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We propose a unified description of transport in graphene with resonant and non-resonant ad-
sorbates. This allows to test the validity of many approximate theories and in particular we show
how semi-classical approximations fail near the Dirac energy for resonant and non-resonant adsor-
bates. Close to the Dirac energy an empirical formula for the conductivity, valid in a large range
of values of the inelastic mean-free path Li, is obtained. This formula fully takes into account lo-
calization effects and consequences for the temperature dependence of the conductivity and for the
magneto-conductivity are detailed.

PACS numbers: 72.15.Rn, 73.20.Hb, 72.80.Vp, 73.23.-b,

Electronic transport in graphene [1–4] is sensitive
to static defects that are for example frozen ripples,
screened charged impurities, or local defects like va-
cancies or adsorbates [5–8]. Adsorbates, which can be
organic groups or adatoms attached to the surface of
graphene, are of particular interest in the context of
functionalization which aims at controlling the electronic
properties by attaching atoms or molecules to graphene
[9–12]. Therefore developing a correct theory of conduc-
tivity in the presence of such defects is of major inter-
est. Theoretical studies of transport in the presence of
local defects have dealt mainly with semi-classical ap-
proaches either with the Boltzmann formalism or with
self-consistent approximations [9, 13–20]. These ap-
proaches indeed explain some experimental observations
such as the quasilinear variation of conductivity with con-
centration of charge carriers [9–12] or a non zero conduc-
tivity of the order of e2/h at the Dirac point.

Yet these theories have important limitations and can-
not for example describe the localization phenomena that
has been reported in some experiments [6, 7]. Indeed in
the presence of a short range potential, such as that pro-
duced by local defects the electronic states are localized
on a length scale ξ [21, 22]. Therefore a sample will be
insulating unless some source of scattering, like electron-
electron or electron-phonon interaction, leads to a loss of
the phase coherence on a length scale Li < ξ. The inelas-
tic mean-free path Li therefore plays a fundamental role
in the theory of conductivity of graphene with adorbates.

In this letter we develop a numerical approach for the
conductivity of resonant and non-resonant adsorbates on
graphene. This method takes fully into account the effect
of Anderson localization and allows to compute the con-
ductivity as a function of the inelastic mean-free path
Li. Therefore the validity of standard approaches like
the semi-classical Bloch-Boltzmann theory and the self-
consistent theories [9, 13–19] can be tested. In particu-
lar for resonant scatterers we conclude that the available
mean-field theories fail to reproduce the physics in the

region of increased density of states close to the Dirac
point. When the inelastic mean free path Li and the
elastic mean-free path Le are identical we find that the
conductivity takes a universal value σ ≃ 2G0/π in some
energy range, close to the Dirac point where G0 = 2e2/h
is the quantum of conductance. For a large range of
values of Li with Li > Le, the conductivity is given
by σ ≃ (2G0/π) − (αG0)Log(Li/Le) where α depends
on the type of adsorbate. From this result one can
discuss the temperature dependence of the conductivity
and the magneto-conductivity since the magnetic length
L(B) =

√

h̄/eB plays the role of a finite coherence length
Li.

Model for resonant and non-resonant adsorbates

The carbon atoms of the graphene sheet that bind with
the adsorbates create a covalent bonding and weakly con-
tribute to the π-band of itinerant electrons. Therefore a
generic model of adsorbates is obtained by removing the
pz orbitals of some carbon atoms of the graphene sheet.
[18–20, 22–24]. For example an hydrogen adsorbate can
be modeled by removing the pz orbital of the carbon atom
that is just below the hydrogen atom. This is the model
of resonant adsorbate that we consider here. The non-
resonant model is constituted by two neighboring missing
orbitals (di-vacancy). Indeed in that case the balance be-
tween the two sub lattices of the honeycomb lattice is pre-
served and therefore no resonant state is produced. This
model represents a larger adsorbate that binds to the two
neighboring carbon atoms. Let us emphasize that these
models of missing pz orbitals do not represent real va-
cancies. Indeed real vacancies induce large local atomic
relaxations [12, 25] which are not modeled here. Finally
we consider here that the up and down spin are degen-
erate i.e. we deal with a paramagnetic state. Indeed the
existence of a magnetic state for various adsorbates, like
hydrogen for example, is still debated [26]. Let us em-
phasize that in the case of a magnetic state the up and
down spin give two different contributions to the conduc-
tivity but the individual contribution of each spin can be
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analyzed from the results discussed here. With these as-
sumptions the generic model Hamiltonian for adsorbates
writes:

H = −t
∑

〈i,j〉

(c+i cj + c+j ci) (1)

where 〈i, j〉 represents nearest neighbours pairs of occu-
pied sites and t = 2.7 eV determines the energy scale. In
our calculations the vacant sites (resonant adsorbates)
or the di-vacant sites (non-resonant adsorbates) are dis-
tributed at random with a finite concentration.
Evaluation of the Kubo-Greenwood conductivity

The present study relies upon the evaluation of the
Kubo-Greenwood conductivity using the Einstein rela-
tion between the conductivity and the quantum diffusion.
We evaluate numerically the quantum diffusion X2(E, t)
of states of energy E for the Hamiltonian (1). X2(E, t)
is defined by:

X2(E, t) = 〈(X(t)−X(0)2〉E (2)

where X(t) is the position operator along the x-
direction in the Heisenberg representation and 〈 〉E means
an average over states with energy E, usually the Fermi
energy. X2(E, t) is numerically evaluated using the
MKRT approach [27–31]. This method allows very ef-
ficient numerical calculations by recursion in real-space.
It has been used to study quantum transport in disor-
dered graphene, chemically doped graphene, graphene
with functionalization and graphene with structural de-
fects [11, 12, 25, 32–37]. Our calculations are performed
on samples containing up to 108 atoms which corresponds
to a typical size of about one micron square. This allows
to study systems with characteristic elastic and inelas-
tic lengths of the order of a few hundreds nanometers.
With characteristic lengths of such size it is possible to
treat systems with low concentrations of adsorbates that
are of 0.1%, 0.2%, 0.4% for resonant adsorbates (mono-
vacancies) and of 0.5%, 1%, 2% for non-resonant adsor-
bates (di-vacancies). For the results presented here the
energy resolution is of the order of 10−2 eV.
The effect of the inelastic scattering is treated in a

phenomenological way. We introduce an inelastic scat-
tering time τi, beyond which the propagation becomes
diffusive due to the destruction of coherence by inelastic
processes. This relaxation time approximation (RTA)
has been used succesfully to compute [38] conductivity
in approximants of quasicrystal where quantum diffusion
and localisation effect play a essential role [39–41]. Fol-
lowing previous works [38, 42, 43], we assume that the
velocity correlation function Ci(E, t) of the system with
inelastic scattering is given by

Ci(E, t) ∼ C(E, t)e−|t|/τi (3)

where C(E, t) is the velocity correlation of the system
without inelastic scattering. As shown in Refs. [38, 42, 43]
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FIG. 1: Densities of states as a function of energy. (a)
For resonant adsorbates (mono-vacancies) with concentra-
tions (empty circles) 0.1%, (empty square) 0.2%, (filled cir-
cle) 0.4%. (b) For non-resonant adsorbates (di-vacancies)
with concentrations (empty circles) 0.5%, (empty squares)
1%, (filled circle) 2%. (Dashed lines) graphene without ad-
sorbate. The inset shows the electron density per atom ne as
a function f the energy with the same symbols and colors.

the propagation given by this formalism is unaffected by
inelastic scattering at short times (t < τi) and diffusive
at long times ( t > τi) as it must be. We consider also
that the inelastic scattering does not affect the density
of states n(EF ). Therefore we get:

σ(EF , τi) = e2n(EF )D(EF , τi) (4)

D(EF , τi) =
Li(EF , τi)

2

τi
(5)

Li(EF , τi)
2 =

∫∞

0
X2(EF , t)e

−t/τi dt

τi
(6)

where EF is the Fermi energy, n(EF ) the density of
states, τi the inelastic scattering time and Li(EF , τi) the
inelastic mean-free path. Let us emphasize that in the
equation (6) X2(E, t) is calculated for the system with
Hamiltonian (1) which has only elastic scattering.
Densities of states

