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BROADBAND IDENTIFICATION OF BATTERY ELECTRICAL 
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R. Al-Nazer, V. Cattin, M. Montaru – CEA LETI/LITEN; P. Granjon – GIPSA-Lab; 

 

Abstract — In recent years, Li-ion batteries have been proposed as an essential element for hybrid electrical 
vehicles (HEV) and electrical vehicles (EV). In such applications, the most possible accurate estimation of the 
battery states is needed to optimize its operation. Accordingly, battery electrical impedance is known to be able to 
provide useful states information. Though that electrical impedance spectroscopy has firmly established itself as 
one of the most informative investigation method especially because of its accuracy, it cannot be easily 
implemented in embedded systems. In this paper, broadband excitation signals, frequently used in system 
identification applications, are proposed to perform impedance measurements on a battery cell. Moreover, spectral 
coherence is an advanced parameter estimated in order to determine the frequency bands where the transfer 
function of the system is accurately identified. We propose in this study to test and compare the identification 
performances of such signals for the broadband monitoring of a battery. 
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I. INTRODUCTION 

Batteries are an integral part and critical backup system of EV and HEV. Li-ion battery technology is 

believed to be the most attractive for these applications. It ensures higher power and energy densities, 

long cycle life, low cost of raw materials and superior safety characteristics [1][2]. In order to ensure 

safety in vehicles and improve the use of batteries, a Battery Management System (BMS) is involved 

[3]. It should provide an efficient way to monitor battery performances and assessment of its condition in 

order to increase the reliability of EV and HEV systems. Several studies [4][5][6] point out the 

usefulness of cell impedance measurements. For this reason, electrochemical impedance spectroscopy 

(EIS) [7][8] is frequently used to better investigate the states of a battery. Electrochemical impedance 

spectroscopy can be performed either in a galvanostatic or in a potentiostatic mode. Following the first 

approach, a small AC current flows through the storage device under investigation and its AC voltage 

response is measured. The electrical impedance is estimated from the single frequency AC current 

superimposed a DC current (charging or discharging and used to define the overall working point of the 

cell) and the measured AC voltage response [9][10][11]. Though its accuracy, an important drawback 

appeals research to seek for new ways of operating. Indeed, EIS is still a laboratory technique that 

cannot be easily implemented in embedded systems. Accordingly, broadband impedance identification 

using different types of excitation pattern is proposed. The concept consists in measuring the system 

response at multiple frequencies at the same time. 

This paper focuses on the test of these broadband excitation signals and the comparison of their 

identification performances for the estimation of battery electrical impedance. After a brief review of non-

parametric broadband identification basics for linear and time-invariant systems, the method is applied 



using simulated data. Spectral coherence is computed to select the frequency band where the system 

deals with LTI hypothesis. Finally, experimental results that validate the relevance of this approach are 

presented. 

II. NON PARAMETRIC IDENTIFICATION THEORY 

A linear and time invariant (LTI) single input single output (SI/SO) system   H  is completely 

characterized by its impulse response h n[ ] or its frequency response function H λ( ), which are related 
by a Fourier transform: 

H λ( ) = h n[ ]
n =−∞

+∞

∑ e− j 2πλn
 (1) 

In this equation, j = −1 and λ ∈ −
1
2

;
1
2

 
  

 
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 is the normalized frequency, leading to the frequency 

f  in Hertz when multiplied by the sampling frequency. 

Non-parametric identification of LTI systems aims to estimate the frequency response function H λ( ) 
from input x n[ ] and noisy output measurements z n[ ] (Figure 1) without the use of any model. 

 
Figure 1: Non-parametric identification of a LTI system   H  in the frequency domain. 

The unknown additive measurement noise b n[ ] is supposed uncorrelated with x n[ ] and therefore with 
the unnoisy output y n[ ]. Thanks to this last assumption, one can write: 

Szx λ( ) = Syx λ( ) = H λ( )Sxx λ( ). (2) 

Therefore, on the frequency bands where the input PSD Sxx λ( )≠ 0, the unknown frequency response 

function H λ( ) can be calculated through: 

H λ( ) =
Szx λ( )
Sxx λ( )

 if Sxx λ( )≠ 0. (3) 

This finally leads to the frequency domain identification of the unknown system   H . Eq. (3) clearly 

shows that it is advantageous to use broadband input signals x n[ ] since they allow the computation of 
H λ( ) on a wide frequency band as a whole. 



