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Abstract

We show how a particular spatial structure with a buffer globally stabilizes the chemostat dynamics

with non-monotonic response function, while this is not possible with single, serial or parallel chemostats

of the same total volume and input flow. We give a characterization of the set of such configurations that

satisfy this property, as well as the configuration that ensures the best nutrient conversion. Furthermore,

we characterize the minimal buffer volume to be added to a single chemostat for obtaining the global

stability. These results are illustrated with the Haldane kinetic function.
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1 Introduction

The chemostat has been introduced in the fifties as an experimental device to study of microbial growth on
a limiting resource [29, 32]. It is also often used as a mean to reproduce situations where (limiting) nutrients
are fed to micro-organisms, typically in a liquid medium, such as in natural ecosystems [16, 5] or anthropized
environments [23]. More generally, the chemostat is largely used as a scientific investigation tool in microbial
ecology [21, 45].

The mathematical model of the chemostat has been extensively studied (see e.g. [40]) and used as a
reference model in microbiology [33], microbial ecology [10] or biotechnological industries such as the waste-
water treatment industry [7]. However, in many applications, the assumption of perfectly mixed chemostats
has to be relaxed. In the eighties, the gradostat, as an experimental device composed of a set of chemostats of
identical volume interconnected in series, has been proposed to represent spatial gradient [25]. For instance,
it has been used to reproduce marine environment [18] or to model rhizosphere [11], and has motivated
several mathematical studies [43, 20, 9, 37, 47, 39, 17, 41, 12]. Similarly, an interest for series of bioreactors
appeared in biochemical industry, with tanks of possibly different volumes to be optimized [26, 19, 4, 15, 8].
Although island models have been proposed in ecology since the late sixties [27], relatively few studies have
considered non-serial interconnections of chemostats [38]. In natural reservoirs such as in undergrounds or
ground-waters, a spatial structure with interconnections between several volumes is often considered, each
of them being approximated as perfectly mixed. Those interconnections can be parallel, series or built up in
more complex networks. To our knowledge, the influence of the topology of a network of chemostats on the
overall dynamics has been sparsely investigated in the literature However, the simple consideration of two
different habitats can lead to non-intuitive behaviors [42, 30, 35, 22] and influence significantly the overall
performances [31, 13].
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It is also well-known since the seventies that microbial growth can be inhibited by large concentrations of
nutrient. Such inhibition can be modeled by non-monotonic response functions [1, 3] and lead to instability
in the chemostat [2, 46, 24]. Several control strategies of the input flow have been proposed in the literature
to globally stabilize such systems [6, 14, 34, 36] but the ability of a spatial structure to passively stabilize
such dynamics has not been yet studied (in [38] a general structure of networks of chemostats is considered
but with monotonic growth rates, while in [44] non-monotonic functions are considered but for the serial
gradostat only).

The present work considers non-monotonic response functions with a particular interconnection of two
chemostats of different volumes, one being a buffer tank. To our knowledge, this spatial structure, that
is neither serial nor parallel, has not yet been considered in the literature. The idea is to decouple the
residence time of microorganisms in two vessels such that the wash-out equilibrium is repulsive in both
tanks. We prove that this is possible with such a configuration, while any serial, parallel or single tank
structures with the same total volume exhibits bi-stability. This result brings new insights in microbial
ecology for the understanding of the role of spatial patterns in the stability of bio-conversion processes in
natural environments, where natural buffers can occur, such as in soil ecosystems. It has also potential
impact on the design of robust industrial bio-processes.

The paper is organized as follows. Section 2 presents the hypotheses and the buffered configuration,
comparing with serial and parallel interconnections. Section 3 studies the multiplicity of equilibriums and
provides a complete characterization of the set C of configurations that have a unique positive equilibrium. It
is then shown that this equilibrium is globally asymptotically stable. Section 4 analyzes the performance of
the buffered chemostat, characterizing first the best configurations among C in terms of nutrient conversion
at steady state, and then the minimal volume of a buffer to be added to a single chemostat to make the
interconnected system globally stable. Finally, in Section 5 numerical simulations illustrate the results on
the Haldane function.

2 General considerations

We consider the chemostat model with a single strain growing on a single limiting nutrient. The system
is fed with nutrient of concentration Sin with flow rate Q. The total volume V is assumed to be constant
(i.e. input and output flow rates are supposed to be identical). When the concentrations of nutrient (or
substrate) and biomass, denoted respectively S and X , are homogeneous, as it is the case in perfectly mixed
tanks, the system can be modeled by the well-known equations:

Ṡ = −
µ(S)

Y
X +

Q

V
(Sin − S) ,

Ẋ = µ(S)X −
Q

V
X ,

(1)

where µ(·) is the uptake function and Y the yield coefficient of the transformation of nutrient into biomass.
Changing the units in which time t, growth µ(·) and biomass X are measured, one can assume without any
loss of generality that D = Q/V = 1 an Y = 1 (replacing t by t/D, µ(·) by Dµ(·) and X by Y X).

In this work, we consider specifically strain growths that present an inhibition, described by the following
assumption.

Assumption A1. The function µ(·) is C∞([0,+∞)) and such that µ(0) = 0, µ(S) > 0 for any S > 0.
Moreover there exists a number Ŝ > 0 such that µ is increasing on (0, Ŝ) and decreasing on (Ŝ,+∞).

For instance, the Haldane function [1]

µ(S) =
µ̄S

K + S + S2/KI

(2)
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fulfills Assumption A1 (see Figure 1). Classically, we consider the set

Λ = {S > 0 | µ(S) > 1} (3)

that plays an important role in the determination of the equilibriums of the system. Under Assumption A1,
the set Λ is either empty of an open interval that we shall denote

Λ = (λ−, λ+) ,

where λ+ can be equal to +∞.

We recall from the theory of the chemostat model [40] the three kinds of solutions flow of the dynamics
(1) under Assumption A1, depending on the parameter Sin.

Proposition 1. Assume that Hypothesis A1 is fulfilled.

- Case 1: Λ = ∅ or λ+ > Sin. The wash-out equilibrium E0 = (Sin, 0) is the unique non negative
equilibrium of system (1). Furthermore it is globally attracting.

- Case 2: Sin > λ+. The system (1) has three non-negative equilibriums E− = (λ−, Sin − λ−), E+ =
(λ+, Sin − λ+) and E0 = (Sin, 0). Only E− and E0 are attracting, and the dynamics is bistable.

- Case 3: Sin ∈ Λ. The system (1) has two non negative equilibriums E− = (λ−, Sin − λ−) and
E0 = (Sin, 0). E− is globally attracting on the positive quadrant.