Figure 1 shows the total densities of states as a function
of energy for the two types of adsorbates. The case of the
mono-vacancy has already been studied in the literature
and our results are consistent with previous ones. In
particular the density presents a peak around the Dirac
point which is reminiscent of the mid-gap state produced
by just one missing orbital (resonant scatterer). For the
di-vacancy the density of states presents no peak because
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FIG. 2: Conductivity σ(E, τi) and inelastic mean-free path
Li(E, τi) versus inelastic scattering time τi. (a) Concentration
0.2% of resonant adsorbates (mono-vacancies) for energies
E = 0 (dashed line), E = 0.04 eV (thin line) and E = 0.8 eV
(thick line). (b) Concentration 1% of non-resonant adsorbates
(di-vacancies) for energies E = 0 (dashed line), E = 0.1 eV
(thin line) and E = 1.5 eV (thick line).

there is no resonant mid-gap state for such model (non-
resonant scatterer).

Conductivity versus inelastic scattering time τi and mi-

croscopic conductivity

Figure (2) presents the conductivity σ(E, τi) and the
inelastic mean-free path Li(E, τi) calculated as a func-
tion of inelastic scattering time τi for different energies
E. Conductivities are calculated for large values of τi up
to a few 10−11s which corresponds to inelastic mean-free
paths up to several hundred nanometers. Let us empha-
size again that this is possible because we can treat large
systems containing up to 108 atoms. We have checked
the convergence of our calculations with respect to the
size of the sample.

We define the microscopic conductivity σM as the max-
imum value of the conductivity over all values of τi. Ac-
cording to the renormalization theory this value is ob-
tained when the inelastic mean-free path Li(τi) and the
elastic mean free path Le are identical. For larger τi one
has Li(τi) > Le and σ(E, τi) decreases with increasing
τi due to quantum interferences effects. When the lo-
calization length ξ is much larger than the elastic mean-
free path ξ/Le ≫ 1 the conductivity σ(E, τi) presents a
plateau as a function of τi, as long as ξ ≫ Li(τi) > Le.
This is clearly observed for the highest conductivities in
Figure (2). According to the standard scaling theory of
localization this is the case when σM ≫ G0 = 2e2/h. In
this regime σM coincides with the semi-classical estimate
of the conductivity as we find below.
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FIG. 3: Microscopic conductivity σM versus electron density
per atom ne for (a) resonant adsorbates (mono-vacancies) and
(b) non-resonant adsorbates (di-vacancies), for 3 concentra-
tions (see caption of figure 1). [Inset provide a zoom on the
low concentration limit.] The predictions of the Boltzmann
theory are represented by dashed lines. For (a) the Boltzmann
conductivity is obtained with the self-energy of [19]. For (b)
we just provide the Boltzmann value close to the Dirac energy.

Validity of semi-classical and self-consistent theories

Figure (3) represents the values of the microscopic con-
ductivity σM as a function of the number of electrons per
carbon atom ne. The comparison with the conductivity
σB calculated with the semi-classical Bloch-Boltzmann
approach confirms that for large values σM ≫ G0 then
σM ≃ σB.
For the case of resonant adsorbates (mono-vacancies)

around the Dirac point there is an energy region in which
σM is of the order of 4e2/πh = 2G0/π. The maximum
energy of this region corresponds to about one electron
per impurity. This is consistent with predictions of self-
consistent theories [9, 13–20]. Yet inside this plateau a
peak of conductivity appears very close to the Dirac point
which is not predicted by self-consistent theories. This
peak is not obtained by [19] and is present in the cal-
culation of [20] although much less marked than in the
present work. We believe that the high energy resolu-
tion of the present calculation (∼ 10−2 eV) explains the
disagreement with the two previous studies.
For the case of non-resonant adsorbates (di-vacancies)

the conductivity minimum appears in a very narrow en-
ergy range. Again the proper description of this narrow
structure requires a high energy resolution and indeed we
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FIG. 4: Conductivity σ in units of G0 as a function of inelas-
tic scattering length Li for the 3 concentrations of adsorbates
(with the same symbols as in figure 1) (a) resonant adsor-
bates (mono-vacancies) at energies E = 0.03 eV (dashed line),
and E = 0.04 eV (continuous line). (b) non-resonant adsor-
bates (di-vacancies) at E = 0 eV. The dot-dashed straight
lines show the slope −α for Li ≫ Le (see text): (a) α = 0.25
and (b) α = 0.75. The inset shows σ(Li) at E = 0 in a) and
σ(Li) at E = 0.1 eV in b).

