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THE BILINEAR BOCHNER-RIESZ PROBLEM
FREDERIC BERNICOT, LOUKAS GRAFAKOS, LIANG SONG AND LIXIN YAN

ABSTRACT. Motivated by the problem of spherical summability of products of Fourier se-
ries, we study the boundedness of the bilinear Bochner-Riesz multipliers (1 — €[ — |n[2)S.
and we make some advances in this investigation. We obtain an optimal result concerning
the boundedness of these means from L? x L? into L' with minimal smoothness, i.e., any
0 > 0, and we obtain estimates for other pairs of spaces for larger values of §. Our study
is broad enough to encompass general bilinear multipliers m(€,n) radial in & and 7 with
minimal smoothness, measured in Sobolev space norms. The results obtained are based on
a variety of techniques, that include Fourier series expansions, orthogonality, and bilinear
restriction and extension theorems.
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1. INTRODUCTION

The study of the summability of the product of two n-dimensional Fourier series leads to
questions concerning the norm convergence of partial sums of the form

Z ﬁ(m)e%rim-x @(k)e%rik-x’

[m|?+[k]?<R?
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as R — oo, or more generally, of the bilinear Bochner-Riesz means

(1.1) Z (1 _ |m|;ﬂ;\k|2)5ﬁ(m)e2mm-m @<k>€27rik-m

[m|?+[k|]><R?

for some & > 0. Here F,G are 1-periodic functions on the n-torus and F(m), G(k) are their
Fourier coefficients and m, k € Z". The bilinear Bochner-Riesz problem is the study of the
norm convergence of the sum in (1.1). By basic functional analysis and transference, this
problem is equivalent to the study of the LP* x LP? — [P boundedness of the bilinear Fourier
multiplier operator

) S = [[ ) feate sy

Here z € R", f, g are functions on R™ and ]/C\, g are their Fourier transforms.

The Bochner-Riesz summability question is a fundamental problem in mathematics. Its
study has led to the development of important notions, tools, and results in Fourier analysis,
and has created numerous directions of research. The Bochner-Riesz conjecture is well known
to be difficult and remains unsolved for indices p near 2 in dimensions n > 3. The bilinear
Bochner-Riesz problem is more difficult than its linear counterpart because of the natural
complexity that arises from the mixed summability and also from the shortage of techniques
to study bilinear Fourier multipliers with minimal smoothness. The present work is moti-
vated by this problem and fits under the scope of the program to find minimal smoothness
conditions for a bilinear Fourier multiplier to be bounded on products of Lebesgue spaces.
We are mainly interested in theorems concerning compactly supported Fourier multipliers.
The main question we address is what is the least amount of differentiability required of a
generic function on R™ x R™ to become a bilinear Fourier multiplier on a certain product
of Lebesgue spaces. For the purposes of this article, differentiability is measured in terms
of Sobolev space norms which quantitatively fine-tune fractional smoothness. Our results
concerning the bilinear Bochner-Riesz means fit in this general framework.

It is well known that linear multiplier operators are L? bounded if and only if the multiplier
is a bounded function. But we know from [28] that there exist smooth functions m satisfying

10200m(&,m)| < Caplé| 7P g m#£0

for all multi-indices a, 8 and also from [2] that there exist smooth functions m satisfying
|92 0 m(&, | < Cag

for all (£,7) € R*™ and all multi-indices o and 3, which do not give rise to bounded bilinear
operators (as defined in (2.1)) from LP*(R™) x LP?(R") to LP(R™) when 1/p; + 1/ps = 1/p
and 1 < py,po, p < 00. So there is no direct analogy with the linear case where L? presents
itself as a natural starting point of the investigation of multiplier theorems.

So we aim to focus our study on more particular bilinear operators. Suppose that a bilinear
operator 7', initially acting from .7 (R") x .(R") to .#/(R"), admits an LP* x LP? — LP
bounded extension, i.e., it is a bilinear Fourier multiplier for some 1 < pi,ps,p < oo with
1/p1 + 1/p2 = 1/p. Then the following properties are equivalent:

(i) Frequency representation. There exists a bounded function m on R?*" such that for all

f.g,h € Z(R") we have

o~

| T @@ de = [ m(en) Feamhe + ) dsan.
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(i) Kernel representation. There exists a tempered distribution K on R?" such that for all

f,g € L (R") we have
T(f,9)(x) = (K, f(z =) @ g(z —)),

where (f(z =)@ g(x —))(y,2) = f(x —y)g(z — 2) for all z,y,z € R"™.
(iii) Commutativity with simultaneous translation. For every y € R™ and for every function
f,9 € Z(R") we have

T<Ty<f>v Ty(Q)) = Ty(T<fa 9))

where 7, is the translation operator 7,(f)(x) = f(z —y). This property takes into account
the additive structure of the Euclidean space via the group of translations.

Bilinear multipliers are not invariant under rotations but the following is true: let T be
a bilinear Fourier multiplier on R™ and m be its symbol; then the symbol is biradial, i.e.,
m(&,n) = mo([€],|n|) (for some mg € L*(R?)) if and only if for every pair of orthogonal
transformations (rotations) Ry, Ro of R" we have

T(f,9)(0) =T(f oRi,90R2)(0).

Such operators naturally appear in the study of scattering properties associated to quadratic
PDEs involving functions of the Laplacian (see [3, Section 2.3]).

Of course, this property reduces, in some sense, a 2n-dimensional symbol to a 2-dimensional
symbol and this work aims to understand how one can take advantage of this property. We
observe that for radial multipliers, differentiability is only relevant in the radial direction,
and the point L? x L? — L! seems to be the one requiring the least smoothness. We point out
that the duals of a bi-radial bilinear multiplier mq(|¢], [n]), mo(|€+nl, |n]) and mo(|€], 1€ +n]),
are not bi-radial functions, so certain results we obtain are not symmetric in the local L?
triangle, i.e., the set {(1/p1,1/p2, 1/p) with 2 < py, ps, p’ < o0}; here p’ = p/(p — 1).

Let us give some examples of bilinear multipliers, pointing out different situations with
respect to the nature of the singular space of the symbol m: we say that m is allowed to be
singular a set I' C R?" if m is smooth in the complement I'® and satisfies

(1.3) |06 ym(&,m)| < Cad((&,m), T) 71
for every (¢,7n) € I'* and multi-index «.

e Singularity at one point T := {0} (Coifman and Meyer [16, 17, 18].) Suppose that the
bounded function m(&,n) on R?*" satisfies (1.3) with T := {0} and so d((&,n),T) ~
|€] + |n|. Then the operator T, is bounded from LP!*(R) x LP2(R) to LP(R) when
I/pr+1/pe = 1/p, 1 < p1,pa,p < 0o. This theorem was extended to the case
1/2 < p <1 by Grafakos and Torres [31] and independently by Kenig and Stein [34].
This extension also includes the endpoint case L' x L' — L1/2°

e Singularity along a line (Lacey and Thiele [36, 37].) The bilinear Hilbert transform
was shown to be bounded on Lebesgue spaces by Lacey and Thiele. This corresponds
to the case where I is a non-degenerate line of R2.

e Singularity along the circle, T := S' (Grafakos and Li [29].) The characteristic
function of the unit disc is a bilinear Fourier multiplier from LP'(R) x LP?(R) to
LP(R) when 2 < pq,po,p’ < oo and 1/p; + 1/py = 1/p.

e Singularity on the boundary of a disc, T := S' (Diestel and Grafakos [21].) The
characteristic function of the unit disc in R* is not a bilinear Fourier multiplier from
LP1(R?) x LP2(R?) to LP(R?) when 1/p; + 1/py = 1/p and exactly one of py,po,p’ is
less than 2.
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e Singularity along a curve (Bernicot-Germain [7].) In this work, certain one-dimensional
bilinear operators whose symbols are singular along a curve are shown to be bounded.
Taking advantage of the non-degeneracy or the non-vanishing curvature some sharp
estimates in the Holder scaling (or sub-Holder scaling) are proved. There, the vari-
ables are uni-dimensional and I is a curve in R? and so it has dimension 1.

e Singularity along a subspace (Demeter, Pramanik and Thiele [19, 20].) In [20], if
I' is a subspace, preserving the “n-coordinates structure” and of dimension xk < %,
then operators associated to symbols singular along such non-degenerate subspace are
shown to be bounded on Lebesgue spaces [20]. However, the time-frequency analysis
used for the bilinear Hilbert transform is not adapted to the multi-dimensional setting
with a high-dimensional singular subspace (as observed in [19]). Indeed, it does
not allow to understand how the mixing of the coordinates behave in the frequency
plane. A simpler model was considered by Bernicot and Kovac to handle the “twisted
paraproducts” [5, 35].

e Boundedness on Hardy spaces (Miyachi and Tomita [39], Tomita [47].) Suppose that

0<p1,p2§ooandpil+pi2:%andthat

n o n n n o n n
51>max{— ——}, 32>max{§,———},

2" p 2 Dy 2
1 1 1 1 1
31+52>n<—+———):n(———).
p1 P2 2 p 2

Assume that for some smooth bump ¥ supported in 6/7 < || < 2 and equal to 1 on
1 < |¢] < 12/7 we have

K = sup ”m(2j§1, 2j€2)‘1’(fl,f2)’\w(q,sz> < 00,

JEZ

where

Flhwenn = ([ @ PP (4 6P Pl )P dades)

R2n

1/2

Then T}, is a bounded bilinear operator on products of Hardy spaces with norm

HTmHH”l(R”)XHP2(R“)—>LP(Rn) <CK,
where L>(RR™) should be replaced by BMO(R™) when p; = ps = 0.