In case 2, the issue of the growth can change radically depending on the initial condition. Throughout
the paper, we shall consider uptake functions µ(·) and values of Sin that fulfill the conditions of Case 2, so
that the system exhibits bi-stability in the classical chemostat model (1).

Assumption A2. λ− < λ+ < Sin.

1

λλ +− Sin

µ

Figure 1: Graph of the Haldane function and illustration of Assumption A2.

The question we investigate in this paper is related to the assumption that the vessel is perfectly mixed,
and to the role that a spatial structure could have on the stability of the dynamics. We shall consider spatial
configurations with the same input flow and residence time than the perfectly mixed case, that is to say with
the same total volume V and input flow Q. Under Assumption A2, one can check that having a volume
V split in several smaller volumes Vi interconnected in series or in parallel, assuming that each of them
is perfectly mixed, leads necessarily to a global dynamics having bi-stability or the wash-out as the only
equilibrium in at least one of the tanks.

- In the series connection, the dynamics of the first tank of volume V1 is given by equations (1) where
V is replaced by V1 ≤ V . Its dilution rate is then equal to Q/V1, that is greater than Q/V = 1.
According to Proposition 1 only Cases 1 or 2 can occur.
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- In the parallel connection, the dynamics of each tank of volume Vi and flow rateQi is given by equations
(1) where V and Q are replaced by Vi and Qi. Denote ri = Vi/V and αi = Qi/Q, and note that one
has

∑

i ri =
∑

i αi = 1. Then, the dilution rate Di in the tank i is equal to αi/ri. According to
Proposition 1, a necessary condition for having a single attracting equilibrium in each tank is to have
Di < 1 for any i, that contradicts

∑

i ri =
∑

i αi = 1.

In the present work, we study a particular spatial configuration with a asymmetry created by two inter-
connected volumes, one of them serving as a buffer (see Figure 2), that we shall call the “buffered chemostat”,
to be compared with the “single chemostat”. V1 and V2 are respectively the volumes of the main tank and

Q1
V2

Q2

Q
2

Q1 Q2+

Q1 Q2+

1V

Figure 2: The buffered chemostat.

the buffer, and Q1 and Q2 denote the input flow rates of each tank. We assume that each vessel is perfectly
mixed. Straightforwardly, the dynamical equations of the buffered chemostat are

Ṡ1 = −µ(S1)X1 +
Q1Sin +Q2S2 −QS1

V1
,

Ẋ1 = µ(S1)X1 +
Q2X2 −QX1

V1
,

Ṡ2 = −µ(S2)X2 +
Q2Sin −Q2S2

V2
,

Ẋ2 = µ(S2)X2 −
Q2X2

V2
.

(4)

Note that the limiting case V1 = 0 consists in a by-pass of the volume V2 with a flow Q1.

In the following sections, we shall consider configurations with the same total volume V = V1 + V2 and
input flow Q = Q1 +Q2, to be compared with the single chemostat (V1 = V and V2 = 0). In Section 4, we
shall also consider configurations with a fixed volume V1 = V and study the benefit of adding a buffer of
volume V2, under a constant total input flow Q = Q1 +Q2.

3 Study of multiplicity of equilibriums

Given µ(·) and Sin such that Assumptions A1 and A2 are fulfilled, we describe the set of all possible
configurations such that Q = Q1 +Q2 and V = V 1 + V2 (with Q/V = 1) by two parameters r ∈ (0, 1) and
α > 0 defined as follows

r =
V1
V
, α =

Q2

(1− r)Q
.
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Dynamics (4) can then be written in the following way

Ṡ1 = −µ(S1)X1 +
α(1 − r)(S2 − S1) + (1− α(1 − r))(Sin − S1)

r
,

Ẋ1 = µ(S1)X1 +
α(1 − r)(X2 −X1) + (1− α(1 − r))X1

r
,

Ṡ2 = −µ(S2)X2 + α(Sin − S2) ,

Ẋ2 = µ(S2)X2 − αX2 .

(5)

One can easily see that an equilibrium (S⋆
1 , X

⋆
1 , S

⋆
2 , X

⋆
2 ) of dynamics (5) is the solution of the following

equations:

1 +
1− r

r

(

1− α
Sin − S⋆

2

Sin − S⋆
1

)

= µ(S⋆
1 ) or S

⋆
1 = Sin , (6)

X⋆
1 = Sin − S⋆

1 , (7)

µ(S⋆
2 ) = α or S⋆

2 = Sin , (8)

X⋆
2 = Sin − S⋆

2 . (9)

Due to the cascade structure of the model (4), the study of the dynamics of the second reactor can be done
independently of the first one. Depending of the value of α, the three cases depicted in Proposition 1 for the
single chemostat are possible.

Under Assumptions A1 and A2, one can straightforwardly check from equations (8) and (9) that there
exists an unique positive equilibrium (S⋆

2 , X
⋆
2 ) in the second tank exactly when α belongs to the set (0, µ(Sin)].

For any number α ∈ (0, µ(Sin)], we then denote S⋆
2(α) = S⋆

2 ∈ (0, Sin) the unique solution of the equation

µ(S⋆
2 (α)) = α . (10)

We shall consider the family of hyperbola Hα,r that are the graphs of the functions

φα,r(s) = 1 +
1− r

r

(

1− α
Sin − S⋆

2 (α)

Sin − s

)

(11)

parametrized by α ∈ (0, µ(Sin)] and r ∈ (0, 1). From equations (6) and (7), a positive equilibrium (S⋆
1 , X

⋆
1 )

of (5) has to fulfill precisely
φα,r(S

⋆
1 ) = µ(S⋆

1 )

that is to claim that S⋆
1 is the abscissa of an intersection of the graph of µ(·) with the hyperbola Hα,r. To

each solution S⋆
1 corresponds an unique X⋆

1 = Sin − S⋆
1 . We define the family of sets

R(α) = {r ∈ (0, 1) | ∃!s ∈ (0, Sin) s.t. φα,r(s) = µ(s)} (12)

parametrized by α ∈ (0, µ(Sin)]. The set C of pairs (α, r) such that dynamics (5) admits an unique positive
equilibrium is then defined by

C = {(α, r) |α ∈ (0, µ(Sin)], r ∈ R(α)} . (13)

For convenience, we shall consider the set of s at which the hyperbola Hα,r is tangent to the graph of
the function µ(·) and is locally on one side (that amounts to have 0 as a local extremum of the function
φα,r(·)− µ(·) at s):

Sα,r =

{

s ∈ (λ−, Sin) s.t. min

{

n ∈ IN |
dnφα,r
dsn

(s) 6=
dnµ

dsn
(s)

}

is even and larger than 1

}

(14)
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and define the number
S(α) = αS⋆

2 (α) + (1− α)Sin . (15)

We consider two subsets of values of r such that the hyperbola Hα,r is tangent to the graph of µ(·).

