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Abstract

Given a Digital Straight Line (DSL) of known characteristics (a, b, µ),
we address the problem of computing the characteristics of any of its
subsegments. We propose a new algorithm as a smart walk in the so
called Farey Fan. We take profit of the fact that the Farey Fan of order
n represents in a certain way all the digital segments of length n. The
computation of the characteristics of a DSL subsegment is then equivalent
to the localization of a point in the Farey Fan. Using fine arithmetical
properties of the fan, we design a fast algorithm of theoretical complexity
O(log(n)) where n is the length of the subsegment. Experiments show
that our algorithm is faster than the one previously proposed by Said and
Lachaud in [15, 14] for “short” segments.

1 Introduction

Digital Straight Lines (DSL) and Digital Straight Segments (DSS) have been
known for many years to be interesting tools for digital curve and shape analysis.
The applications range from simple coding to complex multiresolution analysis
and geometric estimators. All these applications require to solve the so-called
DSS recognition problem. Many algorithms, using arithmetics, combinatorics or
dual-space have been proposed to solve this problem, reaching a computational
complexity of O(n) for a DSS of length n. A DSS belongs to infinitely many
DSL of different characteristics, only one DSL enables to define the minimal
characteristics of a DSS. In [14], the authors introduce the following problem:
given a DSL of known characteristics and a subsegment of this DSL, compute
the minimal characteristics of the DSS. The authors originally encountered this
problem for implementing a fast algorithm to compute a multiresolution repre-
sentation of a contour. This problem also arises for the digitization of a segment
given by its two floating-point endpoints: indeed, the slope computed from the
endpoints may be quite far from the minimal characteristics of the digitized
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segment, especially if the segment is short. Two algorithms (SmartDSS and
ReversedSmartDSS) are presented in [14, 15]: both use the decomposition into
continuous fractions of the DSL slope and reach a logarithmic complexity.

This problem is however not so new since in [12], the author presents a quick
sketch of a method that solves it using the Farey Fan. The announced com-
plexity of the method is O(log2 n) for a segment of length n. In this paper, we
investigate further in this direction to provide a thoroughly defined algorithm.
Moreover, we show how its complexity can be lowered to O(log(n)) with an
astute use of arithmetical properties of the Farey Fan. Finally, we compare the
performance of our algorithm with the ones proposed in [14] and [15] and show
that it behaves particularly well for “short” segments.

2 Setting the problem

2.1 Digital line, segment and minimal characteristics

A Digital Straight Line (DSL for short) of integer characteristics (a, b, µ) is the
infinite set of digital points (x, y) ∈ Z2 such that 0 ≤ ax− by+µ < max(|a|, |b|)
(gcd(a, b) = 1)[5]. These DSL are 8-connected and often called naive. The slope
of the DSL is the fraction a

b and µ
b is the shift at the origin. In the following,

without loss of generality, we assume that 0 ≤ a ≤ b. The remainder of a DSL
of characteristics (a, b, µ) for a given digital point (x, y) is the value ax− by+µ.
The upper (resp. lower) leaning line of a DSL is the straight line ax−by+µ = 0
(resp. ax− by + µ = b− 1). Upper (resp. lower) leaning points are the digital
points of the DSL lying on the upper (resp. lower) leaning lines.

A Digital Straight Segment (DSS) is a finite 8-connected part of a DSL. It
can be uniquely defined by the characteristics of a DSL containing it and two
endpoints P and Q. However, a DSS belongs to an infinite number of DSLs.
In this context, the minimal characteristics of a DSS are the characteristics of
the DSL containing it with minimal b [16]. Note that the notions of leaning
points and lines are similarly defined for DSSs. DSS recognition algorithms
aim at computing the minimal characteristics of a DSS, taking profit of the
following fact: (a, b, µ) are the minimal characteristics of a DSS if and only if
the DSS contains at least three leaning points [5]. In this case, the minimal
characteristics are the characteristics of the DSS upper leaning line.

The set of DSLs containing a DSS is usually called the preimage of the DSS.
Given a DSS S, it is defined as P(S) = {(α, β), |α| ≤ 1 | ∀(x, y) ∈ S, 0 ≤
αx− y+ β < 1}. The preimage can be represented in the (α, β) space, where α
represents the slope and β the shift at the origin of a straight line.

The preimage of a DSS is a polygon with a well-defined structure that is
directly related to the leaning points and lines defined by its minimal charac-
teristics [12, 6]. Figure 1 below (from [4]) illustrates this point.

Proposition 1 ([4]). Let P(S) be the preimage of S. Let ABCD be the polygon
defined by this preimage, where A is the upper left most vertex, and the vertices
are named counterclockwise. Following the notations of Figure 1 we have:
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Figure 1: (a) DSS of minimal characteristics (1, 3, 1) with its leaning points
U,U ′, L, L′. (c) Representation of P(S) is the (α, β) space.(b) Each vertex of
the preimage maps to a straight line in the digital space. The vertex B( 1

3 ,
1
3 )

maps to the upper leaning line, the characteristics of which are the minimal
characteristics of the DSS.