From this quick review of existing results, it appears that high-dimensional symbols singu-
lar along hypersurfaces have not been studied, according to our understanding. Our approach
of biradial bilinear Fourier multiplier will allow us to consider the bilinear counterpart S°
(as defined in (1.2)) of the celebrated Bochner-Riesz multiplier. Here the symbol is singular
along the sphere {(£,n) € R*", |£]* + |n|*> = 1} which has dimension 2n — 1.

The almost optimal solution of the bilinear Bochner-Riesz problem in dimension 1 is
outlined in Theorem 4.1. We end this introduction by summarizing some critical estimates
obtained in this article for the bilinear Bochner-Riesz means when n > 2:

e 5% is bounded from L*(R") x L*(R") to L*(R") when § > 0. (Theorem 4.7.)

e 5% is bounded from L*(R") x L*(R") to L*(R") if 6 > “5*. (Theorem 4.8.)

e 5% is bounded from L'(R") x L*(R") to L'(R™) when § > 2. (Theorem 4.9.)

e 5% is bounded from LP'(R") x LP*(R") to LP(R") when 1 < py,ps < 2n/(n+ 1),
1/p=1/p1+1/p2, 6 > na(pi,p2) — 1, where a(py, p2) is as in (3.12). (Theorem 4.3.)
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2. NOTATION AND PRELIMINARY RESULTS

2.1. Notation. We introduce the notation that will be relevant for this paper. We use
A < B to denote the statement that A < C'B for some implicit, universal constant C', and
the value of C' may change from line to line. We denote by x -y = ) ; %;y; the usual dot
product of points z = (z1,...,2,) and y = (y1,...,y,) in R". We denote by . (R") the
Schwartz space of all rapidly decreasing smooth functions on R”. For a function f in ./(R"),
we define the Fourier transform .Z f and its inverse Fourier transform .% ~! f by the formulae

~

FiQ=Fe) = [ e
and

n

FE) = (€)= / 27 f () da.

For 1 < p < o0, we denote by p’ its conjugate exponent, i.e., the unique number in [1, 0]
such that 1/p+1/p’ = 1. For 1 < p < +00, we denote the norm of a function f € LP(R")
by || fll,- For s > 0 and 1 < p < oo, the Sobolev space W*P(R") is defined as the space of
all functions such that

(1= 8)22(f) = Z (1 + 4x*[€2) 2 Z £(6))

lies in LP(R™). In this case we set || f|lws» = ||(I — A)*2(f)| e
The scalar product in L?(R") is denote by

(f,9) = - f(x)g(x)dx.

Let X,Y, Z be quasi-normed spaces. If T is a bounded bilinear operator from X x Y to Z,
we write ||T'||xxy_z for the operator norm of 7. Given a subset E C R", we denote by xg
the characteristic function of £ and we denote by

Py f(z) = xe(x)f(z)

the “projection” operator on E.
Given a bounded function m(£,n) on R™ x R™ we denote by T,, the bilinear Fourier
multiplier with symbol m. This operator is written in the form

-~

(2.) Lol = [ [ e ie)gndean

for Schwartz functions f, g. Equivalently, in physical space is given as

T/, g)(2) = 7~ [ m(€ = n.m) P& = n)3n)dn] (2)

Rn

and also as
(2.2) To(f.0)w) = [ [ ity =z = o)y,

This is a bilinear translation invariant operator with kernel K(y, z) = m(—y, —z), i.e., it has
the form

(2.3) T(f.0)w) = [ [ K= pa=2) foe) dyds
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2.2. Criteria for boundedness of bilinear multipliers. We begin with the following
trivial situation.

Lemma 2.1. Let 1 < py,pa,p < 00 and ~ = — + —_ [f the symbol m(&,n) satisfies

A = / / m(x,y)|dzdy < oo,

then T,, maps LP*(R"™) x LP2(R") — LP(R"™) with
| Lol Ly x r2 e < Aj.
The proof of Lemma 2.1 is omitted since it is an easy consequence of Minkowski’s integral
inequality and Holder’s inequality.
We now consider an off-diagonal case.
Lemma 2.2. (i) If the symbol m(&,n) satisfies
(2.4) Ay = sup ( . Im(§ — 77,77)|2d77)1/2 < 00,

¢eRn
then T,, maps L?(R") x L*(R") — L*(R™) with

| T (f5 9)ll2 < Asl| fl2[lg]l2-

(i) If the symbol m(&,n) is supported on a ball of radius R, say B(0, R), and satisfies
(2.4), then for all 1 <p,q <2 <r < oo, there exists a constant C' = C,,, such that

1T (£, 9l < CAR™ G352 £l gl

Proof. The proof of (i) follows from an application of the Plancherel identity and the
Cauchy-Schwarz inequality.
m(& —n,m)f(§—=n)g(n)

maitols = [ |

/( [m(& — andn /If& )3 ()Idn>

A%Hfl!zHgHz-

We now prove (ii). Since the symbol m(&,n) is supported in the ball B(0, R), we use the
Cauchy-Schwarz inequality and Plancherel’s identity to obtain

~

VAN

IN

Tt < || [ mte = nmfe = ntaan |
s w2 [ mie—nnfic —naonn|

S R|Tu(f.9)ll2-

In view of the support properties of m, in the expression ||T,,,(f, g)||2, one may replace f

and g by (fXB(O,R))V and (J?XB(O,R))V, respectively. Let r > 2. It follows by interpolation
and by the result in (i) that

n_2
ITw(f.)llr S RECNT0(f,9)ll2

n_2 " ~
< AR20 )Hf||L2(BOR)||9||L2(B(O,R))
<

n(i41l 11
AR £ gl
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This proves (ii), and thus completes the proof of Lemma 2.2. ([

The following lemma is inspired by the result of Guillarmou, Hassell, and Sikora [32] in
the linear case.

Lemma 2.3. Let 1 <p,g< o0 andl/r=1/p+1/q and0 < r < oo. Suppose T is a bounded
bilinear operator from LP*(R™) x L®(R™) — L*(R™) for some s,p1,q1 satisfying 0 < r < s,
1<p <pandl <q <q such that the kernel Kt of T satisfies

SuppKT - Dp = {($7y72) : |ZL‘ _y| < p, |‘T - Z| < p}
for some p > 0. Then there exists a constant C = C,. s > 0 such that

2.5 n(iJrifl)
(2.5) ||| oxpa—spr < Cp oo

T|| et s par - 1s-

Proof. We fix p > 0. Then we choose a sequence of points (z;); in R™ such that for ¢ # j
we have |z; — ;| > p/10 and sup,cp» inf; |z — ;| < p/10. Such sequence exists because R™

is separable. Secondly, we let B; = B(z;, p) and define B; by the formula
=1 P P
Bz:B< ia_) B( ’7_)7
"0 \jg 10

where B (z,p) = {y € R": [x —y| < p}. Finally we set x; = xp, where xz is the
characteristic function of the set B;. Note that for i # j, B(x;, 35) N B(z;, %) = 0. Hence

|B(z, 2+ 55)p)]

(2.6) K =sup#{j: |x; —z;| <2p} <sup = 41" < 0.
i ’ z |B(z, 45)|
It is not difficult to see that
(2.7) D, C U  Bix(B;xBy)cCDs,
1,9,k |Ti—x;|<2p
|zi—xK|<2p

and so

T(f,9)=Y, Y, PsT(Psf Psa)

i j:|$i—$]‘|<2p
ki@ —xp|<2p

Let K, = max{1, K*"~1D}. By Holder’s inequality we have

ol = |[E X rars a0

? j:‘l‘i—$]‘|<2p

ki |zi—xp|<2p

Z PgiT(PEj 1, ngg)
i Jilzi—xj|<2p
ki |xi—zg|<2p

KDY Y IPs TP, f Paol;

i g |ei—as|<2p
ki |xi—x|<2p

A

nr(L-1 r
< KDY ST (P, £ Pao)l
g e x| <2p
ki |xi—xk|<2p
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Since T is a bounded bilinear operator from LP'(R") x L% (R") — L*(R™), we have
IT(Pg,f, P5.9)lls < N Tlerrscim—rs 1Py fllpn 1 P5,9ll0r
< P I T el P, £l Pl