R−(α) = {r ∈ (0, 1) | ∃s ∈ Sα,r with (s− S(α))(λ+ − S(α)) < 0} , (16)

R+(α) = {r ∈ (0, 1) | ∃s ∈ Sα,r with (s− λ+)(λ+ − S(α)) ≥ 0} . (17)

We state now our main result about the multiplicity of equilibriums of system (5) and give a charac-
terization of the sets R(α) defined in (12), depending on the sets R−(α), R+(α) and their interlacing. In
Section 5, this result is applied to the Haldane function (2).

Proposition 2. Assume that Hypotheses A1 and A2 are fulfilled. For any α ∈ (0, µ(Sin)] and r ∈ (0, 1) the
dynamics (5) admits a positive equilibrium with S⋆

1 such that

(S(α) − S⋆
1)(λ+ − S(α)) ≥ 0 . (18)

The set R+(α) is non empty, and the set R−(α) is not reduced to a singleton when it is not empty. One has

R(α) =

∣
∣
∣
∣

(0,minR+(α)) when R−(α) = ∅ ,
(0,minR+(α)) ∩ (0, 1) \ [minR−(α),maxR−(α)] when R−(α) 6= ∅ .

(19)

Furthermore,

- for any r ∈ (minR+(α), 1), there exists at least two equilibriums such that (S(α)−S⋆
1 )(λ+−S(α)) ≥ 0,

and at least four for r in a subset of (minR+(α), 1) when R+(α) is not reduced to a singleton,

- when R−(α) is non empty, for any r ∈ (minR−(α),maxR−(α)), there exists at least three equilibriums
such that (S(α) − S⋆

1)(λ+ − S(α)) < 0.

Proof. Fix α ∈ (0, µ(Sin)] and simply denote by S⋆
2 and S the values of S⋆

2 (α) and S(α). For each
r ∈ (0, 1), we define the function

fr(s) = φα,r(s)− µ(s) .

A positive equilibrium for the first tank has then to satisfy fr(S
⋆
1 ) = 0.

One can easily check that φα,r(S) = 1 whatever the value of r ∈ (0, 1). φα,r(·) being decreasing, one has
φα,r(s) > 1 for s < S and φα,r(s) < 1 for s > S. For convenience, we shall also consider the function

γ(s) =
S − s

S − Sin + (Sin − s)µ(s)
(20)

that is defined on the set of s ∈ (0, Sin) such that (Sin − s)µ(s) 6= Sin − S. On this set, one can easily check
that the following equivalence is fulfilled

fr(s) = 0 ⇐⇒ γ(s) = r .

From (20), one can also write

γ(s) =
(φα,r(s)− 1) r

1−r

(φα,r(s)− 1) r
1−r

− 1 + µ(s)

and deduce the property

γ′(s) = 0 ⇐⇒ φ′α,r(s)(µ(s)− 1) = (φα,r(s)− 1)µ′(s) . (21)
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Recursively, one obtains for every integer n

{
dpγ

dsp
(s) = 0 , p = 1 · · ·n

}

⇐⇒

{
dpφα,r
dsp

(s)(µ(s)− 1) = (φα,r(s)− 1)
dpµ

dsp
(s) , p = 1 · · ·n

}

.

Consequently, the set Sα,r defined in (14) can be characterized as

Sα,r =

{

s ∈ (λ−, Sin) s.t. γ(s) = r and min

{

n ∈ IN⋆ |
dnγ

dsn
(s) 6= 0

}

is even

}

or equivalently
Sα,r = {s ∈ (λ−, Sin) s.t. γ(s) = r is a local extremum } . (22)

We distinguish now several case depending on the position of S with respect to λ+.

Case 1: S < λ+.

If S ≤ λ−, one has fr(S) ≥ 0 and fr(S) < 0 for any S ∈ Λ. fr(·) being decreasing on [0, λ−], one deduces
that there exists exactly one solution S⋆

1 of fr(S) = 0 on the interval [0, λ+], whatever is r. Furthermore, this
solution has to belong to [S, λ−]. The functions φr(·) and µ(·) being respectively decreasing and increasing
on this interval, one has necessarily γ′(S⋆

1 ) 6= 0 and then R−(α) = ∅.

If S > λ−, one has fr(S) > 0 for any S ∈ [0, λ−], and fr(S) < 0 for any S ∈ [S, λ+]. On the interval
I = (λ−, S), the function γ(·) is well defined and γ(I) = (0, 1) with γ(λ−) = 1 and γ(S) = 0. If R−(α) is
empty, then γ(·) is decreasing on I, and for any r ∈ (0, 1) there exits an unique S⋆

1 ∈ I such that γ(S⋆
1 ) = r.

If R−(α) is not empty, property (22) implies that γ admits local extrema. Let r−m, r−M be respectively the
smallest local minimum and the largest local maximum of γ(·) on the interval I. Note that r−m > 0 and
r−M < 1 because γ(I) = (0, 1), and that one has r−m = minR−(α) < r−M = maxR−(α). By the Mean Value
Theorem, there exists exactly one solution S⋆

1 of γ(s) = r on the interval [0, λ+] for any r /∈ [r−m, r
−

M ], and
there are at least three solutions for r ∈ (r−m, r

−

M ).

Consider now the interval J = (λ+, Sin) where the function γ(·) is well defined and positive with γ(λ+) =
1 and lims→Sin

γ(s) = 1. We define
r+ = min{γ(s) | s ∈ J}

that belongs to (0, 1). Then r+ belongs to R+(α), and for any r < r+ there is no solution of γ(s) = r on
J . Thus r+ is the minimal element of R+(α). By the Mean Value Theorem there are at least two solutions
of γ(s) = r on J when r > r+. When R+(α) is not reduced to a singleton, the function γ has at least on
local maximum rM and one local minimum rm, in addition to r+. By the Mean Value Theorem, there are
at least four solutions of γ(s) = r on J for r ∈ (rm, rM ).

Finally, we have shown that the set R+(α) is non empty, and that the uniqueness of the solution of
γ(S⋆

1 ) = r occurs exactly for values of r that do not belong to the set [minR−(α),maxR−(α)]∪[minR+(α), 1].