An essential quantity in such a method is the spectral coherence between measured signals x n[ ] 
and z n[ ] [10][11]: 

czx λ( )2
=

Szx λ( )2

Sxx λ( )Szz λ( )
. (4) 

This statistical quantity is bounded by 0 and 1, and measures the linear dependency or correlation 

between x n[ ] and z n[ ] at each frequency λ  [12][13] and is used in the following to compute 

confidence limits for different spectral estimators. 

The PSD and CPSD used in Eq. (3) and (4) can be easily estimated through the well-known Welch 

modified periodogram [13]. In this method, measured signals are split-up into L  data segments of 

length N  and as an example, the corresponding estimator of the CPSD between x n[ ] and z n[ ] is 
given by: 

ˆ S zx λ( ) =
A

L
Zk λ( )Xk

* λ( )
k=0

L −1

∑ , (5) 

where:  
- A  is a normalization factor, 

- Zk λ( ) (resp. Xk λ( )) is the Fourier transform of the kth windowed segment of z n[ ] (resp. x n[ ]), 
- * denotes the complex conjugate. 

It yields that the spectral coherence czx λ( )2
 and the frequency response function H λ( ) can be 

estimated by using Eq. (5) in Eq. (3) and (4): 

ˆ c zx λ( ) 2
=

ˆ S zx λ( )2

ˆ S xx λ( ) ˆ S zz λ( )
, (6) 

ˆ H λ( ) =
ˆ S zx λ( )
ˆ S xx λ( )

  if  ˆ S xx λ( )≠ 0. (7) 

Halliday [14] includes the line  1
1

%)951(1 −−− L  on the coherence plot as an estimate of the upper 95% 

confidence limit under the hypothesis of independence. Estimated values of coherence lying below this 

line can be taken as evidence for the lack of a linear association between input and output. Halliday [14] 

also used the estimated coherence to compute upper and lower 95% confidence limits for the gain and 

phase estimates ˆ G λ( ) = ˆ H λ( )  (Eq. (8)) and ˆ P λ( ) = arg ˆ H λ( ){ } (Eq. (9)). 

log10
ˆ G λ( ){ }±1.96

log10 e( )( )2

2L

1− ˆ c zx λ( )2

ˆ c zx λ( )2
 (8) 

ˆ P λ( )±1.96
1

2L

1− ˆ c zx λ( )2

ˆ c zx λ( )2
 (9) 

 Finally, Eq. (5) and (7) constitute the "identification algorithm" appearing in Figure 1 and used to 

estimate the frequency response function H λ( ) of an unknown LTI system through its input x n[ ] and 



noisy output z n[ ]. Eq. (6), (8) and (9) are used to evaluate the performance of the algorithm by 
computing 95% confidence limits of the previous estimators. 

In what follows, batteries are modelled as electrical LTI systems and are stimulated in galvanostatic 

mode (the current conrresponds to the input and the voltage response to the output). The corresponding 

frequency response function is then the electrical impedance of the battery, and this quantity is 

estimated thanks to the previous set of equations. 

III. BROADBAND IDENTIFICATION OF ELECTRICAL IMPEDANCE FOR LI-ION BATTERIES 

A. Battery modelling and simulation 

Equivalent electrical circuits (EEC) are commonly used to reproduce the battery electrical behavior. 

They consist on passive (resistors, capacitors, inductors, constant phase elements) and active (voltage 

and current sources) elements [15]. For electrical engineers, such models are able to characterize 

electrochemical phenomena, and lead to perform a quick analysis and prediction of the battery behavior 

in frequency as in time domains [16]. Adapted Randles model (Figure 2) is the EEC adopted in our 

study. It was developed, used and implemented using Simulink in [14]. It includes the modelling of 

connectors and electrolyte (R,L), passivation film (Rf // CPEf), charge transfer (Rtc ) and double layer 

phenomena (CPEdl). The open circuit voltage (OCV) is given in a look up table with respect to the 

current intensity and the battery state of charge. This circuit introduces constant phase elements (CPE) 

to accurately reflect the behaviour of the battery observed on impedance spectroscopy measurements 

[17][18].  