We proceed by estimating

= Y 1P Pl

i j:|$i—l‘j‘<2p
ki |xi—xp|<2p

Note that 1/r = 1/p+ 1/q. We use Holder’s inequality twice, together with (2.6), to bound
&(f.9) by

XX ey Y e}

i Jilei—xj|<2p ki |xi—xg|<2p
r/p r/q
< k{> ¥ b {Y > el
v g |- <2p i kilri—zR|<2p

IA

r/p r/q
KSR A S 1Pl
J k

< K[ fI5lgll;-

This estimate combined with the previously obtained estimate for ||T°(f,¢)||. in terms of

&(f,g) yields (2.5). The proof is now complete. O

It will be useful to apply Lemma 2.3 for operators, which do not have such perfect local-
ization properties. For such, we have the following version:

Lemma 2.4. Let1 <p,g<oocandl/r=1/p+1/qand0 <r < oco. Suppose T is a bounded
bilinear operator from LP'(R™) x L1(R™) — L*(R") for some s,p1,q satisfying 0 < r <'s,
1<p <pandl<q <q such that the kernel Kt of T satisfies
_ _ _ —M
[Kr(z.y,2)| S p~ (L4 p o =yl +p7 |z — 2])

for some p > 1, d > 0 and every large enough integer M > 0. Then for every e > 0 (as
small as we want) and N > 0 (as large as we want) there exists a constant C' = Cp. ;. > 0
such that

(2.8) 1Tl oxzomszr < Co S 0D T s gy + o7

Proof. The proof is very similar to the previous one. Let us fix € > 0 and consider
a collection of points (x;); in R™ such that for i # j we have |z; — z;| > p'™¢/10 and

SUp, cpn inf; |2 — 2] < p'*</10. Then, with the previous notation, we have
IT(f, 9)»
S T mresme) S T mressrs
7 _] ‘:B |<2p1+e 1 _]k ‘:BZ*:B |>2p1+e T

k: \:vlfmk|<2p1+€ or |z;—xp|>2p1 T

=1+1I
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For the I, we repeat exactly the same reasoning as for Lemma 2.3 (since it corresponds to
the diagonal part), by replacing p by p'™. So we obtain

1,1 1
I< p(1+5)"(1)1+q1 S)HT|’LI71><Lq1*)sz

which is as claimed since € can be chosen as small as we want.
We now deal with the second quantity /1. We have

m< > Z > PgT(Pg, [, Pg,9)

26> pe @ gk
|2 = |+ |2 —ax |=p2f

< S ot | S g1 | S 1Pl
2£2pe J k

T

)
q

where we used that for j, k fixed, there is at most (p2°)" points z; satisfying

and the pointwise estimate of the bilinear kernel. So we conclude that

1S bl (3 o2 )

26> p¢
S pm MR FL g g,

which is also as claimed since M can be chosen as large as we want. U

3. COMPACTLY SUPPORTED BILINEAR MULTIPLIERS

In this section we assume n > 2 and we are concerned with the boundedness of compactly
supported bilinear multipliers. We focus attention to radial such multipliers. These can be
written in the form

(3.1) // e Dy (€], ) ()G () dd

for f,g € S (R"), where mg € L®(R* U {0} x RT U {0}). This is exactly the bilinear
multiplier operator Tou(f,g), where mo([€], 19) = m(Er, - Enriy -1 70), € = (-, Ex)
and 7= (M1, ..., 7).

Lemma 3.1. Let mg be an even function on R? whose Fourier transform my is supported
in [—L,L)?. Then the Fourier transform of the biradial function m(z,y) := mo(|z|, |y|) on
R?" is supported in [—L, L]*". !

IWe give here a proof, using the finite speed propagation property of the wave propagator. Actually
in the linear framework, the claim can be rephrased as follows: a Fourier band-limited function is also a
Hankel band-limited function, for the “Jy” Hankel transform. We also refer the reader to [40, 13] for another
approach to this question using the Hankel transform.
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Proof. We have
m(&,n) = // AV (|2, |y| ) dady
RQn

- //W mo(u, v) Ru(€) Ry () du do

= mo(V =2, V=2) (6, 50)(£,m)
= Kmo(m7M) (57 77)7

where K., /=x.=a) is the bilinear kernel of the bilinear operator mo(v—A,v—A). Ex-
pressing myg in terms of its 2-dimensional Fourier transform yields

Kmo(m7m) (5’ 77) — /RQ ﬂ%(s’t)KeQiﬁsmeQiﬁtm(€7 T’)du dv

g /[‘ LL]277/7/\0<87t>K62iTrs\/j<§)K62¢ﬂ—tm<n)du d'U.

Then using finite speed propagation property of the wave propagator, we know that for
every s € R, the kernel K .i..y=x is supported on [—|s|,|s|]”. Hence, we conclude that
Ko (/=5,v—5) 18 supported on [—L, L]*". O

mo

3.1. Bilinear restriction-extension operators. For f € ./ (R™) recall the restriction-
extension operator

(3.2) Rrf(z) = A1 / A (A\w)dw A > 0
Sn—l

in the linear setting. In the sequel we set

Lo, 9) () = Rx, [ () Ry 9(2).
Lemma 3.2. Let m(&,n) == mo(|&], |n]). For f,g € L (R"™), we have the following formula:

T, 9)(x) = /0 . /0 " o A2) B () ()N

Proof. The proof can be obtained by expressing 7,,(f, g)(z) in polar coordinates. O

To study boundedness of the bilinear restriction-extension operator %y, ,, we first recall
some properties of the operator #; in the linear setting. Let do denote surface measure on
the unit sphere S"~!. In view of the theory of Bessel function (see page 428 of [26]),

(3.3) F f(x) = / 20 F(0)dh = do = f(x),
S§n—1
where
7 2miz-w 21
(3.4) do(z) = e dw = — = Jn—2(27|x])
sn-t x|z 2
and

¢ 1
(35)  Jt) = r(f/g)r(étfi 5 /0 (1 — u2)S 12 cos(ut)du, Re({)>—%.

The problem of LP-L? boundedness of %, has been studied by several authors (see for
instance, [1], [9] and [33]). The first results in this direction were obtained by Tomas and Stein
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[46], [42]; they showed that £, is bounded from LP(R") to L¥ (R") for p = (2n +2)/(n + 3)
and p' = p/(p — 1), which implies the sharp LP — L? restriction theorem for the sphere S*!.
To describe all pairs (p,q) such that the operator #; on R™ is bounded from LP(R") to
L4(R™), we define vertices in the square [0, 1] x [0, 1] by setting

A(n):(n_ﬂ’())’ B(n):<n+1’n—1_n—1>’

2n 2n n n?2+n

N n—1 oy (nt+l n—1 n-1

A(n)-(l, 2n )’ B(n)—( 2n n?+n’ 2n )

Let A(n) be the closed pentagon with vertices A(n), B(n), B'(n), A'(n), (1,0) from which
closed line segments [A(n), B(n)],[A'(n), B'(n)] are removed. Namely,

1 1 1. 2
<1, ~—->

q = p p ¢ n+l
1 n-+1 1 n—1
>

(QSEmﬂxm@:oglg
(3.6) A(n) = P q

)

— <

P 2n q 2n
Proposition 3.3. Let %, be defined as in (3.2). There exists a constant C = C,, > 0,
independent of f, such that

121 (N)llq < ClI Il
if and only if (1/p,1/q) in A(n).
Proof. For the proof of Proposition 3.3, we refer it to Remark 1, p. 497, [33]. See also [1],
and [9]. O
As a consequence of Proposition 3.3, we obtain the following result.
Proposition 3.4. (i) Let 1/s =1/q1+1/q2, 0 < s < 00 and let (1/p1,1/q1) and (1/p2,1/q)

be both in A(n) as defined as in (3.6). For every Ay, Ao > 0, the bilinear restriction-extension
operator X, x, 1 bounded from LP*(R™) x LP?(R™) to L*(R™) such that

11 11
n __E)_l n(=——--)-1

[Zxi e (o )l S A" Ay "l Nl
(ii) In the endpoint case s = 2 and p; = ps = 1 we have ,

n_3 n=1
(3.7) [Zri e (F, D)2 S A 2 A2 (I f[lallgllss
assuming Ay << X\y. This corresponds to the result in (i) with g = %

Proof. (i) By Holder’s inequality,
(38> ”%M,)\z <f7 g)”s = H‘@)\l f%AQQHS < H‘@)\lfHQI ”%AQQH(IW

where 1/s = 1/¢; + 1/q2. Note that by Proposition 3.3, we obtain that if both (1/p1,1/¢1)
and (1/pa, 1/go) are in A(n), then

n(L—%)—l

(3.9) [Zxi fllgy S M [paiP
and

e
(3.10) [Zrs9llga S Ao 191lps-

The desired estimate now follows from (3.8), (3.9) and (3.10).
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(ii) We now prove (3.7). Let B be the unit ball in R". First, %\, ,(f, g) has a spectrum
included in

