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Ga-ACTIONS ON AFFINE CONES

TAKASHI KISHIMOTO, YURI PROKHOROV, AND MIKHAIL ZAIDENBERG

Abstract. An affine algebraic varietyX is called cylindrical if it contains a principal
Zariski dense open cylinder U ≃ Z × A1. A polarized projective variety (Y,H) is
called cylindrical if it contains a cylinder U = Y \ suppD, where D is an effective
Q-divisor on Y such that [D] ∈ Q+[H ] in PicQ(Y ). We show that cylindricity of
a polarized projective variety is equivalent to that of a certain Veronese affine cone
over this variety. This gives a criterion of existence of a unipotent group action on
an affine cone. In [KPZ1]-[KPZ3] this criterion is applied to the question of existence
of additive group actions on certain affine cones over del Pezzo surfaces and Fano
threefolds.
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Introduction

We fix an algebraically closed field k of characteristic zero. We let Ga = Ga(k).
We wonder as to when the affine cone over an irreducible, normal projective variety
over k admits a non-trivial action of a unipotent group. Since any unipotent group
contains a one parameter unipotent subgroup, instead of considering general unipotent
group actions we stick to the Ga-actions. Our main purpose in this paper is to provide
a geometric criterion for existence of such an action (see Theorem 2.2 below). The
former version of such a criterion in [KPZ1] involved some unnecessary assumptions.
In Theorem 2.2 we remove these assumptions. What is more important, we extend
our criterion so that it can be applied more generally to affine quasicones. An affine
quasicone is an affine variety V equipped with a Gm-action such that the fixed point
set V Gm attracts the whole V . Thus the variety Y = (V \ V Gm)/Gm is projective over
the affine variety S = V Gm . We assume in this paper that Y is normal. Our criterion
is formulated in terms of a geometric property called cylindricity, which merits to be
studied on its own sake.

0.1. Cylindricity. Let us fix the notation. For two Q-divisors H and H ′ on a
quasiprojective variety Y we write H ∼ H ′ if H and H ′ are linearly equivalent that is,

The second author was partually supported by RFBR grant No. 11-01-00336-a, the grant of
Leading Scientific Schools No. 4713.2010.1, and AG Laboratory SU-HSE, RF government grant ag.
11.G34.31.0023.
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H − H ′ = div (f) for a rational function f on Y . We write [H ′] ∈ Q+[H ] in PicQ(Y )
meaning that H ′ ∼ p

q
H for some coprime positive integers p and q.

Definition 0.2 (cf. [KPZ1, 3.1.4]). Let Y be a quasiprojective variety over k polarized
by an ample Q-divisor H ∈ DivQ(Y ). We say that the pair (Y,H) is cylindrical if
there exists an effective Q-divisor D on Y such that [D] ∈ Q+[H ] in PicQ(Y ) and
U = Y \ suppD is a cylinder i.e.

U ≃ Z × A1

for some variety Z. Here U and Z are quasiaffine varieties. Such a cylinder U is called
H-polar in [KPZ1, 3.1.7]. Notice that the cylindricity of (Y,H) depends only on the
ray Q+[H ] generated by H in PicQ Y .

Remark 0.3. The pair (Y,H) can admit several essentially different cylinders. For
instance, let Y = P1 and H is a Q-divisor on Y of positive degree. Then any divisor
D = rP , where P ∈ P1 and r ∈ Q+, defines an H-polar cylinder on Y .

Definition 0.4. An affine variety X is called cylindrical if it contains a principal
cylinder

D(h) := X \ V(h) ≃ Z × A1, where V(h) = h−1(0),

for some variety Z and some regular function h ∈ O(X). Hence U and Z are affine
varieties.

The cylindricity of affine varieties is important due to the following well known fact
(see e.g. [KPZ1, Proposition 3.1.5]).

Proposition 0.5. An irreducible affine variety X = SpecA over k is cylindrical if and

only if it admits an effective Ga-action, if and only if LND(A) 6= ∅, where LND(A)
stands for the set of all nonzero locally nilpotent derivations of A.

The proof is based upon the slice construction, which we recall in subsection 1.1. In
Section 1 we gather necessary preliminaries on positively graded rings. In particular,
we give a graded version of the slice construction, and recall the DPD (Dolgachev-
Pinkham-Demazure) presentation of a positively graded ring A in terms of an ample
Q-divisor H on the variety Y = ProjA. In Section 2 we prove the main theorem (see
Theorem 2.2).

Theorem 0.6. Let A =
⊕

ν≥0Aν be a positively graded affine domain over k. If

the affine quasicone V = SpecA over the variety Y = ProjA is cylindrical then the

associated pair (Y,H) is. Vice versa, if the pair (Y,H) is cylindrical then for some

d ∈ N the Veronese cone V (d) = SpecA(d) is cylindrical, where A(d) =
⊕

ν≥0Adν .