checked that with a lower energy resolution this plateau
disappears [34]. This narrow minimum is absent from
the calculations on the epoxy group in [11]. Again we
attribute this difference with the present work to a lower
energy resolution in [11].

Conductivity versus inelastic mean free path and

magneto-conductivity

We consider now the case when the inelastic mean-
free path Li is greater than the elastic mean-free path
Le (figure 4). Let us discuss first the energies where the
microscopic conductivity σM is of the order of 4e2/πh.
At these energies the conductivity is well represented by

σ ≃
4e2

πh
− α

2e2

h
Log

(

Li

Le

)

. (7)

The coefficient is α ≃ 0.25 for mono-vacancies and
α ≃ 0.75 for di-vacancies. This law is reminiscent of
the result of the perturbation theory of 2-dimension An-
derson localization for which α ≃ 1/π [44]. An important
difference here is that σM is of orderG0 which means that
the regime is not perturbative close to the Dirac point.

Our study gives a description of the temperature de-
pendence of the conductivity provided that the temper-
ature dependence of the inelastic mean free path Li(T )
is known. This will depend on the dominant scattering
mechanism (usually electron-electron or electron-phonon
scattering) and is widely discussed in the litterature [44].
Our study provides also a description of the magneto-
conductivity since the magnetic length L(B) =

√

h̄/eB
plays the role of a finite coherence length such as the in-
elastic mean-free path Li. The magneto-conductivity is
∆σ(B) ≃ α(G0/2)∆Log(B) and should be observed as
soon as the magnetic length L(B) =

√

h̄/eB is smaller
than the inelastic mean-free path Li(T ) which depends
on the temperature T in a given sample.
For the energies close to the Dirac point where σM

tends to be larger than 4e2/πh the conductivity does not
follow the above law with respect to Li. In the mono-
vacancy case a divergence of the localization length at the
Dirac energy is predicted in [21]. Here on the contrary
the conductivity tends to zero at large inelastic length
which indicates a finite localization length. This discrep-
ancy can be explained by the finite energy resolution of
our calculation which does not allow to capture the di-
vergence at E = 0. Since this resolution is of the order
of 10−2 eV, we conclude that the divergence of the local-
ization length exists only in a narrow energy range and
could be difficult to observe experimentally.
Conclusion

In summary we have analyzed the conductivity of
two generic models representative of resonant and non-
resonant adsorbates on graphene. For two dimensional
models with Anderson localization, like the ones studied
here, the inelastic mean-free path Li is a key parameter
and all the calculations here are done as a function of
this characteristic length scale. These calculations allow
to test the validity of many approximate theories devel-
oped so far. In particular, for resonant absorbates, the
available mean-field theories do not describe correctly the
electronic structure and the physics of transport in the
central peak of the density of states, at the Dirac energy.
Close to the Dirac energy the microscopic conductiv-

ity σM , i.e. the conductivity obtained when the inelastic
mean free path Li and the elastic mean-free path Le are
identical, is of the order of 4e2/πh. As we show this
occurs in a region of energies which is larger for reso-
nant than non-resonant adsorbates. When the micro-
scopic conductivity σM is of the order of 4e2/πh a linear
variation of the conductivity with Log(Li/Le) is calcu-
lated. This allows some predictions for the temperature
dependence of the conductivity and for the magneto-
conductivity. The prediction of a divergence of the lo-
calization length at the Dirac energy [21] cannot be con-
firmed by our calculations. This suggests that this diver-
gence occurs on an energy range less than about 10−2 eV
at the concentrations considered here.
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