Sp = MS" ST = (A + A)B\ (Mg — A)B
which has a n-dimensional measure
(3.11) 1Sp| = |MS™ 7+ XS S M
since A\; << Ay. Moreover, since f,g € L' then by Plancherel equality, we have

”%h,)\z(fv g)H2 = Hﬁ [‘@)\1,)\2<f7 g)] ”2

—

= 1, () * ()
= [[ A D©B e + sy

heL?
[[Rll2=1

snﬂmmmsm)// Ih(E + )| dédn
A1SP—1x A\pSn—1

heL?
[Ihll2=1

< 1 hllglhx? sup }Q ()] dow.
P

heL?
[IRllo=1

At the last inequality, we used that for every w € Sp
meas ({(£,7) € MS"' x XS": £+ =w}) S AT
where meas denotes (n — 2)-dimensional Hausdorff measure. Finally, via (3.11) we obtain
100 (F, )l S I NallglhAT=21Spl2 < I llglhAT 2 (AAs )z,
which yields (3.7). O

3.2. Restriction-extension estimates imply bilinear multiplier estimates. For every
n > 2, set

~n+1 d b_n+1+n—1
=", > " 2n n2+n’
Let € > 0 and for every 1 < py,ps < nZ—fl and % = p% + p%, define
(L if (pil,p%) € (an,by) x (an,by)
2ol Ly if (L,1) € (an,by) x [by,1]
B12)  aemo=y", T
a1t te i (rgp) € [ 1] x (an, bn)
| Ll —mdge i (5 L) € (b 1] x [ba, 1]

1
For simplicity, we will write a(py, p2) instead of a(py, ps,0).

Now we prove the following result.
Theorem 3.5. Let 1 < py,p2 < 2n/(n+1) and 1/p = 1/p1+1/ps. Suppose that mg is an even
bounded function supported in [—1,1]x [—1, 1] that lies in W5 1(R?), for some 3 > na(p1, p2).

Let m(&,m) :=mo(|&],|n]). Then T, is a bounded operator from LP*(R™)x LP?(R™) to LP(R™)
and we have

(3.13) I Tonll o1 sctomsze < Cllmollwsces)
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Proof. Let ¢ € C2°(R) be an even function with supp¢ C {t: 1/4 < |t| <1} and
d 627 A) =1 VA>0.

LET

Then we set <;50()\) = 1=, 0027N),

(3.14) DN, N = / do(V/|t1]2 + [t2]? )mg(ty, ta)e?miiM+t222) gt gy,

and
(315) )\1’)\2 // |t1|2 + |t2|2)m0(t1 tg) 2mi(t1 A1 +t2A2) dtldtg
Note that in view of Fourier inversion and of the preceding decomposition we have that
(316) mo )\1, )\2 Z mo )\1, )\2
>0
Consequently,

Tu(fa)w) = [ = mmiel ) Fie)amdedy
(3.17) = ) Tl

>0
where m©(¢,n) = m{” (€], m\)fore>0and
B T = [[ e e, g

It follows from the support properties of ¢ and Lemma 3.1 that the kernel of 7', ) is supported
in
Doe = {(z,y,2) : |z —y| <2 |z — 2] <2}
Recall the set A(n) given in (3.6). We observe that if € > 0 is small enough, then there

exist (1/p1,1/q1) € A(n), (1/ps, 1/g2) € A(n) such that

1 1 1 1

—+ — — — — — = a(p1, 2, €).

pr P2 41 Q2
Note that p < 1. Let - + L = % and so s > 1. Then Lemma 2.3 yields the existence of a

a2
constant C' = C), such that

(3.19) T | Lerxpre e < C 2 _")H T |l ey x 21,

which yields
HTmHL"l xLP2Lp S H Z Tm(L/)

LP1 X LP2— [P

>0

for some constant 6 € (0, (5 — na(p1, p2))/2).

Since m is not compactly supported we choose a smooth function v supported in (-8, 8)
such that ¥)(A) =1 for A € (—4,4). We set U(xq,x9) = ¥(|z1| + |22]) for 21, 20 € R™ and we
note that

(3.21) | T e xzee—srs < [Ty || Lo scrre s + [T _wym® | e x L2 s s,
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¢
where (Um©)(€,) =: ¥ (€] + 1l)mg” (€], In]).
To estimate || Ty, ||Lr1 x 215, Wwe apply Lemma 3.2, together with Minkowski’s inequal-

ity (s > 1), and Proposition 3.4 to obtain

Tamolcareoss < [ [T 1000+ 20)m a d 1Bl dhid
L,L) 1 n(L,L)
S / / g O, A)[Ap AR A d
(3:22) < ml®
since z%i - i 21 g thu? n(pii q%l) - 11 > 12 >0 in view of the fact that (i, i) € A(n).
Notice that - — 1= St o= a(pl,pg, €). Then we have

Z 2£6+€n(%—§) ”T\I/mff) [P Z ol(na(py,p2,€)+6) ”mé@ I
>0 >0

(3.23)

S ||m0||BIL’01¢(P1,P2,e)+0,

where the last inequality follows from the definition Besov space. See, e.g., [4, Chap. VI ].
Recall also that if 5 > na(py, ps, €) + 6 then

Wwhl (R2) C Bioi(pl p2,€)+0 (R2)

and ||m0||BILa1(p1,p2,e)+e < Cgllmollwe. g2y, see again [4].

(R?)
Next we obtain bounds for ||7{;_g),@ [|ri x 12 1s. Since the function 1 — 1 is supported
outside the interval (—4,4), we can choose a function n € C2°(4, 16) such that

t)+ Zn(Q k
k>0
for all t > 0. Hence for A, Ay > 0 we have
(1= + A2))mi” (A, Ao) = > 0(27F (A + A2))mf” (Ar, Aa).
k>0

We then apply an argument as in (3.22) to show that

Tt —wym® || 1 x Lr2 s s
2k+4 2k+4

(L 1y 1 p(Ll_Ly_
(3.24) <Z/ / “E g+ A m D (g, AT TN TE T gy

E>0
Observe that

)\1,)\2 // mo 81,82 |://¢) |t1|2 + |t2|2) 2mi((A =)t (A2 —s2 tQ)dtldtQ d81d82
[—1,1]2
We can integrate by parts M times to obtain
(27 (O + A2))mg” (Ar, Ae)| < Cag2 EFRME g |
Substituting this back into (3.24) with M sufficiently large such that

1 1 1 1
n(—+—————)—M+2+0<0,
pr P2 @1 Q2
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we obtain
1 1 1 1
HT(lf\Il)m(Z) HLP1 x P2 —],3 S CM27Z(M72) ”mo ” 1 Z 27kM+k"(H+E’H’E)
k>0
< Cp27"M=2my||y,
which yields
11
(3.25) > 2T, gy lomxireare S Imollr.

£>0

Finally, (3.13) follows from (3.17), (3.20), (3.21), (3.23) and (3.25). This completes the
proof of Theorem 3.5. O

Remark 3.6. The previous proof relies on a bilinear spherical decomposition of the sym-
bol. The bilinear restriction operator %y, x, is not well-defined on L*(R™) x L*(R™) and
so one cannot use these elementary operators to obtain boundedness from L*(R™) x L*(R")
to L*(R™). However, even if the linear operator %y, is not well-defined on L*(R™), it is
interesting to observe that the average of such operators is well-defined. Indeed, a simple
computation gives

/ " B f) (2)du = / 2T (6 de
A A<[gl<n

which is bounded on L*(R™) and one has

"
/ R, du
A

Moreover, in view of the celebrated result of Fefferman [23], this operator is unbounded on
LP(R™) if p # 2 (as soon asn > 2).

So we can obtain boundedness from L*(R™) x L*(R") to L'(R™) without employing a spher-
ical decomposition but via a decomposition along a scale of “smoother” operators.

(3.26) sup

A<p

<1

L2—L?

Following the previous remark, we have the following observation concerning the L*x L? —
L' boundedness of bilinear multipliers.