In Lemma 2.10 we precise the range of values of d satisfying the second assertion.
In Section 3 we provide several examples that illustrate our criterion. Besides, we

discuss a possibility to lift a Ga-action on a Veronese cone V (d) over Y to the affine
cone V over Y .
It is our pleasure to thank Shulim Kaliman, Kevin Langlois, Alvaro Liendo, and

Alexandr Perepechko for useful discussions and references. The discussions with Alvaro
Liendo and Alexandr Perepechko were especially stimulating and allowed us to improve
significantly the presentation.
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1. Preliminaries

1.1. Slice construction. Let A be an affine domain over k, and let ∂ ∈ LND(A).
The filtration

(1) A∂ = ker ∂  ker ∂2  ker ∂3  . . .

being strictly increasing one can find an element g ∈ ker ∂2 \ ker ∂. Letting h = ∂g ∈
ker ∂ ∩ im ∂, where h 6= 0, one considers the localization Ah = A[h−1] and the principal
Zariski dense open subset

D(h) = X \ V(h) ≃ SpecAh , where V(h) = h−1(0) .

The derivation ∂ extends to a locally nilpotent derivation on Ah denoted by the same
letter. The element s = g/h ∈ Ah is a slice of ∂ that is, ∂(s) = 1. Hence

Ah = A∂
h[s], where ∂ = d/ds and A∂

h ≃ Ah/(s)

(‘Slice Theorem’, [Fr, Corollary 1.22]). Thus D(h) ≃ Z × A1 is a principal cylinder
in X over Z = SpecA∂

h. The Ga-action on D(h) associated with ∂ is defined by the
translations along the second factor. The natural projection p1 : D(h) → Z identifies
V(g) \ V(h) ⊆ D(h) with Z. Choosing f ∈ A∂

h = O(Z) such that Sing(Z) ⊆ V(f) we
can replace g and h by fg and fh, respectively, so that the slice s remains the same,
but the new cylinder D(fh) over an affine variety Z ′ = D(fh)/Ga is smooth.

1.2. Graded slice construction. Suppose that the ring A is graded, and consider
η ∈ LND(A). Decomposing η into a sum of homogeneous components

η =

n
∑

i=1

ηi, where ηi ∈ Der(A), deg ηi < deg ηi+1 ∀i, and ηn 6= 0 ,

we let ∂ = ηn be the principal homogeneous component of η. Then ∂ is again locally
nilpotent and homogeneous (see [Re]). Hence all kernels in (1) are graded. So one
can choose homogeneous elements g, h, and s as above. With this choice we call the
construction of a cylinder a graded slice construction.

1.3. Graded rings and associated schemes. We recall some well known facts on
positively graded rings and associated schemes. The presentation below is borrowed
from [De], [Fl, sect. 2], [FZ1, §2.1], and [Do, Lecture 3].

Notation 1.4. Given a graded affine domain A =
⊕

ν∈ZAν over k the group Gm acts
on A via t.a = tνa for a ∈ Aν . This action is effective if and only if the saturation

index e(A) equals 1, where

e(A) = gcd{ν |Aν 6= (0)} .

If A is positively graded i.e. A≤0 = (0) then the associated scheme Y = ProjA is
projective over1 the affine scheme S = SpecA0 [EGA]. Furthermore, Y is covered by
the affine open subsets

D+(f) = D+(fA) := {p ∈ ProjA : f /∈ p} ∼= SpecA(f) ,

where f ∈ A>0 is a homogeneous element and A(f) = (Af )0 stands for the degree zero
part of the localization Af . The affine variety V = SpecA is called a quasicone over Y
with vertex V(A>0) and with punctured quasicone V ∗ = V \V(A>0), where V(I) stands

1Notice that A0 can be here an arbitrary affine domain.
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for the zero set of an ideal I ⊆ A. For a homogeneous ideal I ⊆ A, V+(I) stands
for its zero set in Y = ProjA. There is a natural surjective morphism π : V ∗ → Y .
If A = A0[A1] i.e., A is generated as an A0-algebra by the elements of degree 1 then
V ∗ → Y = ProjA is a locally trivial Gm-bundle. In the general case the following
holds.

Lemma 1.5. ProjA ∼= V ∗/Gm.

Proof. Indeed, V ∗ is covered by the Gm-invariant affine open subsets D(f) = SpecAf ,
where f ∈ Ad with d > 0. Since (Af)

Gm = A(f) = (Af)0 we have D+(f) = D(f)/Gm

and the lemma follows. �

Remark 1.6. Assuming that A is a domain over k and e(A) = 1 one can find a
pair of nonzero homogeneous elements a ∈ Aν and b ∈ Aµ of coprime degrees. Let
p, q ∈ Z be such that pν + qµ = 1. Then the localization Aab is graded, the element
u = apbq ∈ (Aab)1 is invertible, and Aab = A(ab)[u, u

−1] . This gives a trivialization of
the orbit map π : V ∗ → Y = ProjA over the principal open set D+(ab) ⊆ Y :

D(ab) = π−1(D+(ab)) ≃ D+(ab)× A
1
∗, where A1

∗ = A
1 \ {0} .

1.7. Cyclic quotient construction. Let h ∈ Am be a homogeneous element of degree
m > 0, and let F = A/(h − 1). For a ∈ A we let ā denote the class of a in F . The
projection ρ : A → F , a 7→ ā, extends to the localization Ah via ρ(a/hl) = ρ(a) = ā.
The cyclic group µm ⊆ Gm of the mth roots of unity acts on F effectively and so
defines a Zm-grading

F =
⊕

[i]∈Zm

F[i] ,

where Zm = Z/mZ and [i] ∈ Zm stands for the residue class of i ∈ Z modulo m. It is

easily seen that the morphism ρ : Ah → F restricts to an isomorphism ρ : A(h)
≃

−→ F[0].
This yields a cyclic quotient

Yh → Yh/µm = D+(h) ⊆ Y , where Yh = h−1(1) ⊆ V ,

V = SpecA, and D+(h) = SpecA(h) ≃ SpecF[0] .

