q × Q : ∃p ∈ Q, (p, q) ∈ X}. One can easily check that
X = XR ·X = X ·XL for every X ⊆ Q×Q. Let then Y ⊆ IQ such that Y ·X = X

(resp. X · Y = X). It is an immediate observation that this implies XR ⊆ Y (resp.
XL ⊆ Y ). In other words, XL (resp. XR) is indeed the least right (left) local unit
for X.

The fact ϕA extended to zero as defined above is an premorphism raises no
real difficulty. By definition, we have ϕA(1) = IQ and it is rather immediate that
ϕA(u) ⊆ ϕA(v) whenever u ≤ v in TA. The fact that we also have ϕA(uv) ≤
ϕA(u)ϕA(v) for every u and v ∈ T 0

A is a little more complex to check but with no
special difficulty.

The fact ϕA is also adequate is somehow simpler and essentially follows from
the definition. In particular, the disjoint product case just mimics the classical case
where ϕA is defined over words only. 2
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Remark. Observe that with our automata semantics via ϕA, writing

X−1 = {(q, p) ∈ Q×Q : (p, q) ∈ X}

for every relation X ⊆ Q×Q, we have

ϕA(u−1) = (ϕA(u))−1

and thus we also have

L−(A) = {u ∈ T−
A : (ϕA(u−1))−1 ∈ K

In general, this property is not satisfied by an arbitrary adequate premorphism.
However, it is an immediate consequence of our two main results that any adequate
premorphism can still be translated into an equivalent automaton and thus into an
equivalent premorphism of the form ϕA.

4.3 From quasi-recognizability to tile automata

Theorem 5 Every quasi-recognizable language of tiles is definable by a finite state
tile automaton.

Proof. Let ψ : T 0
A → S be an adequate premorphism into a finite adequately

ordered monoid S let Kψ ⊆ S and let L = ψ−1(Kψ). We want to build a finite state
automaton A = 〈Q, δ,K〉 such that ϕ−1

A (K) = ψ−1(Kψ).
To achieve such a goal it is sufficient to define an automaton A that, given any

positive tile x = (u, v, w) (resp. negative tile x−1 = (uv, v̄, vw)) as input, computes,
via ϕA(x) (resp. ϕA(x−1)), the left ideal S.ψ(u) associated to ψ(u), the right ideal
ψ(w).S associated to ψ(w) and the image ψ(v) of the root v of x (resp. the image
ψ(v−1) of the root v̄ of x−1).

Indeed, by Lemma 1, computing these left and right ideals is enough to compute
the expected left and right canonical identities ψ(uL) and ψ(wR). Then, by applying
Lemma 2, together with the value of ψ(v) (resp. ψ(v−1)), we can compute the value
ψ(x) of x (resp. ψ(x−1) of x−1) by premorphism ψ.

Extended the idea described in automata section in order to distinguish positive
from negative tiles, automaton A is defined as follows.

The set of state Q is defined to be Q = S × S × S ×M with set of modes M =
{P, S, PR,NR, c, p1, p2, n1, n2} where P , S, PR and NR respectively stand for some
stable automaton mode prefix, suffix, positive root and negative root automaton
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modes, and c, p1, p2, n1 and n2 stand for some frontier modes that occur at most
once in between stable modes.

The set δ(a) of transition labeled by a is defined, for every a ∈ A, to be the
union of the following sets of transitions:

⊲ “prefix” transitions: from mode P to mode n ∈ {P, c, p1, n1},

{((x, y, z, P ), (x · ϕ(a), y, z, n) : x, y, z ∈ Q}

⊲ “positive root” transitions: from mode m ∈ {PR, p1} to mode n ∈ {PR, p2},

{((x, y, z,m), (x, y · ϕ(a), z, n)) : x, y, z ∈ S}

⊲ “negative root” transition: from mode m ∈ {PN, n1} to mode n ∈ {PN, n2},

{((x, y, z,m), (x, ϕ(a−1) · y, z, n)) : x, y, z ∈ S}

⊲ “suffix” transitions: from mode m ∈ {S, c, p2, n2} to mode S:

{((x, y, ϕ(a) · z,m), (x, y, z, S)) : x, y, z ∈ S}

Of course, such an automaton will run freely on tiles regardless it is running on
the prefix, the root or the suffix part of a tile. However, by watching the states in
frontier modes occurring at the extremities of the root, we can collect all information
we need.