Lemma 3.7. Suppose that mq is a bounded function with support in [—1,1] x [—1,1] which
satisfies

8,\18)\2m0()\1, )\2) c LI(R2)
Let m(&,n) = mo(|€], [n|). Then T,, is bounded from L?(R™) x L?(R™) to L*(R"™); Moreover,

(327) ||Tm||L2><L2—>L1 S // |8)\18)\2m0()\1,)\2)|d)\1 d)\g
R2

Proof. We employ a proof via a decomposition of the symbol as an average of bilinear
restriction operators. First, by modulation and dilation we may assume that m is supported
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on [£,1] x [$,1]. So via an integration by parts we have

Tn(f,9) = // mo(A1, A2) Zry xe (f ) dA1 dXo
0,1]x[0,1]

A1 A2
= // 0,\18>\2m0()\1, )\2) (/ %a,b<f7 g)da db) d)\l d)\g
[0,1]x[0,1] 0o Jo

)\1 )\2
— // Oxy Ox, (A1, A2) ( Ro([) da
0,1]x[0,1] 0 0

Using (3.26) and the Hélder inequality, we deduce

Ry(g) db) A\ d)s.

||1—‘771||LQ><L2—>L1 S // |8)\16>\2m0()\17>\2)|d)\1 d>\27
[0,1]x]0,1

which concludes the proof. O

Still concerning the boundedness from L?(R™) x L?(R") to L'(R"), we have the following
result:

Proposition 3.8. Let mg be an even function supported in [—1,1]% which satisfies the reg-
ularity condition:

sup ||mo(ful, [ - Dllwi+ar@ < oo
ue[—1,1]

for some a > 0. Then the bilinear operator T,, associated with the symbol m(§,n) =
mo(|€],|n|) is bounded from L*(R™) x L*(R") to L'(R").

Proof. We begin by expressing the operator 7, as follows:

T(f.9)(w)i= [ e Fe)gtnmallel, lded
-/ /[ L ollul DR () @)8 (1) ).

The idea is to express the function mg(|ul,|v|) as a tensorial product, so that a product of
L?-bounded linear operators appears. So we fix u € [—1,1] and we examine the function
v — mo(|ul, |v]) which is supported in [—1,1] and vanishes at the endpoints +1. We can
expand this function in Fourier series (by considering a periodic extension on R of period 2)
and thus we may write for u,v € [—1,1]

mo(Jul, [v]) =) ye(u)e™"
kEZ

with Fourier coefficients

1 ! —imkv
i) 1= / el o) do

These coefficients also satisfy the bound for a € (0, 1)

(3.28) ()] S (L4 k)~ mo(ful, | - Dllwrre 1,1
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for some a > 0. Since we have

L0 =53 | / (W) () ()™ By () ()

2 1 1]2
1 .
53 (/ vk(U)%u(f)(l“)dU) ([ emaun@a).
ver \J-L1) [~1,1]
we conclude by Holder inequality and (3.28),
1T (f, 9) 1
< IH) (14 D ) Nda]) || [ ™ () ado
keZ [~1,1] 2 1/[-1,1] 2
SIfll2llglle-

Here we used that f[—1 1}(1 + k)" (u) %)y du is the linear Fourier multiplier operator

associated with the symbol (1 + |k|)**¥y(|¢]) which is uniformly (in k) bounded on L2,
since the symbol is bounded with respect to k in view of (3.28). O

3.3. An extension of Theorem 3.5. Using Lemma 2.3, we may argue as in the proof of
Theorem 3.5 to obtain the following result. The proof is similar and for brevity is omitted.

Theorem 3.9. Letn > 2 and 1 < q1,q0 < 2n/(n+1) and let 1 < p; < 00,q2 < py < 00
with 1/p=1/p1 + 1/ps and 0 < p < 0o. Also assume that

1 1 1

—+—— - S a(q17QQ)7
Q. 4 P

where a(q,q) is defined in (3.12). Suppose that mg is a bounded function supported in
[—1,1] x[~1,1] such that mg € W5 L(R?) for some 8 > na(qi, ). Let m(&, 1) == mo(|€], n]).
Then T, is bounded from LP*(R™) x LP>(R™) to LP(R™). In addition,

| Tonl| 2oy o2 10 < Cllmollwe. ge)-

4. BOUNDS FOR BILINEAR BOCHNER-RIESZ MEANS

Consider the bilinear Bochner-Riesz means of order 6 on R"™ x R", given by

2 2
4y sow= [[ (i B ) Feronsan
n|?<R?

In this section, we investigate the range of § for which the bilinear Bochner-Riesz means S%
are bounded from LP*(R"™) x LP2(R™) to LP(R™). This boundedness holds independently of
the parameter R > 0, so we take R = 1 in our work and for simplicity we write S° instead
of S?.

We first describe the results in the one-dimensional setting, there Bochner-Riesz multipliers
are closely related to the problem of the disc multiplier.

Theorem 4.1. Let n = 1. The Bochner-Riesz operator is bounded from LP*(R™) x LP2(R™)
into LP(R™) for 1/p = 1/p1 + 1/py in the following situations:

(i) Strict local L*-case: 2 < py,pa,p’ < 0o and § > 0.

(ii) Endpoint cases: {p1,p2,p'} ={2,2,00} and § > 0.
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(iii) Banach triangle case: 1 < py,po,p’ < 00 and 6 > 0.

Proof. The first case is a consequence of the positive result for the disc multiplier problem
n [29]. The endpoint can be obtained using a discrete spherical decomposition with [7,
Proposition 6.1]. The Banach situation follows from similar arguments with [7, Proposition
6.2]. Indeed, let us check the point L x L — L. Consider a smooth decomposition of the
symbol (1—[€]2=n|*)% = "0 27%my(&, ) where my is supported in a circular neighborhood

of the unit circle of approximate distance 2~¢ from the circle. From [7, Proposition 6.2], we
know that

(3L
(42) ||Tme(fa g)HLPqu_)Loo 5 2 €(4q+2p)

for any 2 < p,q < oco. However using integration by parts, it is easy to check that the
bilinear kernel K,(z —y,x — z) of T,,, satisfies

CNQ_Z
(1+ 27 (u, v) )N

for every N > 0. In this way, (4.2) can be improved in some off-diagonal estimates as follows:
fix o € R and define [ := [zg — 1,29 + 1],

T, (f5 9) ()]

(4L — max 7 /
< 27 atey) <||f||Lp(2MI)||9||Lq(2MI Z g maxthuke) 93+ T fllzor 9l za 2’621)) :

k1,ko>M

| Ky(u,v)| <

We also conclude that

T, (f, 9) ()] S 27 Gt ) <2+ Y 27 Vmaxthnk (v 2) 1£ 1o llgloc

k1,k2>0

S 27w (250 4 27 MBI Y £ g
If we choose M, N such that M (N —2) = (N — 1)¢ then we get
||Tmz||L°°><L°°—>L°° 5 2_“%4_%) (2( )N £>

which holds for every p,q € [2,00). By taking p, ¢ sufficiently large, we deduce that

[T Lo x Lo s e S 27

for every p > 0 as small as possible, which concludes the proof by taking p < 9. U

These results are optimal in the strict local L? case, in the endpoint cases, and on the
boundary of the Banach triangle. It still unknown whether boundedness holds in the limiting
case § = 0 in the interior of the Banach triangle minus the local L? triangle.

We may therefore focus on the higher-dimensional situation. First, we have the following
proposition.

Proposition 4.2. Let 1 < p1,ps < 00 and 1/p = 1/p1 + 1/py with 0 < p < oo. Then we
have

(i) If 6 >n —1/2, then
15°(£, )lp < Clf o gl
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(i) If6 <n(l/p—1)—1/2, i.e.,
2n
PSS oo T
2n+20+1
then S° is not bounded from LP*(R"™) x LP2(R") into LP(R").
(iii) If 6 < n’i — 3| — 3, then S° is unbounded from LP(R™) x L**(R") into LP(R™), from
L>®(R™) x LP(R™) into LP(R™), and also from LP(R™) x L (R™) into L*(R™) for any
1<p<oo.

Proof. Note that the kernel of the bilinear Bochner-Riesz means S° is

Jon(2m|2])

Ks(x1,22) = ¢ |5t

r = (x1,22)

and since v > n — 1/2, we have that this satisfies an estimate of the form:
1
1+ [z])0+n+1/2

|Ks(z1, 22) S (

by using properties of Bessel functions. But for such § we have 0 +n + 1/2 > 2n, so the

kernel satisfies
1 1

(14 [y ) (1 + o] )’
for some € > 0. It follows that the bilinear operator is bounded by a product of two linear
operators, each of which has a good integrable kernel. So, (i) follows by Hoélder’s inequality.

We now prove (ii) by using an argument as in the proof of Proposition 10.2.3 in [26]. Let
h € .Z(R™) be a Schwartz function of R™ satisfying that

©=10 €] > 4.

| Ks(z1,m2)] S

This gives

. Juso2rl(z,2))
S(h. h _ 1 — €12 — |n|2)de2miz(E+n) q¢dn — +6 '
= [[ Ry gy — o LT

Then S°(h, h)(z) is a smooth function that is equal to

JeosnyBlal =3 5+8) <|;>
T

(\/§|x|)n+6+% |n+6+%

as |x| — oo. Then we have

1 1
4 Py = - -
(4.3) 5% (R, h) ()] |x‘p(n+5+%) +0 (‘x|p(n+5+§)>

for all |z| satisfying

) 6 1
n -+ §|x|§k:+n+ 4z

2
- R

for positive large integers k.