Let ∂ be a homogeneous locally nilpotent derivation of A. If h ∈ A∂
m then the

principal ideal (h − 1) of A is ∂-stable. Hence the hypersurface Yh = V(h − 1) is
stable under the Ga-action on V generated by ∂, and ∂ induces a homogeneous locally
nilpotent derivation ∂̄ of the Zm-graded ring F . The kernel F ∂̄ = ker ∂̄ is a Zm-graded
subring of F :

F ∂̄ =
⊕

[i]∈Zm

F ∂̄
[i] , where F ∂̄

[i] = F[i] ∩ F
∂̄ .

Assume further that F is a domain. Then the set {[i] ∈ Zm |F[i] 6= (0)} is a cyclic
subgroup, say, µn ⊆ µm. Letting k = m/n we can write

F ∂̄ =

n−1
⊕

i=0

F ∂̄
[ki] .

Lemma 1.8. We have k = e(A∂)(= e(A∂
h)) and gcd(k, d) = 1, where d = − deg ∂.
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Proof. The second assertion follows from the first since gcd(d, e(A∂)) = 1. Indeed,
notice that for any nonzero homogeneous element a ∈ Aj (j > 0) there is r ∈ N

such that ∂(r)g ∈ A∂
j−rd \ {0}. Hence j = rd + se(A∂) for some s ∈ Z. Since by our

assumption e(A) = 1 it follows that Z = 〈d, e(A∂)〉 and so gcd(d, e(A∂)) = 1.

To prove the first equality we let g ∈ Aj be such that ḡ ∈ F ∂̄, where j > 0,. The
restriction g|Yh

being invariant under the induced Ga-action on Yh, this restriction
is constant on any Ga-orbit in Yh. For a general point x ∈ D(h) ⊆ V there exists
λ ∈ Gm such that h(λ.x) = 1. Since ∂ is homogeneous the Gm-action on V induced
by the grading normalizes the Ga-action. Therefore λ.(Ga.x) = Ga.(λ.x) ⊆ Yh and so
g|Ga.(λ.x) is constant. Hence also g|λ.(Ga.x) = λjg|Ga.x is. It follows that g ∈ A∂

j . Clearly

ρ(A∂) ⊆ F ∂̄, so finally ρ(A∂) = F ∂̄ . Thus k = e(A∂). �

1.9. Quasicones and ample Q-divisors. To any pair (Y,H), where Y → S is a
proper irreducible normal S-scheme, S = SpecA0 is a normal affine scheme over k, and
H is an ample Q-divisor on Y , one can associate a positively graded k-algebra

(2) A = A(Y,H) =
⊕

ν≥0

Aν , where Aν = H0(Y,OY (⌊νH⌋)) .

The algebra A has saturation index e(A) = 1, is normal and finitely generated. So the
associated affine quasicone V = SpecA over Y = ProjA is normal (see [De, 3.1], [Do,
Proposition 3.3.5] in the case where S is reduced to a point, and [AH, Theorem 3.1] in
the general case).
Vice versa, every affine quasicone V = SpecA, where A is a normal affine positively

graded k-algebra of dimension at least 2 and with saturation index 1 arises in this way
([De, 3.5]). The corresponding ample Q-divisor H on Y is defined uniquely by the
quasicone V up to the linear equivalence ([Do, Theorem 3.3.4]2). In particular, the
fractional part {H} of H is uniquely determined by V .

1.10. Let again A = A(Y,H) be as in (2). By virtue of Remark 1.6 there exists on
V a homogeneous rational function u ∈ (FracA)1 of degree 1. Notice that the divisor
div u on V is Gm-invariant. Choosing this function suitably one can achieve that
div(u|V ∗) = π∗(H), where π : V ∗ → Y is the quotient by the Gm-action (see Lemma
1.5).
Furthermore, FracA = (FracA)0(u). So any homogeneous rational function f ∈

(FracA)d of degree d on V can be written as ψud for some ψ ∈ (FracA)0. For any
d > 0 the Q-divisor class [dH ] is ample. It is invertible and trivial on any open set
D+(ab) ⊆ Y as in Remark 1.6.
A rational function on Y can be lifted to a Gm-invariant rational function on V .

Thus the field (FracA)0 can be naturally identified with the function field of Y . Under
this identification we get the equalities

Aν = H0(Y,OY (⌊νH⌋))uν ∀ν ≥ 0 .

1.11. Given a normal positively graded k-algebra A =
⊕

ν≥0Aν a divisor H ′ on Y

satisfying Aν ≃ H0(Y,OY (⌊νH
′⌋)) ∀ν ≥ 0 can be defined as follows (see [De, 3.5]).