Figure 2. Equivalent electrical circuit (adapted Randles model) of a graphite/LiFePO4 battery 

Circuit parameters are function of the state of charge (SOC) and the current intensity. In simulations, 

theoretical impedance is considered to be the analytical expression of the EEC impedance. In order that 

the battery meets the requirements of a LTI system described in section II, the whole measurement time 

should be chosen so that only a little variation of the battery SOC occurs during the identification step.  

We focused on the frequency band from 1 to 7 Hz. The simulations are undertaken under the same 

operating conditions of SOC (60%) and DC current (1A). We consider a time duration of 90 seconds, 

and the sampling frequency 
sf  is 700 Hz. These signals are cut into L=10 disjoint segments of length 



N=6300 samples. A white Gaussian noise with zero mean and a variance such that the signal to noise 

ratio (SNR) is 0 dB is added on the output voltage signal to simulate measurement noise. Spectral 

coherences and electrical impedances are then estimated from this noisy voltage and the excitation 

signals through Eq. (6) and (7). Estimated electrical impedances are finally compared to the theoretical 

impedance value in order to evaluate the quality of the broaband identification process. 

B. Broadband excitation signals 

Broadband identification is valid when the excitation signal shows an almost flat power spectral 

density in the frequency band of interest. Pseudo random binary sequences (PRBS), swept square 

(square pattern with a period varying continuously) and a square wave (square pattern with constant 

period) are broadband signals frequently used in system identification applications [19]. The latter signal 

is not on itself a broadband signal but can be considered so if its harmonics are in the frequency band of 

interest. Such signals allow the estimation of the frequency response function of LTI systems, in 

particular the battery impedance, over a large bandwidth from a single set of measurements. In this 

work, these broadband signals are introduced as identification patterns that can be used in embedded 

systems.  

Estimate PSDs are computed using Eq. (5) and the same values as those given in section III.A are 

chosen (L=10, N=6300, 
sf =700Hz, T=9s). The resulting PSDs are shown in Figure 3. Under 

assumption of constant power for the excitation signals, we note that the spectral information is different 

in levels and frequency bandwidths. 

 
Figure 3. PSD of the three excitation signals. 

C. Coherence results 

We consider a reasonable measurement noise of SNR=0 dB. Figure 4 shows the coherences 

estimated with the three excitation signals previously defined, and it can be clearly noticed that the 



results are coherent with the PSD. Higher coherence values are obtained within the considered 

frequency band. 

 
Figure 4. Coherence plots for the three excitation signals with a measurement SNR=0 dB. 

D. Confidence limits results 

Confidence limits upon the gain and the phase of the estimated impedance quantify the estimation 

performance reached by this identification method and can be easily computed by using Eq. (8) and (9). 

In this section, the results concerning the gain factor for PRBS, swept square and square are given as 

an illustrative example, and they are exclusively represented in the selected frequency band. Phase 

factor results are very similar. 

The different figures of Figure 5 show that the PRBS (Figure 5(a)) has large confidence limits near 

the upper limit of the band 
maxf , which confirms the coherence results of Figure 4. Moreover, tight 

confidence limits are observed upon the whole selected frequency band using a swept square (Figure 

5(b)). The square wave (Figure 5(c)) provides, as expected, tight confidence limits only around its odd 

harmonics frequencies. We infer from those results that broadband impedance can be accurately 

identified with signals composed of square patterns. Such signals are easy to apply to a battery from 

simple electronic components, for example by using electronic switches. 

 

(a) 



 

 

Figure 5. 95% confidence limits results using: (a) PRBS, (b) swept square, (c) square as excitation signals with a 
measurement SNR=0 dB. 