Case 2: S = λ+.

One has fr(S) = 0 for any r, so there exists a positive equilibrium with S⋆
1 = S. fr(S) > 0 for any

S ∈ [0, λ−] and the function γ(·) is well defined on I ∪ J = (λ−, S) ∪ (S, Sin) with γ(I ∪ J) = (0, 1),
γ(λ−) = 1 and lims→Sin

γ(s) = 1. Using the L’Hôpital’s rule, we show that the function γ(·) can be
continuously extended at S:

lim
s→S

γ(s) = lim
s→S

−1

−µ(s) + (Sin − s)µ′(s)
=

1

1− (Sin − S)µ′(S)
.
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Note that µ′(S) < 0 so that γ(S) belongs to (0, 1), and we pose

r̄ = min{γ(s) | s ∈ (λ−, Sin)} .

Then, for r < r̄, there is no solution of γ(s) = r on (λ−, Sin), and S is the only solution of fr(s) = 0
on (0, Sin). On the contrary, for r > r̄, there are at least two solutions of γ(s) = r on (λ−, Sin) and the
dynamics has at least two positive equilibriums.

Similarly, the function γ(·) is C1 on (λ−, Sin) because it is differentiable at S:

γ′(S) =
(Sin − S)µ′′(S)− 2µ′(S)

[1− (Sin − S)µ′(S)]2

(and recursively as many time differentiable as the function µ(·) is, minus one). Then r̄ is the minimal
element of the set R+(α), and the set R−(α) is empty by definition. As previously, when R+(α) is not
reduced to a singleton, γ(s) = r has at least four solutions for r in a subset of (r+, 1).

Case 3: S > λ+.

We proceed similarly as in case 1. Note first that there exists no solution of fr(s) = 0 on the intervals
(0, λ−) and (λ+, S) whatever is r.

On the set Λ, γ(·) is well defined with γ(Λ) ⊂ (0, 1), γ(λ−) = 1 and γ(λ+) = 1 and we pose

r+ = min{γ(s) | s ∈ Λ}

that belongs to (0, 1). One has necessarily r+ = minR+(α), and there is no solution of γ(S⋆
1 ) = r exactly

when r < r+. For r > r+, there exists at least two solutions by the Mean Value Theorem, and four for a
subset of (r+, 1) when R+(α) is not reduced to a singleton.

On the interval J = (S, Sin), the function γ(·) is well defined with γ(J) = (0, 1), γ(S) = 0 and γ(Sin) = 1.
There exists at least one solution of fr(s) = 0 on this interval. If R−(α) = ∅, γ(·) is increasing and there
exists an unique solution of γ(S⋆

1 ) = r on J whatever is r. Otherwise, minR−(α) and maxR−(α) are the
smallest local minimum and largest local maximum of the function γ on the interval J , respectively. Then,
uniqueness of S⋆

1 on J is achieved exactly for r that does not belong to [minR−(α),maxR−(α)], and for
r ∈ (minR−(α),maxR−(α)), there are at least three solutions by the Mean Value Theorem. �

For each α ∈ (0, µ(Sin)], we define the number

r̄(α) = supR(α) . (23)

The following remark deals with the continuity of the map r̄(·).

Remark 1. According to Proposition 2, for any α and r such that r ∈ R(α), one can define uniquely a
number S⋆

1 (α, r) ∈ (0, Sin) such that

φα,r(S
⋆
1 (α, r)) = µ(S⋆

1 (α, r)) .

The map (α, r) 7→ S⋆
1 (α, r) is clearly continuous and one can then consider the limiting map:

S̄⋆
1 (α) = lim

r<r̄(α),r→r̄(α)
S⋆
1 (α, r) .

Furthermore, accordingly to Proposition 2, one has S̄⋆
1 (α) ≤ λ+ (resp. S̄⋆

1 (α) ≥ λ+) when S(α) < λ+ (resp.
S(α) > λ+). Consider, if it exists, a value of α, denoted by α, that is such that S(α) = λ+. Although one
has φα,r(λ+) = µ(λ+) for any r, there is no reason to have

lim
α<α,α→α

S̄⋆
1 (α) = λ+ or lim

α>α,α→α
S̄⋆
1 (α) = λ+ .

Consequently, the map α 7→ r̄(α) might be discontinuous at such point α.
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We consider now pairs (α, r) ∈ C and denote by S⋆
1(α, r) the corresponding value of S1 at the unique

positive steady state, that we denote E⋆(α, r).
Let us consider first the (S2, X2) sub-system, that is the the single chemostat model. Several results in

the literature have shown the global stability of the positive equilibrium for this model, provided that the
condition µ(Sin) > α is satisfied (see for instance proofs for the non-monotonic case in [2, 46, 24]). We
present here a little extension of this result that shows global stability in the limiting case α = µ(Sin), that
is not covered in the statement of Proposition 1.

Lemma 1. For any configuration (α, r) ∈ C and non-negative initial condition with X2(0) > 0, the solution
S2(t) and X2(t) of (5) is non negative for any t > 0 and one has

lim
t→+∞

(S2(t), X2(t)) = (S⋆
2 (α), Sin − S⋆

2(α)) .

Proof. From equations (5) one can write the properties

S2 = 0 =⇒ Ṡ2 > 0 ,

X2 = 0 =⇒ Ẋ2 = 0 ,

and deduces that the variables S2(t) and X2(t) remain non negative for any positive time. Considering the
variable Z2 = S2 +X2 − Sin whose dynamics is Ż2 = −αZ2, we conclude that S2(t) are X2(t) are bounded
and satisfy

lim
t→+∞

S2(t) +X2(t) = Sin .

The dynamics of the variable S2 can thus be written as an non autonomous scalar equation:

Ṡ2 = (α− µ(S2)(Sin − S2)− µ(S2)Z2(t)

that is asymptotically autonomous. The study of his asymptotic dynamics is straightforward: any trajectory
that converges forwardly to the domain [0, Sin] has to converge to S⋆

2 (α) or to Sin. Then, the application of
Theorem 6 (see Appendix) allows to conclude that forward trajectories of the (S2, X2) sub-system converge
asymptotically either to the positive steady state (S⋆

2 (α), Sin − S⋆
2 (α)) or to the “wash-out” equilibrium

(Sin, 0). We show now that for any initial condition such that X2(0) > 0, the forward trajectory cannot
converge to the wash-out equilibrium. From equations (5) one can write

X2(t) = X2(0) e

∫ t

0

(µ(S2(τ)) − α)dτ
.