Choose a homogeneous rational function u′ ∈ (FracA)1 on V . Write div(u′|V ∗) =
∑

i pi∆i, where the components ∆i are prime Gm-stable Weil divisors on V ∗ and pi ∈

2Cf. also [FZ3]; see [AH, Theorem 3.4] in a more general setting of a variety with a torus action.
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Z \ {0}. For every irreducible component ∆i of div(u
′|V ∗) we have ∆̄i = Spec (A/I∆̄i

),
where ∆̄i is the closure of ∆i in V and I∆̄i

is the graded prime ideal of ∆̄i in A. Thus
the affine domain A/I∆̄i

is graded. Let qi = e(A/I∆̄i
). Then qi > 0 ∀i, the Weil Q-

divisor H ′ =
∑

i
pi
qi
π∗∆i satisfies π

∗H ′ = div(u′|V ∗), and A ≃ A(Y,H ′). Furthermore,

for every component ∆i the divisor piπ∗∆i is Cartier (see [De, Proposition 2.8]).
If A = A(Y,H) for a Q-divisor H on Y then H ′ ∼ H and π∗(H ′ −H) = div (ϕ|V ∗),

where ϕ = u′/u ∈ (FracA)0.
3

1.12. There is d > 0 such that Amd = Sm
A0
Ad ∀m ≥ 0. More precisely, the following

hold (see [FZ3, Lemma 3.5]).

Lemma 1.13. Let Y be a normal variety projective over an affine variety S /k, and
let D be an ample Q-divisor on Y . Consider the graded ring A =

⊕

ν≥0Aν, where

Aν = H0(Y,OY (⌊νD⌋)) and SpecA0 = S. Then for d ∈ N the following conditions are

equivalent.

(i) dD is integral.

(ii) Ad+m = AdAm for all m ≥ 0.
(iii) The dth Veronese subring A(d) =

⊕

m≥0Amd is isomorphic to the symmetric

algebra SA0
(Ad) = A0[Ad] i.e., Amd = Sm

A0
Ad.

Thus the linear system |dH| defines an embedding of Y = ProjA(d) into a projective
space PN , where A(d) = A(Y, dH) =

⊕

m≥0Amd stands for the dth Veronese subring of

A and SpecA(d) = V (d) is the dth Veronese quasicone over Y . Hence H is ample.

1.14. The discussion in 1.10 and 1.11 leads to the following presentations:

A = A(Y,H) =
⊕

ν≥0

H0(Y,OY (⌊νH⌋))uν =
⊕

ν≥0

H0(Y,OY (⌊νH
′⌋))u′

ν
= A(Y,H ′) ,

where H ′ ∼ H and u′/u ∈ (FracA)0 (see 1.10) is such that π∗(H ′ −H) = div (u′/u).

Remark 1.15 (Polar cylinders). We keep the notation as in 1.14. Assume that for
some nonzero homogeneous element f ∈ Aν , where ν > 0, the open set D+(f) ⊆ Y
is a cylinder i.e., D+(f) ≃ Z × A1 for some variety Z. Then this cylinder is H-
polar. Indeed, let n ∈ N be such that nνH is a Cartier divisor on Y . We have
fn ∈ Anν = H0(Y,OY (nνH))unν. The rational function fnu−nν ∈ (FracA)0 being
Gm-invariant it descends to a rational function, say, ψ on Y such that

D := divψ + nνH = π∗div(f
n) ≥ 0 .

Hence D ∈ nν[H ] is an effective Cartier divisor on Y with suppD = V+(f
n) = V+(f).

Therefore the cylinder D+(f) = SpecA(f) is H-polar.

1.16. Generalized cones. A quasicone V = SpecA is called a generalized cone if
A0 = k so that SpecA0 is reduced to a point. Let us give the following example.

Example 1.17 (see e.g. [KPZ1]). Let (Y,H) be a polarized projective variety over k,
where H ∈ Div(Y ) is ample. Consider the total space Ṽ of the line bundle OY (−H)

with zero section Y0 ⊆ Ṽ . We have OY0
(Y0) ≃ OY (−H) upon the natural identification

of Y0 with Y . Hence there is a birational morphism ϕ : Ṽ → V contracting Y0. The
resulting affine variety V = coneH(Y ) is called the generalized affine cone over (Y,H)

3Notice that (FracA)0 = FracA0 only in the case where dimS Y = 0.
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with vertex 0̄ = ϕ(Y0) ∈ V . It comes equipped with an effective Gm-action induced

by the standard Gm-action on the total space Ṽ of the line bundle OY (−H). The
coordinate ring A = O(V ) is positively graded: A =

⊕

ν≥0Aν , and the saturation
index e(A) equals 1. So the graded pieces Aν with ν ≫ 0 are all nonzero and the
induced representation of Gm on A is faithful. The quotient

Y = ProjA = V ∗/Gm , where V ∗ = V \ {0̄} ,

can be embedded into a weighted projective space Pn(k0, . . . , kn) by means of a system
of homogeneous generators (a0, . . . , an) of A, where ai ∈ Aki, i = 0, . . . , n.

Remarks 1.18. 1. Assume that A0 = k and V is normal. According to 1.9-1.14,

(3) A =
⊕

ν≥0

H0(Y,OY (νH))uν i.e. Aν = H0(Y,OY (νH))uν ∀ν ≥ 0 ,

where u ∈ (FracA)1 is such that div(u|V ∗) = π∗H . Since H is ample this ring is finitely
generated (see e.g. Propositions 3.1 and 3.2 in [Pr]).
2. If the polarization H is very ample then A = A0[A1] and the affine variety V

coincides with the usual affine cone over Y embedded in Pn by the linear system |H|.
In this case the Gm-action on V ∗ is free. However, (3) holds if and only if V is normal
that is Y ⊆ Pn is projectively normal.