More precisely, the next step is then to keep from the set of all runs of A on any
given input tile X only the relevant data. This is achieved by the following mapping.
For every X ⊆ P(Q+ ×Q+), we define the relevant image f(X) ⊆ S × S × S of X
“in” S by taking:

f(X) = {(x, 1, z) ∈ S × S × S : ((x, 1, z, c), (x, 1, z, c)) ∈ X} (1)

∪{(x, y, z) ∈ S × S × S : ((x, 1, z, p1), (x, y, z, p2)) ∈ X} (2)

∪{(x, y, z) ∈ S × S × S : ((x, 1, z, n2), (x, y, z, n1)) ∈ X} (3)

where line (1) treats the case of context tiles, line (2) treats the case of (strictly)
positive tiles and line (3) treats the case of (strictly) negative tiles.

With that construction, one can show that for every x = (u, v, w) ∈ T+
A we have:

f(ϕA(x)) = S · ψ(u) × {ψ(v)} × ψ(w) · S
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and, for every x−1 = (uv, v̄, vw) ∈ T−
A we have:

f(ϕA(x−1)) = S · ψ(u) × {ψ(v−1)} × ψ(w) · S

In other words, for every x ∈ TA, the finite value of f(ϕA(x)) completely character-
izes ψ(x) thus we conclude the proof by taking

K = f−1 ({S · ψ(u) × {ψ(v)} × ψ(w) · S : ψ(uL).ψ(v).ψ(wR) ∈ Kψ})

f−1
(

{S · ψ(u) × {ψ(v−1)} × ψ(w) · S : ψ(wR).ψ(v−1).ψ(uL) ∈ Kψ}
)

By construction, for every tile x ∈ TA, we indeed have x ∈ ϕ−1
A (K) if and only if

x ∈ ψ−1(Kψ). 2

Remark. If we consider a language L ⊆ T+
A of positive tiles that is recognizable by

a premorphism ψ from the monoid of positive tiles T+
A into an adequately ordered

monoid S then the above proof can easily be adapted so that ϕA : T 0
A → P(Q×Q)

still recognizes L.
In other words, a quasi-recognizable language of positive tiles is also quasi-

recognizable as a language of arbitrary tiles. This proves that the work presented
here indeed generalizes the results formerly obtained in [7].

5 Conclusion

We have shown that the emerging notion of quasi-recognizability, defined in [7] as a
remedy to the collapse of classical recognizability, can be equipped with a notion of
finite state automata that captures its expressiveness for languages of tiles.

Compared to our former proposal [7], the notion of adequate premorphism has
also been refined - especially via the notion of disjoint products - and can now be
applied to more general settings. As already mentioned, further studies show that,
in particular, extending the present work to birooted trees creates no particular
difficulty even with labeled vertices.

Relying on the notion of U -semiadequate monoids [11], our present work also
provides a rather unexpected application for the extension of inverse monoid theory
initiated by Fountains [4, 5] in the 70’s. Along the research lines proposed in [2, 3],
our construction seems to raise new questions and possibilities.

In particular, we have seen that the adequately ordered monoids induced by
automata are relational monoids P(Q × Q). Although such a monoid is neither
an inverse nor a regular monoid, an inverse operator is nevertheless defined over
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relations. Then one can observe that, for every relation X, we have XL ⊆ X−1 · X
and XR ⊆ X ·X−1 hence, by stability, X = XR ·X = X ·XL ⊆ X ·X−1 ·X. In other
words, the (relation) inverse operator induces a notion of weak pseudo-inverse about
which, in the setting of partially ordered monoid with local units, further studies
are probably worth being conducted.
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