If X2(.) tends to 0, then one should have

∫ +∞

T

(µ(S2(τ)) − α)dτ = −∞ (24)

for any finite positive T . Using Taylor-Lagrange Theorem, there exists a continuous function θ(.) in (0, 1)
such that

µ(S2(τ)) = µ(Sin) + µ′(S̃2(τ))(S2(τ) − Sin) + µ(Sin)− α with S̃2(τ) = Sin + θ(τ)(Sin − S2(τ)) .

One can then write

∫ +∞

T

(µ(S2(τ)) − α)dτ =

∫ +∞

T

(µ(Sin)− α)dτ −

∫ +∞

T

µ′(S̃2(τ))X2(τ)dτ +

∫ +∞

T

µ′(S̃2(τ))Z2(τ)dτ

≥ −

∫ +∞

T

µ′(S̃2(τ))X2(τ)dτ −
1

α

∫ +∞

T

µ′(S̃2(τ))Ż2(τ)dτ .
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Note that S2(.) tends to Sin when X2(·) tends to 0. So there exists T > 0 such that S̃2(τ) > Ŝ for any
τ > T , and accordingly to Assumption A1, there exist positive numbers a, b such that −µ′(S̃2(τ)) ∈ [a, b]
for any τ > T . The following inequality is obtained

∫ +∞

T

(µ(S2(τ)) − α)dτ ≥ a

∫ +∞

T

X2(τ) −
b

α
|Z2(T )|

leading to a contradiction with (24). �

Then the global stability of the positive equilibrium of dynamics (5) can be proved.

Proposition 3. For any configuration (α, r) ∈ C, any trajectory of the dynamics (5) with X2(0) > 0
converges exponentially to the steady state E⋆(α, r) in forward time.

Proof. Let us consider the vector

Z =

[
X1 + S1 − Sin

X2 + S2 − Sin

]

whose dynamics is linear:

Ż =




−
1

r

α(1 − r)

r

0 −α





︸ ︷︷ ︸

A

Z .

The matrix A is clearly Hurwitz and consequently Z converges exponentially towards 0 in forward time.
Furthermore, variables S2 and X2 being non negative (see Lemma 1), one has also from (5) the following
properties

S1 = 0 =⇒ Ṡ1 ≥ 0 ,

X1 = 0 =⇒ Ẋ1 ≥ 0 ,

and deduces that variables S1 and X1 stay also non negative in forward time. The definition of Z allows us
to conclude that variables S1, X1, S2, X2 are bounded.

From equations (5), the dynamics of the variable S1 can be written as an non-autonomous scalar equation:

Ṡ1 =

(

−µ(S1) +
1− α(1 − r)

r

)

(Sin − S1) +
α(1 − r)

r
(S2(t)− S1)− µ(S1)Z1(t)

or equivalently:

Ṡ1 = (φα,r(S1)− µ(S1))(Sin − S1) + α
1 − r

r
(S2(t)− S⋆

2 (α))− µ(S1)Z1(t) . (25)

By Lemma 1, we know that S2(t) converges towards S⋆
2 (α). So the dynamics (25) is asymptotically au-

tonomous with the limiting equation

Ṡ1 = (φα,r(S1)− µ(S1))(Sin − S1) . (26)

Proposition 2 guarantees that S⋆
1 (α, r) is the only solution of φα,r(S1) = µ(S1) on the domain (0, Sin). So

any trajectory of (26) that converges forwardly to the domain [0, Sin] has to converges to S⋆
1 (α, r) or to Sin.

Along with Theorem 6 (see Appendix), we conclude that forward trajectories of the (S1, X1) sub-system
converge asymptotically either to the positive steady state (S⋆

1 (α, r), Sin − S⋆
1 (α, r)) or to (Sin, 0). We show

that this last case is not possible. From equations (5), one has

X1 = 0 =⇒ Ẋ1 =
α(1 − r)

r
X2

10



but from Lemma 1, we know that X2(t) converges to a positive value and consequently X1 cannot converges
towards 0.

Finally, we write the Jacobian matrix J⋆ of dynamics (5) at steady state E⋆(α, r) in (Z, S1, S2) coordi-
nates:

J
⋆

=













A 0

−µ(S⋆
1 ) 0

0 −µ(S⋆
2 )

(φ′α,r(S
⋆
1 )− µ′(S⋆

1 ))(Sin − S⋆
1 )

α(1− r)

r

0 −µ′(S⋆
2 )(Sin − S⋆

2 )













.

Remind the following facts:
i. A is Hurwitz,
ii. S⋆

2 is less than Ŝ, so one has µ′(S⋆
2 ) < 0 (cf Assumption A1)

iii. S⋆
1 is the only zero of φα,r(S1) = µ(S1) on (0, Sin), the graph of φα,r is not tangent to the graph of

µ (Proposition 2) and φα,r(0) > µ(0) = 0, so one has φ′α,r(S
⋆
1 )− µ′(S⋆

1 ) < 0
One can then conclude that J⋆ is Hurwitz. �

4 Study of performance of the buffered chemostat

We first aim at characterizing among all the configurations in the set C the ones that provide the best con-
version of the nutrient at steady state, that is the smallest value of S⋆

1(α, r).

For convenience, we consider the function

ψ(s) = µ(s)(Sin − s) (27)

and define the number
ψ⋆ = max

s∈[0,s̄]
ψ(s) (28)

where s̄ is defined by
s̄ = lim

α→µ(Sin)
S⋆
2 (α) . (29)

The number s̄ is such that µ(s̄) = µ(Sin) with s̄ < Sin.
Assumptions A1 and A2 provide the uniqueness of s⋆ realizing the maximum in (28), and one can then

define the number
α⋆ = µ(s⋆) . (30)

Lemma 2. Assume that Hypotheses A1 and A2 are fulfilled. For any α ∈ (0, µ(Sin)], one has the following
property

- if S(α) < λ+,
inf

r∈R(α)
S⋆
1 (α, r) = lim

r→r̄(α)
S⋆
1(α, r) ,

- if S(α) = λ+, S
⋆
1 (α, r) is equal to λ+ whatever is r ∈ R(α),

- if S(α) > λ+,
inf

r∈R(α)
S⋆
1 (α, r) = lim

r→0
S⋆
1 (α, r) = S(α) .
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where S(·) is defined in (15).

Proof. Fix α ∈ (0, µ(Sin)). One can check from expression (11) that the map

r 7−→ φα,r(s) is

∣
∣
∣
∣

decreasing for s ∈ [0, S(α)) ,
increasing for s ∈ (S(α)), Sin] .