2. The criterion

2.1. In this section we fix the following setup. Letting A =
⊕

ν≥0Aν be a positively
graded normal affine domain over k with e(A) = 1 we consider the affine quasicone
V = SpecA and the variety Y = ProjA projective over the affine scheme S = SpecA0.
We let π : V ∗ → Y be the projection to the geometric quotient of V ∗ by the natural
Gm-action. We can write

A = A(Y,H) =
⊕

ν≥0

Aν , where Aν = H0(Y,OY (⌊νH⌋))uν

with an ample Q-divisor H on Y such that π∗H = div(u|V ∗) for some homogeneous
rational function u ∈ (FracA)1 (see 1.14).
Notice that in the ‘parabolic case’ where dimS Y = 0 there exists a homogeneous

locally nilpotent derivation on A ‘of fiber type’ (that is, an A0-derivation), whatever is
the affine variety S = SpecA0, see [Li2, Corollary 2.8]. In contrast, such a derivation
does not exist if dimS Y ≥ 1. We suppose in the sequel that dimS Y ≥ 1.
Given d > 0 we consider the associated Veronese cone V (d) = SpecA(d), where

A(d) =
⊕

ν≥0Aνd.

The following criterion is inspired by Theorem 3.1.9 in [KPZ1].

Theorem 2.2. Let the notation and assumptions be as in 2.1 above. If the affine qua-

sicone V = SpecA is cylindrical then the pair (Y,H) is. Vice versa, if the pair (Y,H)
is cylindrical then for some d ∈ N the Veronese cone V (d) = SpecA(d) is cylindrical. 4

In the next example we illustrate our setting without carrying the normality assump-
tion.

4In Lemma 2.10 below we precise a possible range of values of d.
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Example 2.3. In the affine space A3 = Spec k[x, y, z] consider the hypersurface

V = V(x2 − y3) ≃ Γ× A1 ,

where Γ is the affine cuspidal cubic given in A2 = Spec k[x, y] by the same equation
x2 − y3 = 0. Notice that V is stable under the Gm-action on A3 given by

λ.(x, y, z) = (λ3x, λ2y, λz) .

With respect to this Gm-action, A
3 is the generalized affine cone over the weighted

projective plane P(3, 2, 1) polarized via an anticanonical divisor H . The divisor H
is ample, and P(3, 2, 1) is a singular del Pezzo surface of degree 6. The quotient
Y = V/Gm is a unicuspidal rational curve in P(3, 2, 1) with an ordinary cusp at the
point P = (0 : 0 : 1). It can be polarized by a divisor D ∈ |H|Y | supported at P . The
affine surface V ≃ Γ×A1 is a cylinder, and (Y,H) is cylindrical as well. The cylinder in
Y consists of a single affine curve Y \ suppD = Y \ {P} ≃ A1. The natural projection
π : V ∗ → Y sends any generator {Q} × A1, where Q ∈ Γ \ {0̄}, of the cylinder V onto
Y \ {P}.

In Corollary 2.9 below we show that if a normal affine quasicone V = SpecA is

cylindrical then (Y,H) is. This proves the first part of Theorem 2.2. Let us start with
a particular case, where the proof is rather short.

Lemma 2.4. Let A =
⊕

ν>0Aν be a positively graded affine domain with e(A) = 1,
and let ∂ ∈ LND(A) be a nonzero homogeneous locally nilpotent derivation on A of

degree −d, where d ∈ Z. Suppose that e(A∂) = 1 i.e.,

(4) A∂
ν 6= (0) ∀ν ≫ 0 .

Then f∂ ∈ LND(A(h)) for some nonzero homogeneous elements h ∈ A∂
m and f ∈ (A∂

h)d,
where m > 0 and A(h) = (Ah)0.

Proof. By (4) for a sufficiently large m ∈ N there are nonzero elements, say, h1 ∈ A∂
m+d

and h ∈ A∂
m. Letting f = h1/h ∈ (A∂

h)d we consider a homogeneous locally nilpotent
derivation δ = f∂ of degree zero on the localization Ah. It restricts to a locally nilpotent
derivation on A(h). Let us show that this restriction is nonzero, as required. Indeed,
we have

A(h) =
⊕

j≥0

Amjh
−j .

Hence ∂|A(h) = 0 if and only if A(m) ⊆ A∂ , where A(m) =
⊕

j≥0Amj is themth Veronese

subring of A. However, the latter is impossible since tr. deg(A(m)) = tr. deg(A) =
tr. deg(A∂) + 1. �

Corollary 2.5. Under the assumptions of Lemma 2.4 suppose in addition that A is

normal and so it admits a presentation5 A = A(Y,H), where Y = Proj(A) and H is

an ample Q-divisor on Y . Then the pair (Y,H) is cylindrical.

Proof. Let a pair (A(h), f∂|A(h)) verify the conclusion of Lemma 2.4. Applying to this

pair the homogeneous slice construction (see 1.2) we obtain a principal cylinder D+(h̃)

in D+(h), where h̃ ∈ ker(f∂) ∩ im(f∂) ⊆ A(h) is a nonzero homogeneous element of

5See 1.9.
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degree zero. We can write h̃ = ah−β for some β ≥ 0 and some a ∈ Aα, where α = mβ.
Hence the cylinder D+(h̃) = D+(ah) = Y \ V+(ah) is H-polar, see Remark 1.15. �

Corollary 2.6. If H ∈ Div(Y ) is very ample then e(A∂) = 1 and, moreover, hd∂ ∈
LND(A(h)) for a nonzero element h ∈ A∂

1 .