Now we observe that the error term in (4.3) is of lower order than the main term at infinity
and thus it does not affect the behavior of |S?(h, h)(x)|P. So we conclude that |S°(h, h)(z)[P
is not integrable when p(n+ § + 1/2) <n, i.e. when p < 2n/(2n + 20 + 1).
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To prove the first assertion in (iii), we take the L™ function to be 1, and then S°(f,1) =
B°(f), where f is the linear Bochner-Riesz operator. So the conclusion follows from the
linear result. The second assertion in (iii) is similar. To prove the third assertion in (iii),
by symmetry we may assume that p < 2. It will suffice to show that the second dual
(5°)*2 of S° is unbounded from LP x L> to LP. Let h be the Schwartz function in case
(ii). Then (S°)*2(h,1)(z) = c|2| /279, a45(27|x|/v/2) which is not an L? function if § <
n(l/p—1/2)—1/2. O

4.1. Bilinear Bochner-Riesz means as bilinear multipliers.

4.1.1. Main results. The aim of this section is to prove the following result.

Theorem 4.3. Letn > 2 and1 < py,py < 2n/(n+ 1) and1/p=1/p1+1/ps and 0 < p < oc.
Also let a(p1, p2) be as in (3.12). If § > na(py, p2) — 1, then the bilinear Bochner-Riesz means
operator S° is bounded from LP'(R™) x LP*(R") into LP(R").

Proof. The proof is a consequence of Theorem 3.5 and of Lemma 4.4 proved below. U

Lemma 4.4. Let1 <g< oo andd=o0+it. If0 <s <o+ %, then (1—|z|?)5 € W*4(R").
Moreover, there exist constants C,c > 0 that depend on n, q, and s such that

(4.4) (1 - ‘x|2)iHWSﬂI(R”) < Celml

as long as o < ', where ¢ is a constant.

Proof. To compute the W*? norm of w(z) = (1 — |z|?)}. on R", we argue as follows (see [4,
Theorem 6.3.2]):

[wllwsa = [[w]|za + [wllyea,

where 79 is the homogeneous Sobolev space defined as ||w||ioq = [|A%?w| e . We have
that A*/?w is a radial function and we can write

s Jn2 5(27T|€|) s _2mix-
Afule) = o | R et

 Jn 2 .
— C/ /2+52( :-T) Ternl/ e2mm-r9d9 dr
0 Tn/ + Sn—1

o [ ) s Jepis e
0 yn/2+6 (r|z|)(n=2)/2

= C”/ jn/2+5(7“)7‘8+n_1j(n,2)/2(T|ZL‘|) dr = I,
0

where we set J, (t) = J, (t)t™ for t > 0. Note that we clearly have that 1T, (8)] < C,(1+4t) 72
for all v and ¢t > 0. Moreover, J)(t) = —tJ,1(t) for all £ > 0. We consider the following
cases:

Case 1: |z| < 1/2.

In this case we introduce a smooth cut-off 1(r) such that ¢ (r) is equal to 1 for r > 3/2
and 1 (r) vanishes when r < 1. Then I is equal to the sum

/ To o (PP sy a2 () dr
1
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3/2 N
+ / Trpaas (1)L gy o (r|l) (1 — () dlr
0

The second integral is clearly bounded and hence it lies in L9(|z| < 1/2). We focus attention
on the first integral. Using properties of the function J, we write

/ To o (F)r " oy a2 () dr
1

© 0 Nk~ -
= (1) /1 <%) Tujzes-e(r)r™ " gy o (rla] ) (r) dr

Applying a k-fold integration by parts we can write the preceding integral as

/100 jn/2+5fk(7“) (dir%)k (Ts+n—1j(n,2)/2 (T|IL‘|)’(/}(7‘)) dr.

If at least one derivative falls on 1(r), then the integral is easily shown to be bounded. Thus
the worst term appears when no derivative falls on . In this case we have

o k
|0 T gsal) 3 A el faf dr.
0

/=

We examine the fth term of the sum when ¢ < k. In this case we split up the integral
in the two cases r > |z|™' and 1 < r < |z|~!. In the case where r > |z|~! the integral
contains a factor of r*=°~ 1%+ and this is absolutely convergent since s — o < 1/q < 1
and k — ¢ > 1. The term overall produces a factor of the form |:1c|_5+"+k_nT_1 which is in
L7(|z| < 1/2). In the case where 1 < r < |z|~! one obtains a factor of |z|=*T7+*= ™% which
is also in LI(|z| < 1/2).

It remains to consider the case where ¢ = k. Here we need to show that the term

o [0 Tgsos )t s el dr

is a convergent integral times a positive power of |z|. The part of this integral from 1 to
|z|~! is bounded by

—1

|z
C|l‘|2k/ @/)(T)st+n_l dr
1

which produces a factor of |z|*~¢, which lies in L9(|x| < 1/2). The part of the integral from
|z| 7! to oo is

o [ e:l:ir et e:l:ir\:v\ it (3] pstn—1
- stn—1_ = _ntl_ T
|{L‘| |:/|;|_1 ¢(T)rn;1+6_kr (T|$|)ngl+k dr + |{L‘| ? /:v_l O<Tn+2+5> dT]

using the asymptotic behavior of the Bessel functions. The second integral converges abso-
lutely while the first integral contains the phase ir(£1 + |z|) which is never vanishing and
so it can be integrated by parts to show that it converges, since s — o < 1/q < 1. At the
end one obtains a factor of |z|*™ which is in LI(|z| < 1/2) if k is large.

Case 2: |x| > 2.
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In this case we will use again the smooth cut-off ¢(r) which is equal to 1 for » > 3/2 and
1 (r) vanishes when r < 1. Then I is equal to the sum

1 [ ;
/ Tnjors(r /|25 gy o ()1 (r) dr
1

|x‘n+s

(4.5) o
1 T s+n—17
+ —|:E|"+S /0 Tnjoys(r/|z|)r + Jn—2)2(r) (L —p(r)) dr.

The second integral in (4.5) is clearly bounded and since |z|™"~* lies in L%(|z| > 2) the
second term in (4.5) lies in L9(|z| > 2).
We write the first term in (4.5) as

b [ s e () a0

rdr

for any k£ > 0 and by a k-fold integration by parts this is equal to

1 rd 1\ ~ san_1\ 7
o | (Gr) (60 st Faa i) ar.
The worst term appears when no derivative falls on ¢ (r). In this case we obtain a term of

the form
k

1 o ~ 1 L ~
— / V) D cegssnelrol) g7 e (o) e

S =
When ¢ < k, the fth term is estimated by

—n—s—2/ - s+n—1—2k+2¢ 1 1
Clz| r
1

(Lt /[l 5o 7

Considering the cases r < |z| and r > |x| separately, in each case we obtain a convergent
integral times a factor of |2|°7%, and since k is arbitrarily large, we deduce that this lies in
L% in the range || > 2. (For the convergence of the integral in the case r > |z| we use that
s—o0 <1/q<1.) For the term ¢ = k we need the oscillation of the Bessel function to show
that the integral

dr .

1 - 7 s+n—17
(4.6) W/l Y(r)Joyspr(r/|z))r * 1Jansz(r) dr
converges. We split (4.6) as the sum of the term

1 ||

T[T (r) Ty sgn(r/ [ ) Tua () dr,

which is bounded by

1 ||

1 _
|| s 2k ()" g dr < o
1

r2
plus the term

1 00 e:l:i|a:|*17" . etir _— 00 pstn—1
+n—1 3y sk
|, Y st T [0 o).

z| ||

Notice that the phase ir(+1+|z|™!) never vanishes, and since s—o < 1/¢ < 1, an integration
by parts yields an absolutely convergent integral times a factor of |z|~%T¢. If k is large, these
terms have rapid decay at infinity and thus they lie in L?(|x| > 2).
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Notice that all integrations by parts have produced constants that grow at most like a
multiple of 1 + |s — o +i7|* so far.
Case 3: 1/2 < |z| < 2.