Along with property (18) of Proposition 2, one deduces the following properties.

i. When S(α) < λ+ and r ∈ R(α), the unique positive S⋆
1 (α, r) solution of φα,r(S1) = µ(S1) belongs to

[0, S(α)] and r 7→ S⋆
1 (α, r) is decreasing.

ii. When S(α) = λ+ and r ∈ R(α), S⋆
1 (α, r) = λ+ is the only positive solution of φα,r(S1) = µ(S1).

iii. When S(α) > λ+ and r ∈ R(α), the unique positive S⋆
1 (α, r) solution of φα,r(S1) = µ(S1) belongs to

[S(α), Sin] and r 7→ S⋆
1 (α, r) is increasing.

The conclusion comes then straightforwardly. �

Lemma 3. Assume that Hypotheses A1 and A2 are fulfilled. The following property is then satisfied.

inf
(α,r)∈C

S⋆
1(α, r) = inf

r∈R(α)
S⋆
1 (α

⋆, r) .

Proof. Remark first from (10) and (15) that one has

S(α) = Sin − ψ(S⋆
2 (α))

and
α ∈ (0, µ(Sin)) ⇐⇒ S⋆

2 (α) ∈ (0, s̄) .

We consider now three cases depending on ψ⋆ and λ+.
If ψ⋆ < Sin − λ+, then for any α ∈ (0, µ(Sin)], one has S(α) > λ+ and according to Lemma 2 one has

inf
r∈R(α)

S⋆
1 (α, r) = S(α) .

Then one can write

inf
(α,r)∈C

S⋆
1 (α, r) = inf

α∈(0,µ(Sin)
S(α) = S(α⋆) = inf

r∈R(α)
S⋆
1(α

⋆, r) .

If ψ⋆ = Sin−λ+ then S(α) ≥ λ+ for any α ∈ (0, µ(Sin)], and according to Lemma 2 one has S⋆
1 (α, r) ≥ λ+

for any r ∈ R(α). Furthermore, for α = α⋆, one has S(α⋆) = λ+ for any r ∈ R(α). This implies the equality

inf
(α,r)∈C

S⋆
1 (α, r) = λ+ = S(α⋆) = inf

r∈R(α)
S⋆
1 (α

⋆, r) .

If ψ⋆ > Sin − λ+, then according to Proposition 2 there exist values of α ∈ (0, µ(Sin)] such that
S⋆
1 (α, r) < S(α) for any r ∈ R(α). Then one can write the following inequality

φα,r(S
⋆
1 (α, r)) = 1 +

1− r

r

(
S(α)− S⋆

1 (α, r)

Sin − S⋆
1 (α, r)

)

> 1 +
1− r

r

(
S(α⋆)− S⋆

1 (α, r)

Sin − S⋆
1 (α, r)

)

= φα⋆,r(S
⋆
1 (α, r)) .

Remind that one has φα,r(S
⋆
1 (α, r)) = µ(S⋆

1 (α, r)). This implies that the root S⋆
1 (α

⋆, r) of the function
s 7→ φα⋆,r(s) − µ(s) is necessarily such that S⋆

1 (α
⋆, r) < S⋆

1(α, r), for any r ∈ R(α). Finally, we obtain the
equality

inf
(α,r)∈C

S⋆
1(α, r) = inf

r∈R(α)
S⋆
1 (α

⋆, r) .
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�

Lemmas 2 and 3 give the following characterization of the best configurations.

Proposition 4. Assume that Hypotheses A1 and A2 are fulfilled. The best stable configuration consists in
choosing α = α⋆ (or α arbitrarily close to µ(Sin) if α

⋆ = µ(Sin)) and

- having a by-pass of the volume V with a flow rate equal to (1−α)Q, when ψ⋆ < Sin − λ+. The output
concentration at steady state is then equal (or arbitrarily close) to Sin − ψ⋆.

- choosing any value of r ∈ R(α), when ψ⋆ = Sin −λ+. The output concentration at steady state is then
equal (or arbitrarily close) to λ+.

- taking r smaller and arbitrarily close to r̄(α), when ψ⋆ > Sin − λ+. The output at steady state is then
arbitrary close to the infimum of S⋆

1 on S (that is necessarily less than λ+).

Under Assumptions A1 and A2, we study now the benefit of adding to a single chemostat of volume V a
buffer of volume V2 under a constant total input flow Q = Q1 +Q2, and characterize the minimal value of
V2/V to obtain a global stability of the positive equilibrium. Similarly to Section 3, we describe the set of
configurations by two non-negative parameters:

α =
Q2

V2
, β =

V2
V

,

but here one has V1 = V whatever is the volume V2. For any number α ∈ (0, µ(Sin)], there exists an unique
S⋆
2 (α) ∈ (0, s̄) defined by (10) and (29), and consequently there exists an unique positive equilibrium in the

second tank. The parameter α being fixed, one can straightforwardly check on equations (4) that a positive
equilibrium in the first tank fulfills

ϕ(S⋆
1 ) = αβ(Sin − S⋆

2 (α)) (31)

where the function ϕ is defined as
ϕ(s) = (Sin − s)(1 − µ(s)) . (32)

Consequently, we are looking for the smallest value of β such that there exists an unique positive solution
of (31) on the interval (0, Sin).

Proposition 5. Under Assumptions A1 and A2, there exists a buffered configuration with an additional
tank of volume V2 that possesses a unique globally exponentially stable positive equilibrium from any initial
condition with S2(0) > 0, exactly when V2 fulfills the condition

β =
V2
V

>

max
s∈(λ+,Sin)

ϕ(s)

ψ⋆
, (33)

where ψ⋆ is defined in (28), with any α ∈ (0, µ(Sin)] such that

max
s∈(λ+,Sin)

ϕ(s) < αβ(Sin − S⋆
2 (α)) < Sin .

Proof. Let us examine first some properties of the function ϕ on the interval (0, Sin):

. ϕ is negative exactly on the interval Λ,

. ϕ′ is negative on (0, λ−) with ϕ(0) = Sin and ϕ(λ−) = 0,

. ϕ(λ+) = ϕ(Sin) = 0 and ϕ reaches its maximum m+ on the sub-interval (λ+, Sin), that is strictly less
than Sin = ϕ(0),

13
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0

Figure 3: Illustration of the graph of the function ϕ

from which we deduce that there exists a unique solution of ϕ(s) = c on the whole interval (0, Sin) exactly
when c ∈ (m+, Sin) (see Figure (3) as an illustration).