In contrast, in case where the assumption e(A∂) = 1 of Lemma 2.4 does not hold it
is not so evident how can one produce a locally nilpotent derivation on A stabilizing
A(h) starting with a given one. Let us provide a simple example.

Example 2.7. Consider the affine plane X = A2 = Spec k[x, y] equipped with the
Gm-action λ.(x, y) = (λ2x, λy). The homogeneous locally nilpotent derivation ∂ = ∂

∂y

on the algebra A = k[x, y] graded via deg x = 2, deg y = 1 defines a principal cylinder
on X with projection x : X → A1 = Z. Note that e(A∂) = 2. The derivation ∂ extends
to a locally nilpotent derivation of the algebra

Ã = A[z]/(z2 − x) = k[z, y] ⊇ A

such that e(Ã∂) = 1. The localization Ax = k[x, x−1, y] extends to Ãz = k[z, z
−1, y] =

k[z, z−1, s], where
s = y/z ∈ Ã(z) = (Ãz)0 = k[s]

is a slice of the homogeneous derivation ∂0 = z∂ ∈ LND(Ã(z)) of degree zero. Thus

Spec Ã(z) = Spec k[s] ≃ A1 is a polar cylinder in Ỹ = Proj Ã.

The subrings A ⊆ Ã and Ax ⊆ Ãz are the rings of invariants of the involution
τ : (z, y) 7→ (−z, y) resp. (z, s) 7→ (−z,−s). This defines the Galois Z/2Z-covers

Spec Ãz → SpecAx and Spec Ã(z) → SpecA(x). Hence SpecA(x) = Spec k[s2] ≃ A1,
where s2 = y2/x ∈ A(x), is a polar cylinder in Y = ProjA with a locally nilpotent
derivation d/ds2.

So in order to construct a polar cylinder for (Y,H) in the general case one needs to
apply a different strategy. We use below the cyclic quotient construction (see 1.7)

(5) Yf = SpecF
/Zm
−→ D+(h) = SpecA(h) ,

where h ∈ A∂
m is nonzero and F = A/(h−1). The key point is the following proposition.

Proposition 2.8. Let A =
⊕

ν≥0Aν be a positively graded affine domain over k, and

let ∂ ∈ LND(A) be a nonzero homogeneous locally nilpotent derivation. If dimS Y ≥ 1,
where Y = ProjA and S = SpecA0, then there exists a homogeneous element f ∈ A∂

such that D+(f) = SpecA(f) is an H-polar cylinder6 in Y , where Y is polarized via an

ample Q-divisor H such that A = A(Y,H).

Proof. Let d = − deg ∂. We apply the homogeneous slice construction 1.2. One can
find a homogeneous element g ∈ (ker ∂2 \ ker ∂) ∩ Ad+m such that h = ∂g ∈ A∂

m,
where m > 0 (in particular h is non-constant). Indeed, assuming to the contrary that
A∂ ⊆ A0 we obtain tr. deg(A0) ≥ tr. deg(A)− 1. It follows that the morphism Y → S
is finite, contrary to our assumption that dimS Y ≥ 1. Thus there exists a ∈ A∂

α,
where α > 0 and a 6= 0. Replacing (g, h) by (ag, ah), if necessary, we can consider
that deg h > 0. In this case the fibers h∗(c) with c 6= 0 are all isomorphic under the
Gm-action on V = SpecA induced by the grading of A.

6In particular LND(A(f)) 6= ∅.
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We use further the cyclic quotient construction, see 1.7. In particular, we consider
the quotient

(6) F = A/(h− 1)A = Ah/(h− 1)Ah = F ∂̄[s̄], where s̄ = g + (h− 1)A ∈ F

is a slice of the induced locally nilpotent derivation ∂̄ on F . We have

SpecF ∂̄ ≃ V(g) ∩ V(h− 1) ,

where both schemes are regarded with their reduced structure. Choosing g appro-
priately we may suppose that the variety SpecF ≃ h∗(1) (of positive dimension) is

reduced and irreducible. Then also the variety SpecF ∂̄ is since SpecF ≃ SpecF ∂̄ ×A1

by (6). Indeed, the Stein factorization applied to h gives h = hl1, where m = kl, l ≥ 1,
and h1 ∈ A∂

k is such that the fibers h∗1(c), c 6= 0, are all reduced and irreducible. Now
we replace (g, h) by the new pair (g1, h1), where g1 = g/hl−1

1 ∈ Ah = Ah1
and h1 = ∂g1.

Since the variety SpecF ∂̄ is reduced and irreducible F ∂̄ is a domain. Thus Lemma 1.8
can be applied.
The subgroup µm ⊆ Gm of mth roots of unity acts effectively on F stabilizing the

kernel F ∂̄. This action provides the Zm-gradings

F =
⊕

σ∈Zm

Fσ and F ∂̄ =
n−1
⊕

ν=0

F ∂̄
[kν] ,

where m = kn and k = e(A∂) is such that F ∂̄
[kν] 6= 0 ∀ν (see 1.7). The µm-action on F

yields an effective µn-action on F ∂̄. We have ∂̄ : Fσ → Fσ−r, where r = [d] ∈ Zm.
According to (5) one can write

A(h) ≃ Fµm = F[0] = (F ∂̄ [s̄])[0] =
⊕

j≥0

F ∂̄
[−rj]s̄

j .