The part of integral I over the region r < 2 is easily shown to be in L* and thus in L? of
the annulus 1/2 < |z| < 2. It suffices to consider the part of the integral I over the region

r > 2. Here both r and r|x| are greater than 1 and we use the asymptotics of the Bessel
function to write this part as a sum of terms of the form

Cl/ Ts—6—16i01(|$|+1)rdr+02/ rs—é—leicg(x—l)rdr+0</ 7,,s—(S—Qd,r,)
2 2 2

for some constants C,Cs, ¢y, . Of these terms the middle one contains a phase that may
be vanishing while the other terms are bounded by constants that grow at most linearly in
|7]. Recall that 6 = o +i7. Now define an analytic function of § by setting

[:B<5> = / 7*37571€i02(|1'|*1)7'd7, ]
2

Notice that when s — 0 = —¢; < 0 we have
|L.(0)| < C'e .
Also notice that when |z| # 1 and s — 0 = 1 — g5 < 1 we have that

1 T —
L@ < (14 ) ey a1,

But 7,() is an analytic function of § and Hirschman’s version of the 3-lines lemma (Lemma
1.3.8 in [25]) gives that
|1(8)] < C(O) || — 1| ~H/o*
when s —o0 =1/q¢ — e < 1/q. Here
. 00 /—1 " -1
Clorir) < o (BE0) [ [ O ofCs 5 Dy <, o
cos

(mt) — cos(mo) cosh(mt) + cos(mo)

where the last estimate is seen by estimating the logarithm by a linear term. But the function
||| — 1]7Y/9%¢ lies in L(1/2 < |x| < 2). So, we have proved that when

1
s<—+o0
q

we have that w € W*4(R"). O

4.1.2. An extension of Theorem 4.3. Using Theorem 3.9 and Lemma 4.4, we can obtain the
following result.

Theorem 4.5. Letn > 2 and 1 < q1,q0 < 2n/(n+1) and let g1 < p; < 00,¢2 < py < 00
satisfy 1/p = 1/p1 4+ 1/ps and 0 < p < 0o. Also assume that

1 1 1
-4+ —— - S a(qlan)a
Q. 4 P

where o(q1, q2) is defined in (3.12). If § > na(qr, q2) — 1, then the bilinear Bochner-Riesz
means S° is bounded from LP*(R"™) x LP2(R™) to LP(R"). In addition, for some constant
C = Cs we have

H55|’LP1 wira—srp < C.
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Remark 4.6. The preceding result is interesting for (p1,ps) near (1,1) as for points away
from (1,1) we will obtain better results. Let us show this claim by the two examples (p1, p2) =
(1,00) and (p1,p2) = (1, n2—f1)

o First let us examine the point py = 1 and ps = oo. The previous theorem yields that
if 0 > = +%, then the operator S° is bounded from L'(R™) x L>=(R"™) into L*(R™).
Indeed we take 1 < qu < 2n/(n + 1) such that 1/qx € (an,b,) (see (3.12)) and

¢ =1, and so go < py = 00 and ¢ < p; = 1. By (3.12), we have

2 1

( ) = L + +
« — 4+ —.
QI7q2 2 +1 2n

On the other hcmd Lo L 1 < a(q,q). By Theorem 4.5, we have that if § >
na(q,q) — 1 = 2= + then the operator S° is bounded from L'(R™) x L>(R™)
into L*(R™).

However, we will see in the next section, that for some particular points, such as
those with p1 = 1 and py = oo, we have a better result (5 > %) using more precisely
the structure of the symbol.

e Let us now focus on the point py = 1 and py =

=y

n+1 By interpolation between (1,1, 3)

and (1,00,1), Theorem 4.9 below and Proposition 4.2 imply that S° is bounded on
LY(R™) x L%(R”) zf 5 > 322 4 L In this situation, Theorem 4.3 proves that

§>na(2 1) —1="21+ % is only necessary (which is better).

nlo

4.2. Study of particular points. We now focus on determining the range of § for which
the bilinear Bochner-Riesz means S° are bounded from LP*(R") x LP2(R"™) to LP(R™), when
1/p1 + 1/p2 = 1/p, for some specific triples of points (p1, p2, p).

4.2.1. The point (2,2,1) and its dual (2,00,2). We may easily obtain that the operator S°
is bounded from L?*(R") x L?(R") into L'(R™) when § > 1. Indeed, to see this we apply
Lemma 3.7, so

H55HL2><L2~>L1 SJ / |8)\1a)\2m()\17 )\2>| d)\ld)\27
where m(A1, A2) = (1 — A — A3)%. On the disc, we have
‘ahahm()‘)‘ 5 (1 - )‘% - )‘3)(?[2
and we can then compute the L'-norm:
1
/ |O0x, Ox, (A1, A2)| dA1d Ay < // (1 =27 = A5 2dhdh S 1 +/ (1 —u)’%du,
R2 1

which is finite when 6 — 2 > —1.
The restriction 6 > 1 is not necessary as shown in our next result:

Theorem 4.7. Letn > 2 and § > 0. Then the operator S° is bounded from L?(R™) x L?(R™)
to LY(R™). That is, for some constant C' = Cs we have

(4.7) |52 <C.

HL2><L2—>L1

Moreover, this result fails when 6 = 0.
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Proof. As an application of Proposition 3.8, we have just to check that for § > 0, there
exists a > 0 with

(4.8) s[up | (1= — )% [wrteng) < co.
ue[—1,1

Denote by TW*? (R?) the homogeneous Sobolev space on R? with norm
HhHWsm(Rd) - ”<_A)S/2h”LP(]Rd)-
For any r > 0, we have
_dys
() lresgay = 12 NRC) i ay-
Now for a fixed > 0 we pick 0 < o < 0. By Lemma 4.4 we have,
12— o) lyprrsan gy < C < oo

Let f(v) = (1—|v[*)% and r, = ﬁ Combining the preceding facts we obtain

(1= u® = A hpangy = (=)L f(ru) e
= (1= N Ollyrren g
5 (1 o u2)6—a
S L

since § — a > 0 and then (1 —u?)°=® <1 for u € [—1,1].

Certainly, ||(1 — u® — -?)%||pi®) < co. Hence (4.8) is proved and then we conclude the
proof by invoking Proposition 3.8.

We now turn to the sharpness of the requirement that § be positive. Let B’ be the unit
ball in R?". If the ball multiplier

T (f.9)( / FOFm X (€, me =€ dedy
Rn

were bounded from L*(R™) x L*(R") — L'(R™) with norm Cj, then by a simple translation
and dilation the multipliers T} Xsl o, would also be bounded on the same spaces with norm
Cy, where -

Biuvp = {(6777) €eR" xR": |€ - pw|2 + |71 - p’U|2 < 2p2}
uniformly for all p > 0 and all unit vectors v, w in R". Letting p — oo we would obtain that
the operators

T, (L)@ = [[ Fegmer= gy

&w+nv>0
are bounded from L?(R") x L?*(R") — L'(R") with norm Cy uniformly in v, w € S*~!; here
P ={(&n) e R"xR": &w+n-v > 0} is a half-space in R?". Let P, = {£ € R": &0 > 0}
be a half-space in R™ determined by v. A simple calculation shows that

Xp/ (f g) (fg XPU)V7

and this operator is unbounded from L? x L? — L! by taking f = g = xu, where U is the
unit cube in R™ and v = (1,0, ...,0). This produces a contradiction. U

We note that a modification of the preceding counterexample also proves that S° does not
map L*(R™) x L=(R") to L*(R"). Indeed, we take v in S"~! and define balls

B,, = {(&n) €R" xR": [¢* +[n— po|* < p},
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which converge to {({,n7) € R" x R" : £-v > 0} when p — oo. Then one obtains the
operator f(g xp,)" in the limit which is unbounded from L?(R") x L*°(R") to L*(R").

In the positive direction we show that for ¢ > "T_l boundedness holds in this case. As of
this writing we are uncertain as to whether boundedness holds for the intermediate 9.

Theorem 4.8. If6 > 251, then the operator S° is bounded from L*(R™)x L>*(R") to L*(R™).
Moreover, for some constant C' = Cy we have

(4.9) |52 <C.

HL2><L0<’~>L2

Proof. Recall that S° is a bilinear multiplier with the symbol mq([¢], [7]) = (1—[¢]* — |77|2)i.
We now perform a “spherical decomposition”. To this end, we choose a smooth function y
supported on [1/2,2], which is equal to 1 on [3/4,5/4], and which satisfies

D> x(@2it) =1

720
for every t € (0, 1]. For j > 0 we introduce the functions
mi(s,t) = (1 — s> — )% x (27(1 — s* —17)).
These symbols give us a spherical decomposition of our initial symbol such that

(4.10) 928Pm (s, t)} < 9-digla+B)i,

For each such function mj, we have the bilinear symbol m/ (&, 1) := mj(|¢],|n]) on R**. From
(4.10), the bilinear operator T,,; has a bilinear kernel K,,;(z — vy, x — z) satisfying
Ko (2 =y, = 2)| S 279279 (1427w —y| + 27 jw —2))

for every large enough integer M > 0.
We may also apply Lemma 2.4 and from part (i) of Lemma 2.2, we get there exists a
constant C' > 0 such that

T lz2x ooz < CPPHINT || 2 ope + 27N

. ) 1/2 .
< 20 sup ([ pmi(le = ), Inl)Pdn) 427,
£ER™ Rn

where € > 0 (resp. N > 0) can be chosen as small (resp. large) as we want. Moreover, 1
is supported in the set

{(s,t): 1—2-277 <|(s,0)? <1—3277}.