Consequently, the configurations (α, β) for which there exists a unique S⋆
1 (α, β) ∈ (0, Sin) solution of the

equation (31) are exactly those that fulfill the condition

m+

α(Sin − S⋆
2(α))

< β <
Sin

α(Sin − S⋆
2 (α))

with α ∈ (0, µ(Sin)]. Then, Proposition 3 with r = 1/(1+β) guarantees that the unique positive equilibrium
(S⋆

1 (α, β), Sin−S⋆
1(α, β), S

⋆
2 (α), Sin−S⋆

2(α)) is globally exponentially stable on the domain IR2
+× IR⋆

+× IR+.

Among all such configurations, the infimum of β can be approached arbitrarily close when α is maximizing
the function

α 7→ α(Sin − S⋆
2(α))

on (0, µ(Sin)], that exactly amounts to maximize the function ψ defined in (27) on the interval (0, s̄]. �

Remark 2. Section 3 has shown the benefit of the buffered chemostat in terms of global stability of the
system, but with a price to pay in performances when one imposes to have the same residence time (i.e.
the nutrient concentration at steady state is larger than λ−). When adding a buffer, this is no longer true
(i.e. the steady state necessarily exhibits a better performance than λ−): there always exists a solution
S⋆
1 ∈ (0, λ−) of (31), that is unique under conditions of Proposition 5, because ϕ(0) = Sin, ϕ(λ−) = 0 and
αβ(Sin − S⋆

2 ) ∈ (0, Sin).

5 Illustration and discussion

We illustrate the results of the former sections on an non-monotonic uptake function given by the Haldane
expression (2). One can easily check that for this function the set Λ defined in (3) is non empty exactly
when the condition

µ̄ > 1 + 2

√
K

KI

is fulfilled. Then, λ− , λ+ are given by the following expressions:

λ± =
KI(µ̄− 1)±

√

K2
I (µ̄− 1)2 − 4KKI

2
.

Remind that Assumption A2 is fulfilled for values of Sin larger than λ+.
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Lemma 4. Assume that µ(·) is an Haldane function and that Assumptions A1 and A2 are fulfilled. For any
α ∈ (0, µ(Sin)], the following properties are satisfied.

- the set R+(α) defined in (17) is a singleton,

- for any r ∈ (0, 1), the set Sr,α defined in (14) is either empty or a singleton,

- if the set R−(α) defined in (16) is non empty, then one has maxR−(α) < R+(α).

Proof. In the case of the Haldane function, the equality φα,r(s) = µ(s) can be rewritten as

(Sin − s− α(1 − r)(Sin − S⋆
2 (α))(K + S + S2/KI) = rµ̄s(Sin − s) .

So S⋆
1 is the root of a polynomial P of degree three, and there exists at most three solutions of φα,r(s) = µ(s).

We then deduce from Proposition 2 that R+(α) is a singleton.
Requiring to have φα,r(s) = µ(s) and φ′α,r(s) = µ′(s) simultaneously implies that s is solution of P = 0

and P ′(s) = 0 i.e. that s is a double root of P . P being of degree three, there is a most one such solution.
So the set Sr,α possesses at most one element, and this implies R−(α) ∩R+(α) = ∅.

When R−(α) is non empty, we know from Proposition 2 that for r ∈ (minR−(α),maxR−(α)), φα,r(s) =
µ(s) has at least three solutions on an interval I, and for r ∈ (minR+(α), 1) at least two on another interval
J , where I and J are disjoint. Consequently, one should have maxR−(α) < minR+(α), otherwise there
would exists at least 5 solutions of φα,r(s) = µ(s) on (0, Sin). �

Lemma 4 implies that for any α ∈ (0, µ(Sin)], the number r̄(α) defined in (23) is the single element of
R+(α). It can then be determined numerically as the unique minimizer of the function

Fα(r, s) = (µ(s)− φα,r(s))
2 +

(
µ′(s)− φ′α,r(s)

)2

on (0, 1)× {s ∈ (λ−, Sin) s.t. (s− λ+)(λ+ − S(α)) ≥ 0} that is, for the Haldane function:

Fα(r, s) =

(
µ̄s

K + s+ s2/KI

−
1

r
+ α

1− r

r

Sin − S⋆
2 (α)

Sin − s

)2

+

(
µ̄(K − s2/KI)

(K + s+ s2/KI)2
+ α

1− r

r

Sin − S⋆
2 (α)

(Sin − s)2

)2

where S⋆
2 defined in (10) is given by the formula

S⋆
2(α) =

KI(µ̄− α) −
√

K2
I (µ̄− α)2 − 4α2KKI

2α
,

and S(α) is defined in (15).
One can also easily check that for the Haldane growth, the function ψ defined in (27) is increasing up to

ψ⋆ and decreasing. Its maximum on the interval [0, Sin] is achieved for the value

s̄⋆ =

√

K2 +KSin(1 + Sin/KI)−K

1 + Sin/KI

.

Consequently, one has
s⋆ = min(s̄⋆, s̄) ,

that allows to determine the optimal value α⋆ = µ(s⋆).

The parameters given in Table 1 have been chosen for the numerical simulations.

Figure 4 illustrates the family of functions φα,r(·) and the tangent property with the graph of an Haldane
function. On Figure 5, the domain C defined in (13) is drawn for different values of Sin. According to
Remark 1, one can see that the map α 7→ r̄(α) is discontinuous at α = α, where α is such that s(α) = λ+
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µ̄ K KI λ− λ+
12 1 0.8 ≃ 0.103 ≃ 0.777

Table 1: Parameters of the Haldane function and the corresponding values of λ− , λ+.

Sinλ+

φα,r

λ−

φα,r

φα,r

α

α

α

αfor r=r(  )

S(  )

µ

1

for r<r(  )

for r>r(  )

λ+

r

Sin

φα,r

λ

φα,

−

φα,r

α

αS(  )

α
αfor r=r(  )

µ

1

for r<r(  )

for r>r(  )

Figure 4: Family of functions φα,r(·) when S(α) < λ+ (in the left) and S(α) > λ+ (in the right).
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Figure 5: Domain C of stable configurations for different values of Sin.

(when it exists). On Figure 6 one can see that the two limiting hyperbolas Hα,r̄(α) about α are different for
such a case.

Our study has revealed the role of the input concentration Sin on the shape of the domain C. So we
have computed numerically the best configurations (α⋆, r⋆) given by Proposition 4 as functions of Sin, as
well as the corresponding output concentration S⋆

1 (see Figure 7). The map Sin 7→ α⋆ given by (28) and
(30) being continuous, the discontinuity of the map α 7→ r̄(α) leads to a discontinuity of the map Sin 7→ S⋆

1 .
Consequently, there exists a threshold of Sin such that

- below the threshold, the optimal buffered chemostat provides global stability, with performance close
to the single chemostat i.e. S⋆

1 is close to λ−;

- above the threshold, the optimal stable configuration consists in a by-pass of the single chemostat
without any buffer. The performance is significantly modified as S⋆

1 is larger than λ+.