For α ∈ N, α≫ 1, one can find a nonzero element t ∈ A∂
e(A∂)+αm = A∂

k+αm (see Lemma

1.8). Then also t̄ = t + (h− 1)A ∈ F ∂̄
[k] is nonzero. The subgroup 〈t̄〉 ⊆ (F ∂̄

t̄ )
× acts on

F ∂̄
t̄ via multiplication permuting cyclically the graded pieces (F ∂̄

t̄ )[ik], i = 0, . . . , n− 1.
Thus (Ft̄)[kν] = (Ft̄)[0]t̄

ν ∀ν. It follows that

A(ht) ≃ Fµm

t̄ = (Ft̄)[0] = (F ∂̄
t̄ [s̄])[0] =

⊕

j≥0

(F ∂̄
t̄ )[−krj]s̄

kj

=
⊕

j≥0

(F ∂̄
t̄ )[0]

(

s̄kt̄−r
)j

=
⊕

j≥0

(F ∂̄
t̄ )[0]s̄

j
1 ,

where s1 = skt−r ∈ A(ht) and s̄1 ∈ F[0]. Letting f = ht ∈ A∂
k+(α+1)m we obtain that

A(f) ≃ F ∂̄
(t̄)[s̄1] is a polynomial ring. Thus D+(f) = Y \V+(f) is a cylinder. According

to Remark 1.15 this cylinder is H-polar. Now the proof is completed. �

The proof of the next corollary is similar to that of Corollary 2.5.

Corollary 2.9. If under the assumptions of Theorem 2.2 the affine quasicone V over

Y is cylindrical then the pair (Y,H) is.

This finishes the proof of the first assertion of Theorem 2.2. The second follows from
the next lemma.
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Lemma 2.10. Assume that the pair (Y,H) as in 2.1 is cylindrical with a cylinder

Y \ suppD ≃ Z × A1 ,

where D is an effective Q-divisor on Y such that D ∼ p
q
H in PicQ(Y ) for some coprime

integers p, q > 0. Then the Veronese quasicone V (p) over Y is cylindrical and possesses

a principal cylinder D(h) ≃ Z ′ × A1, where Z ′ ≃ Z × A1
∗ and hq ∈ Ap.

Proof. We have D = p
q
H+div(ϕ) for a rational function ϕ on Y . Hence div(ϕq)+pH =

qD ≥ 0 and so in the notation as in 1.14

h := ϕqup ∈ Ap = H0(Y,OY (⌊pH⌋))up ⊆ A ,

where u ∈ (FracA)1 satisfies div(u|V ∗) = π∗H . So div(h|V ∗) = qπ∗D. Since

Spec(A(p))(h) = D+(h) = Y \ suppD ≃ Z × A1

is a cylinder we have

(A(p))(h) ≃ O(Z)[s], where s ∈ (A(p))(h) and O(Z) ≃ (A(p))(h)/(s) .

Similarly as in Remark 1.6 we obtain

(7) (A(p))h = (A(p))(h)[h, h
−1] ≃ O(Z)[s, h, h−1] = O(Z ′)[s] ,

where Z ′ = SpecO(Z)[h, h−1] = Z × A1
∗. Letting A

1 = Spec k[s] we see that

D(h) = Spec (A(p))h ≃ Z ′ × A1

is a principal cylinder in V (p), as required. Now the proof of Theorem 2.2 is completed.
�

Remarks 2.11. 1. The assumption D ∼ p
q
H of Lemma 2.10 implies that {pH} =

{qD}, where {∆} stands for the fractional part of the divisor ∆. Hence the irreducible
components ∆i of the fractional part {pH} of the Q-divisor pH on Y (cf. 1.11) are
contained in supp{qD} and do not meet the cylinder Y \ suppD.
2. Suppose that H ∈ Div Y is an ample Cartier divisor. Applying Lemma 2.10 with

p = 1, the existence of an effective divisor D ∈ |H| such that Y \ suppD is a cylinder
guarantees that the quasicone V = SpecA(Y,H) is cylindrical. On the other hand,
the cylindricity of V does not guarantee the existence of such a divisor D in the linear
system |H|, but only in the linear system |nH| for some n ∈ N (see Theorem 2.2). We
wonder whether one can bound the constant n in terms of the numerical invariants of
the pair (Y,H). This important question is non-trivial already in the case of del Pezzo
surfaces Y and pluri-anticanonical divisors H = −mKY , see Example 3.1 below.

3. Final remarks and examples

For the details of the following examples we send the reader to [KPZ1, KPZ3]. The
latter paper inspired the present work.

Example 3.1. The generalized cone over a smooth del Pezzo surface Yd of degree d
(proper over S = Spec k) polarized by the (integral) pluri-anticanonical divisor −rKYd

admits an additive group action if d ≥ 4 and does not admit such an action for d = 1
and d = 2, whatever is r ≥ 1. The latter follows from the criterion of Theorem 2.2.
Indeed, in the case d ≤ 2 the pair (Yd,−rKYd

) is not cylindrical ([KPZ3]). The case
d = 3 remains open.
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Remark 2.11.2 initiates the following definitions.

Definition 3.2. The cylindricity spectrum of a pair (Y,H) is

Spcyl(Y,H) = {r ∈ Q+ | ∃D ∈ [rH ] such that D ≥ 0 and Y \ suppD ≃ Z × A1} .