So from (4.10), we have

| 1/2 o
([ totie—al.lban) 20,
Rn
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where we used standard estimates for sub-level sets in dimension n > 2. So finally, we
conclude that

1520 2xrmesre S D T lli2xroe e

>0

< Z [2j(n/2+e)2—6j2—% 49N
720

<1+ 270,

J=0

The proof is then finished since for every ¢ > "T_l, we may choose a small enough ¢ > 0 such
that 0 > ”T’l + € in order that the previous sum be finite. O

4.2.2. The point (1,00,1). Related to this point we have the following result which should
be contrasted with the unboundedness known in this case when § < "T_l (cf. Proposition 4.2

(iii)).
Theorem 4.9. Suppose n > 2. If § > 3, then the operator S? is bounded from L'(R™) x
L>(R™) into L'(R™). Moreover, for some constant C' = Cs we have

Is? <c

HL1><L°°—>L1

Proof: The proof relies on a mixture of arguments involving in Lemma 2.4 and the optimal
result Theorem 4.7.
As previously, express mg in terms of its spherical decomposition

= Y
Jj=0
We have seen (in the proof of Theorem 4.8), that we can apply Lemma 2.4, which gives
HS&HleLW%LI S Z ”ijHLIXL“’HLl
Jj=0

ST+ Y 26Tl pawges .

Jj=0
By Bernstein’s inequality (since we only deal with bounded frequencies), it follows that
19| pixcroemsir S 1+ Z 2G| Ty | 21211
Jj=0
According to Theorem 4.7 and Proposition 3.8, we have

||ij||L2><L2aL1§ sup ||mé(|u|,-)||W1+a,1(R)
ue[—1,1]

for > 0 (as small as we wish). Since
mi(s,t) = (1 —s* —2)° x (27(1 - s*=1%)),
we have

Hm%(\u\, ')”WHO‘J(R) < 9j(1+a=8)9—j < 9j(a=3)
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Consequently, we deduce that

159 pipoosrr <1+ Z2j(%+s+a—5) < o0,
j=0

since €, a can be chosen arbitrarily small and ¢ > 3. O

4.3. Interpolation between the different results. Interpolation for S° can be achieved
using the bilinear complex method adapted to the setting of analytic families or via the an
alternative argument, which is based on bilinear interpolation using the real method [30].
The latter argument is outlined as follows: We fix j > 0 and obtain intermediate estimates
for each T,,; (depending on j) starting from the existing estimates for given points. Since
we are still working with “open conditions”, i.e., a strict inequality of the type § > dy, we
may obtain intermediate boundedness for S° by interpolating the boundary conditions.

1/q
1
v
Vil V
v
1l
1 % 4
2
/ Vil
Il i}
aln L
0 1 by 1 1/p
Figure : Exponents (%, %) for p,q > 1. Here a,, = "Q—J;Ll, by, = ”Q—ng + n"z;ln

We consider a spherical decomposition, as in Theorem 4.8 splitting the symbol ms(&,n) =

(L= 1(&mD5 as
(4.11) ms = Zg—jémj,a

Jj=20
with bi-radial symbols m#9(&,n) = m¥*(|¢], |n|), where
my’(t,s) = [2/(1 — 2 — 52)]6x(2j(1 —t* = %)),

and thus m/? are supported in the annulus 1 — [(£,71)| ~ 277 and are regular at the scale
277,
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In the proof of boundedness of T}, at the points
(p17p27p) 6 S - {(27 27 ]‘)7 (17 m? ]‘)7 (m7 17 ]‘)7 (27 m? 2)7 (m7 27 2)7 A }7
we actually obtained estimates of the form
(4.12) T || 1o s 12510 < 936(p1,p2,p)

for some d(p1, p2, p) depending only on the points py, ps, p. In proving (4.12), we only used
the biradial nature of m’?, its support properties and the bounds

|60‘86 (t s)| < o(ath)j
that are independent of §; thus estimate (4.12) also holds for any other m? e,

(4.13) T, o0 L oo s po S 290P1P20),

We now fix j and ¢’ and apply estimate (4.13) and bilinear real interpolation (as in [30])
on T, ,s between the points (p,p3, p°) and (p,p3, p') to obtain a bound

T, || Lo e e S (2])(179)5(p?’p8’p0)+95(p%’p%’pl).
) ~Y

Define d(p1, p2, p) = (1 —0)3(pY, p3, p°) + 03 (pi, p3, p') whenever (p?, pd, p°), (p1, p3, p') are in

S and 1 11 1 1 1 1 1 1
<_7_7_):<1_9><_07_07_0)+9(_17_17_1>
pP1 P2 P Py P2 P p1 P2 P

Then we obtain the bound (4.13) for 7, ;s and for any triple of points (p1,pe,p) and any
8. Picking &' = § and summing over j yields a bound for S from LP' x LP? — [P when
0 > 6(p1,p2,p). The summation over j is straightforward when p > 1. In the case where
p < 1 we sum the series as follows:

H ZQ T, mhe LPL X LP2—Lp < 22 ’ pHTm”H Pl P25 [P S ZQ_jép(Qj)pé(pl’m’p) <00,

Jj=0 Jj=0

which also converges as long as 5 > 6(p1, P2, p)-

Via this method we obtain the following results:

Proposition 4.10 (Local-L? case). Let p,q,r' € [2,00) with + 5t % + L =1 (region I). If
§ > =L then S° is bounded from LP(R™) x L(R™) into L”(R”)

Proposition 4.11 (Banach case). (a) Let p,q € [2,00) and 1" < 2 with % + % +4=1
(region IT). If § > "5 + n(% — 3), then S° is bounded from LP(R™) x LI(R™) to
Lr(R").

(b) Let q,r" € [2,00) and p < 2 with % —i—%#—% =1 (region I1I). If § > n(} — %) -1
then S° is bounded from LP(R™) x L4(R") to L"(R").
(c) Let p,r" € [2,00) and q < 2 wz’th%—l—lel =1. If§> n(——%)—%, then S° is

T

bounded from LP(R"™) x LY(R™) to L"(R™).

We now address the non-Banach case situation which is more complicated: if ¢ > p, then
interpolating between the point (1,1, 2) and Theorems 4.7 and 4.9 yields
1

5>51::n<%—§)—

n—1
or
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(Here we recall that - =1 —1 < 0). But Theorem 4.3 (for a,, < £ < 1 < 1) gives the

condition

1 1
q p

<

d > 09 :=na(p,q) — 1.
If a, < % < % < by, then a(p,q) = ni“ and we check that d, > 1, so Theorem 4.3 does
not improve the exponent 0; (and the same if p, ¢ are bigger).

If a, < % <b, < % < 1, then we see that d, < 97 if an only if

1 3n—1
- >
r n2—1

< 1, then we have d, < ¢ if and only if

1 1 1
<S4 —.
q p nr

Collecting this information together, we deduce the following result.

+ 1

Ifb, <1<
q

=

Proposition 4.12 (Non-Banach case, part 1). Let p < min{2, ¢} and * := %—l—é > 1. Then
S? is bounded from LP(R™) x L4(R") into L"(R")
e ifb, < % < % <1 (region IV ): § > &5 for%
e orifa, < % <b, < % <1 (region V): ¢
bomt

e orifa, < % < % < b, (shaded region) and 6 > 4.

%+#, and5>51f0r%>%+#;
8y for 4 Zf’g—:lJrl, and 0 > 0, for

T 1

<
>

We are left with regions VI and VII. For region VI we interpolate between the point
(2,2,1) and the line segments {(a,,1/q) : 1/q € (an, 1]} and {(1/p,b,) : 1/p € (an, 1]} to
obtain the following result:

Proposition 4.13 (Non-Banach case, part 2). For a point (1/p°,1/q°) in the part of region
VI above the diagonal find 0 € (0,1) and find 1/q € (ay,, 1] such that 1/p® = (1 —0)/2 + ba,,
and 1/q° = (1—0)/2+60/q. Then S° is bounded from LP" x LY to L' where 1/r° = 1/p°4+1/¢°
whenever § > Ona(;245,q) — 1.

An analogous result holds for the part of region VI below the diagonal.

Finally in region VII we apply a similar interpolation between the point (2,2,1) and
the line segments joining the points (1,00,1) with (1,a,,a,/(a, + 1)) and (oo, 1,1) with
(an, 1,a,/(a, + 1)) to obtain LP* x LP*> — [P boundedness for § bigger than some critical
value d(p1, p2, p)-

5. CONCLUDING REMARKS

The linear Bochner-Riesz problem has been studied by several authors; we refer readers to
8, 10, 11, 12, 14, 22, 23, 24, 26, 38, 41, 42, 43, 44, 45] and the references therein for further
relevant literature. We are not sure how to adapt the techniques in these articles to the
bilinear setting but we hope to investigate whether the bilinear approach to the restriction
and Kakeya conjectures in [45] could potentially shed some new light in this problem.
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