According to Propositions 2 and 4, this threshold corresponds to a value of Sin such that S⋆(α⋆) = λ+,
where S is defined in (15). For values of Sin smaller than this threshold, the output concentration at steady
state S⋆

1 of the best configuration is thus bounded by the one computed for the limiting case when Sin get
arbitrary close to the threshold (see Figure 8). The values of Sin and S⋆

1 obtained at the threshold are given
in Table 2. One can see on this example that the buffered chemostat allows a global stability for any value
of Sin in the interval [0.777, 1.641] with an output at steady state less than 0.167, to be compared with the
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Figure 6: The limiting hyperbolas Hα,r̄(α) about α = α (for Sin = 1.4).
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Figure 7: The best configuration (α⋆, r⋆) with S⋆
1 , as functions of Sin.
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Figure 8: Determination of S⋆
1 for Sin at the threshold.

Sin α⋆ r⋆ S⋆
1

≃ 1.641 ≃ 0.543 ≃ 0.561 ≃ 0.167

Table 2: Characteristics of the best configuration at the threshold value of Sin.

value 0.103 of the locally stable equilibrium of the single chemostat (see also Figure 7).

In industrial applications, the attraction of the wash-out equilibrium is undesired because it presents a
risk that may ruin the culture in case of disturbance, temporarily pump breakdown or presence of toxic
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material that could drive the state in the attracting basin of the wash-out equilibrium. It imposes also to
ensure that initial condition belongs to the attracting basin of the desired equilibrium. A common technique
to overcome theses difficulties and allow an initial stage with a small concentration of biomass, is to control
the input flow rate Q with a stabilizing feedback [6, 36] (it consists in finding a feedback law that reduces
the flow rate when the state belongs to the attracting basin of the wash-out equilibrium). But this solution
requires an upstream storage and an actuator. The design of a buffered chemostat is thus an alternative
that does not require any upstream storage nor feedback control. In real world applications, it may happen
that the growth function µ(·) is not perfectly known or uncertain. Then choosing a buffered configuration
not too close from the boundary of the domain C provides a robustness margin for the global stability.

When the characteristics of the input flow cannot be changed, a simple solution consists in increasing
the volume of the vessel, so that the dilution rate is small enough to ensure that condition of Case 3 of
Proposition 1 is fulfilled. The relative increment ∆V/V has then to satisfy the condition

Sin /∈

{

S > 0 | µ(S) >
1

1 + ∆V
V

}

(34)

that is equivalent to have
∆V

V
>

1

µ(Sin)
− 1 . (35)

Note that under Assumptions A1 and A2, this last number is positive. This solution increases significantly
the residence time in the tank and induces additional financial costs. Instead of choosing a larger volume V ,
we show that adding a buffer can be an interested alternative to improve the stability of a given bioprocess.
For the parameters given in Table 1, we have compared numerically

- the smallest relative increment of the volume of the single chemostat to be globally stable, given in
(35),

- the smallest relative size of the buffer to be added for the buffered chemostat to be globally stable,
given by Proposition 5 (that imposes to choose α = α⋆),

as functions of the input concentration Sin (for values larger than λ+ for which the bi-stability occurs with
a dilution rate equal to one, cf Proposition 2). One can clearly see on Figure 9 the advantage of the buffered

λ+ Sin

2
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Figure 9: Comparison of minimal increase of volume, and output nutrient concentration, to obtain the global
stability.

chemostat that requires less volume augmentation. The output concentrations are also drawn for both
configurations with the minimal volume augmentation. According to Remark 2, these concentrations are
always smaller than λ−. This example demonstrates the flexibility of the buffered chemostat in the choice of
possible configurations, with two parameters than can be tuned (see Figure 10), while the single chemostat
is penalized with only one parameter, requiring larger increments of volume and providing (too) low output
concentrations.
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Figure 10: The sets of configurations (α, β) that ensure global stability, to be compared with the minimal
relative increase of volume of the single chemostat (for different values of Sin).

Finally note that due to the robustness property that is obtained for the stability in the first tank when
using a buffered chemostat, the presence of biomass at initial time is necessarily only in the buffer tank (see
Proposition 3). This property possesses some advantages for the practitioners in industrial frameworks for
the seeding phase.

6 Conclusion

The main message of the present study is that particular spatial structures can bring stability to unstable
bioprocesses:

- We have shown that a buffered interconnection of two volumes can globally stabilize the chemostat
model when it exhibits a bi-stability, while preserving the same total volume and input flow, which is
not possible with parallel or serial interconnections.

- We have provided a characterization of the set C of all buffered configurations that enjoy this property,
and study their performances at steady-state in terms of nutrient conversion.

- Our study has emphasized the influence of the input concentration Sin on the shape of the set C and
the design of the best configurations, that could exhibit a threshold on the value of Sin above it a
by-pass is more efficient. More precisely, we have shown that this threshold can be computed from the
function

ψ(s) = (Sin − s)µ(s)

(where µ(·) is the nutrient uptake rate assumed to be non-monotonic).

- We have studied the minimal buffer volume to add to a single chemostat to obtain a global stability, and
show how the flexibility of the buffered interconnection allows significantly less volume augmentation
than increasing the size of the single chemostat.

Those results provide new insights on the role of spatial structures in natural ecosystems, and new strategies
for piloting bioprocesses designing volume and input flow of a buffer. Our study has considered single strain.
According to the Competitive Exclusion Principle, it is not (generically) possible to observe more than
one species at steady state in the buffer tank, but this does not prevent to have coexistence with another
dominant species in the main tank, which is not possible with a single chemostat. Consequently, it might be
relevant to study the performances of the buffered chemostat choosing a different strain in the buffer, that
could be the matter of a future work.

Appendix

We recall a result from [28, Theorem 1.8] about asymptotic behavior of trajectories of asymptotically au-
tonomous dynamical system.
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Theorem. Let Φ be an asymptotically autonomous semi-flow with limit semi-flow Θ, and let the orbit
OΦ(τ, ξ) have compact closure. Then the ω-limit set ωΦ(τ, ξ) is non-empty, compact, connected, invariant
and chain-recurrent by the semi-flow Θ and attracts Φ(t, τ, ξ) when t→ ∞.
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