Clearly, Spcyl(Y,H) ⊆ Q+ is stable under multiplication by positive integers. An
element r ∈ Spcyl(Y,H) is called primitive if it is not divisible in Spcyl(Y,H). The set
of primitive elements will be called a primitive spectrum of (Y,H). We conjecture that
the primitive spectrum is finite.

Examples 3.3. 1. It may happen that the pair (Y,H) as in Theorem 2.2 is cylindrical
while the quasicone V is not. Consider, for instance, a normal generalized cone V over
Y = P1, that is, a normal affine surface with a good Gm-action and a quasirational
singularity.7 Notice that (Y,H) is cylindrical for any Q-divisor H on Y of positive
degree (see Remark 0.3). However, it was shown in [FZ4, Theorem 3.3] that V admits
a Ga-action (that is, is cylindrical) if and only if V ≃ A2/Zm is a toric surface, if and
only if it has at most cyclic quotient singularity. The singularities of the generalized
cones

x2 + y3 + z7 = 0 and x2 + y3 + z3 = 0

in A3 being non-cyclic quotient, these cones over P1 are not cylindrical (see [FZ2]),
whereas suitable associated Veronese cones are. In terms of the polarizing Q-divisor
H on Y , a criterion of [Li1, Corollary 3.30] says that V is cylindrical if and only if
the fractional part of H is supported on at most two points of Y = P1. In the above
examples it is supported on three points.
2. Similarly, let a, b, c be a triple of positive integers coprime in pairs, and consider

the normal affine surface xa + yb + zc = 0 in A3 with a good Gm-action. According
to [De, Example 3.6] an associated Q-divisor H on Y = P1 can be given as H =
α
a
[0] + β

b
[1] + γ

c
[∞], where α, β, γ are integers satisfying αbc + βac + γab = 1. This

divisor is ample since degH = 1
abc

> 0. For a, b, c > 1 the fractional part of H is again
supported on three points. Hence this cone, say, V = Va,b,c is not cylindrical and does
not admit any Ga-action. At the same time the Veronese cone V (d) does if and only
if at least one of the integers a, b, c divides d. Indeed in the latter case the fractional
part of the associated divisor dH of the Veronese cone V (d) is supported on at most
two points. It is easily seen that the primitive spectrum of (P1, H) has cardinality 3.

Remarks 3.4. 1. Given a homogeneous derivation ∂ ∈ LND(A) of degree d there exists
a replica a∂ ∈ LND(A(m)) of ∂ stabilizing the mth Veronese subring A(m) =

⊕

k≥0Akm

of A, where a ∈ A∂
j for some j ≫ 0 such that j + d ≡ 0 mod m. In this way a Ga-

action on a generalized cone V = coneH(Y ) induces such an action on the associated
Veronese cone V (m). Notice that the locally nilpotent derivation on the localization
Ah constructed in the proof of Lemma 2.10 has degree zero. Hence it preserves any

Veronese subring A
(m)
h . It follows that if V is cylindrical then the associated Veronese

cone V (m) is for any positive m ≡ 0 mod e(A∂).
2. The question arises as to when a Ga-action on a Veronese power V (m) of a

generalized cone V = coneH(Y ) (normalized by the standard Gm-action) is induced by

7An isolated surface singularity is called quasirational if the components of the exceptional divisor
of its minimal resolution are all rational.
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such an action on V . The natural embedding A(m) →֒ A yields an m-sheeted cyclic
Galois cover V → V (m) with the Galois group being a subgroup of the 1-torus Gm

acting on V . This cover can be ramified in codimension 1. For instance, this is the
case if Y is smooth and the ample Q-divisor H is not integral, while mH is.
In case that this cover is non-ramified in codimension 1 the Ga-action on V (m) can

be lifted to V commuting with the Galois group action (see Theorem 1.3 in [MaMi] 8).

The following simple example9 shows that without the normality assumption for the
quasicone V , it is impossible in general to lift to V a given Ga-action on a Veronese
cone V (m).

Example 3.5. Consider the polynomial algebra Ã = k[x, y] with the standard grading
and a homogeneous locally nilpotent derivation ∂ = y ∂

∂x
of degree 0. Consider also a

non-normal subring
B̃ = k[x2, xy, y2, x3, y3] ⊆ Ã

with normalization Ã. Note that ∂ does not stabilize B̃. On the other hand, the
involution τ : (x, y) 7→ (−x,−y) acts on Ã leaving B̃ invariant. Furthermore, letting
G = 〈τ〉 ≃ Z/2Z we obtain

ÃG = B̃G =
∞
⊕

ν=1

Ã2ν =: A .

Let Ṽ = Spec B̃ and V = SpecA. Then Ṽ = cone(Γ̃) is a generalized affine cone over

the smooth projective rational curve Γ̃ ⊆ P4(2, 2, 2, 3, 3) given by (x : y) 7→ (x2 : xy :
y2 : x3 : y3), while V = cone(Γ) is the usual quadric cone over a smooth conic Γ ⊆ P2.
The embedding A →֒ B̃ induces a 2-sheeted Galois cover Ṽ → V ramified only over
the vertex of V . The derivation ∂ stabilizes A, and the induced Ga-action on V lifts
to the normalization A2 of Ṽ , and also to Ṽ ∗ = Ṽ \ {0̄} ≃ A2 \ {0̄}. However, since ∂
does not stabilize B̃ this action cannot be lifted to the cone Ṽ .
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