• The vertex B maps to the upper leaning line UU ′;

• The vertex D maps to the lower leaning line LL′ translated by the vector
(0, 1) in the digital space;

• The vertex A maps to the straight line U ′L+, where L+ = L+ (0, 1);

• The vertex C maps to the straight line UL′+, where L′+ = L′ + (0, 1).

The minimal characteristics of S are (a, b, µ) if and only if B = (ab ,
µ
b ) (p and

q relatively prime). B is called the characteristic point of P(S). Edges [AB]
and [BC] are called lower edges.

2.2 Farey fan

Definition 1 (Ray). Let x and y be two nonnegative integers. The ray defined
by x and y is defined and denoted as follows:

R(x, y) = {(α, β)|β = −xα+ y}

The slope of the ray is x.

Note that x is not the geometrical slope of the ray but its absolute value. In
the following, the order on the slopes is to be understood as the order on the
absolute values of the geometrical slopes.

Definition 2 (Farey Fan). The Farey Fan of order n, denoted by Fn is defined
in the (α, β) space as the arrangement of all the rays R(x, y) such that 0 ≤ y ≤
x ≤ n, and such that 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.
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Figure 2: (a) Farey Fan of order 6. (b) Illustration of Properties 1 to 4 from
Section 3.

A facet of Fn is a cell of dimension 2 of this arrangement. In the following, a
point of Fn stands for any point v of the (α, β) space (0 ≤ α ≤ 1 and 0 ≤ β ≤ 1)
belonging to a ray, and such that the abscissa of v is a fraction of denominator
smaller than or equal to n.

For any n, it is well known that there is a bijection between the facets of Fn
and the set of DSSs of length n (composed of n+ 1 pixels) [12].

Definition 3. Let S be a DSS of length n. Facet(S) is the facet equal to P(S)
in the Farey fan of order n.

Moreover, from Proposition 1, a one-to-one correspondence can be defined
between a facet and the characteristic point of the facet.

Definition 4. Let f be a facet of the Farey fan of order n. We denote by
CPoint(f) the point v of f such that, if v = (pq ,

r
q ), then (p, q, r) are the minimal

characteristics of the DSS Facet−1(CPoint−1(v)).

The Farey Fan of order 6 is depicted in Figure 2(a). The characteristic points
of a few facets are depicted. Note that three types of facets can be identified:

• quadrilateral facets (in orange in Figure 2(a));

• upper triangular facets (in green in Figure 2(a));

• lower triangular facets (in blue in Figure 2(a)).

Consider now the following problem:
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Problem 1. Given a DSL L of characteristics (a′, b′, µ′) and two points P (xP , yP )
and Q(xQ, yQ) of this DSL, compute the minimal characteristics (a, b, µ) of the
DSS S = {(x, y) ∈ L | xP ≤ x ≤ xQ}.

After a translation of the characteristics of L such that P is set to the origin
(µ← µ+ axP − byP ), this problem is equivalent to the following one:

Problem 2. Given a point Λ(ab ,
µ
b ) and a point Q(xQ, yQ), find the point v of

the Farey fan of order n = xQ such that Λ ∈ CPoint−1(v).

In other words, the problem is to find the characteristic point of the facet of
Fn containing Λ.

All in all solving Problem 2 is equivalent to performing a point location in
an arrangement of lines. However, the number of facets in the Farey fan of order
n (which is equal to the number of DSS of length n) is in O(n3) [9, 10, 2], and
point location algorithms in such a structure are expensive in term of both time
and space complexity [13]. This brute force approach is then less efficient than
classical DSS recognition algorithms [5, 17, 11, 7].

In the following sections, we revisit the approach proposed by [12] and
present an algorithm to solve Problem 2 in time complexity O(log n), with-
out explicitly computing the Farey fan. In the next section, we recall several
structural and arithmetical properties of the Farey fan, and derive some very
useful corollaries. These properties are the core of the algorithm detailed in
section 4.

3 Properties of the Farey Fan

The Farey series of order n is the set of irreducible fractions in [0, 1] of denom-
inator lower than or equal to n [8]. All the properties below are illustrated in
Figure 2(b) in the Farey fan of order 6. The first three properties are from [12]
and the reader is invited to consult this reference for the proofs, that are fairly
simple.

Property 1 ([12]). The abscissas of intersections of a ray R(x, y) of Fn with
other rays are consecutive terms of a Farey series of order max(x, n− x).

In Figure 2(b), the abscissas of the intersections between the ray R(2, 1),
depicted in red, and the other rays of F6 are consecutive terms of the Farey
series of order 4 = max(2, 6− 2).

Property 2 ([12]). Let fi and fi+1 be two consecutive fractions of the Farey
series of order n. In the interval fi < α < fi+1, there is no intersection of rays.
Thus, in this interval the Farey fan is a simple ladder of rungs.