IV. EXPERIMENTAL RESULTS 

A. Hardware and implementation 

This work was realized on a graphite/LiFePO4 cell with a nominal capacity of 2.3 Ah (ANR26650m1 

battery from A123 Systems Company Ltd). Experiments have been carried out at room temperature.  As 

a first step, we consider the same operating conditions that those taken in simulations (SOC of 60% and 

DC current of 1A, number of blocks L=10, T=9s). We also consider the same frequency band [1Hz – 

7Hz] for different SOCs. The goal is to verify if broadband impedance identification can recover the 

known distortions Nyquist plots with the evolution of the battery SOC.  A specific electronic circuit was 

designed to perform the experiments and to allow application of input current with squared patterns, 

particularly swept square, PRBS and square.  

B. Experimental results 

1) PRBS, swept square and square for a frequency band of 1 -7Hz 

The broadband signals based on squared patterns are applied to the battery. The corresponding 

estimated coherences are plotted in Figure 6 (d), (e) and (f) , while Figure 6 (a), (b) and (c) show the 

(b) 

(c) 



estimated electrical impedance. The coherence is clearly close to 1 all over the specified frequency 

band for PRBS and swept square signals while it has only strong values at odd harmonics of the square 

signal as predicted This shows that the battery can be considered as a LTI system under the operating 

conditions used, and that its electrical impedance will be correctly estimated. As shown by simulations 

of section III. it can also be noticed that the use of a PRBS current induces a decrease in the coherence 

near the upper limit frequency 
maxf . Accordingly, the variability of the estimated impedance with the 

different signals is very small all over the frequency band, unless near the upper frequency for PRBS.  

 (a)  (d) 

 (b) 
 (e) 

 (c) 
 (f) 

Figure 6. Experimental results: Nyquist plots - (a) PRBS, (b) square, (c) swept square 

coherence plots - (d) PRBS, (e) square,(f) swept square. 

Based on the high coherence values obtained during experiments, this battery can be considered as a 

LTI system within the chosen frequency band and under the chosen operating conditions. Moreover, 

confidence limits of impedance estimators are sufficiently small to affirm that the electrical impedance is 



accurately identified all over the frequency band, and that the swept square input current leads to better 

results than the PRBS. 

2) PRBS for a frequency band of 1 - 7Hz at different SOCs 

Several studies reveal that the SOC distorts the battery electrical impedance at lowest frequencies. In 

this context, we design a PRBS that can excite the frequency band of [1 - 7] Hz. The choice of PRBS is 

based on the previous results that showed the strong performances of this excitation signal near the 

lower limit frequency band. Exciting low frequencies yields that the number of blocks L used for 

averaging cannot be higher than done previously (because of LTI assumptions). In that case it will be 

limited to L=10 blocks of duration 9 seconds each. The sampling frequency is unchanged. The battery is 

stimulated under several SOC (45, 60, 90 %) and for each SOC a broadband identification step is 

performed. 

Figure 7 shows that the PRBS is able to reflect the SOC effect on the battery electrical impedance. With 

a small time measurement (90 s), this method is thus able to accurately estimate the battery impedance 

for low frequencies. We can ensure the quality of the estimation thanks to the coherence values which 

are once again very close to 1 .  

 (a) 
(b) 

Figure 7. Experimental results with PRBS signal and under several SOCs:- (a) Nyquist plots, (b) coherence plots. 

V. CONCLUSION  

This paper focuses on the usefulness of broadband excitation signals for the identification of a Li-ion 

battery electrical impedance. After a review of non-parametric identification theory and advanced 

parameters such as coherence function and confidence limits, the simulation results ensure that this 

method can be applied to battery systems. Experimental tests performed at a low frequency band reveal 

that signals based on square pattern like swept square, PRBS and square lead to correct broadband 

identification results. They are particularly well suited for electronic implementation. Experimental results 

also obtained at a low frequency band for different SOCs confirm the possibility to apply PRBS to 

batteries to monitor their SOC evolution. These results are promising to improve and enhance actual 

BMS.   



The authors thank Marco Ranieri for its contribution to this work. 
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