In Figure 2(b), two ladders are depicted in blue for fi = 1
3 and fi = 2

3 .

Property 3 ([12]). Let v(pq ,
r
q ), 0 ≤ p ≤ q ≤ n, be a point of Fn. Let R(x0, y0)

be the ray of minimum slope passing through v. The other rays passing through
v have a slope equal to x0 + kq with k ∈ Z and x0 + kq ≤ n.
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In Figure 2(b), three rays go through the point ( 1
2 ,

1
2 ) (in orange). The slopes

of these rays are equal to x0 = 1, 3 and 5. From this property, we can derive
the following corollary.

Corollary 1. Let v(pq ,
r
q ), 0 ≤ p ≤ q ≤ n, be a point of Fn. Let R(x, y) be a

ray passing through p. R is the ray of smallest slope passing through v if and
only if x− q < 0. It is the ray of greatest slope passing through v if and only if
x+ q > n.

Property 4. Let p
q be a fraction of the Farey series of order n. The intersection

between the line α = p
q and Fn is exactly the set of points (pq ,

r
q ) where r takes

all the integer values between 0 and q.

Proof. We study the intersection between R(x, y) defined by the equation β =
−αx+ y and α = p

q . We get β = −px+qy
q . For 0 ≤ y ≤ x ≤ q ≤ n, the quantity

−px + qy takes all the integral values in the interval [|0, q|], which ends the
proof.

In Figure 2(b), the intersection between α = 4
5 (depicted in green) and Fn

is the set of points ( 4
5 ,

r
5 ) with r ∈ Z, 0 ≤ r ≤ 5. Using Properties 2 and 4, we

can prove the following result to compute the ray of smallest slope in a given
point.

Corollary 2. Let v(pq ,
r
q ), 0 ≤ p ≤ q ≤ n, be a point of Fn. Let p

′

q′ be the fraction

following p
q in the Farey Series of order n. The ray of smallest slope passing

through v is defined by the point v and the point of coordinates v′(p
′

q′ ,
b rq′q c
q′ ).

Proof. From Property 2, Fn is a ladder in the interval [pq ,
p′

q′ ], which means there
is no intersection of rays in this interval. From Property 4, we know that there
is at least one ray passing through the point v. Again from Property 4, all the

rays passing through v cut the line of equation α = p′

q′ in a point v′(p
′

q′ ,
r′

q′ ),

r′ ∈ Z, 0 ≤ r′ ≤ q′. Among all these rays, the ray of smallest slope is the one

that passes through the point vmax(p
′

q′ ,
rmax

q′ ) where rmax is the maximal value

of r′ such that r′

q′ ≤
r
q . rmax is given by b rq

′

q c which ends the proof.

4 Fast walk in the Farey Fan

Following Problem 2, we look for the characteristic point of the facet of F(n)
containing a given point Λ(ab ,

r
b ). From Proposition 1, Section 2.2 and Property

4 we have the following characterization of the characteristic point.

Property 5. A point v(pvqv ,
rv
qv

) is the characteristic point of a facet if and only
if:

1. either v is the intersection of the two lower edges:
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(a) the ray supporting the right lower edge is the one of smallest slope in
v;

(b) the ray supporting the left lower edge is the one of greatest slope in v;

2. or v is on the unique lower edge and more than one ray passes through the
point (pvqv ,

rv+1
qv

)

As in [12], the algorithm consists of three steps that are detailed in the
following sections:

1. Find the ladder to which Λ belongs;

2. Locate the highest ray that lies on or below Λ: this ray supports a lower
edge of the facet (Section 4.2, Algorithm 1);

3. Walk along the ray(s) to determine the characteristic point (Section 4.3,
Algorithm 2).

Particular cases where Λ is a point of Fn (either on a ray, or a vertex) are
eluded, so that the focus is done on the general case. However, these particular
cases are not complicated to handle.

4.1 Find the ladder

Given a point Λ(ab ,
µ
b ), finding the ladder to which Λ belongs in Fn is equivalent

to finding the two fractions with a denominator smaller than n closest to a
b

(greater and lower). We look for two fractions f = p
q and g = p′

q′ such that

q ≤ n, q′ ≤ n, f ≤ a
b ≤ g, and there is no fraction of denominator smaller or

equal to n neither between f and a
b nor between a

b and g.
This problem is closely related to the computation of the best rational ap-

proximation of a number, for which solutions using the decomposition into con-
tinuous fractions exist [8]. However, we do not need only the best approxima-
tion, which is either the closest lower or closest greater fraction, but also the
other one. To solve this problem, we use the algorithm of Charrier and Buzer
[3]. This algorithm aims at computing the approximation of any real number
by rational numbers of bounded denominator and straightforwardly solves our
problem in O(log(n)). Moreover the algorithm is simple to implement and does
not require continuous fractions computations.

4.2 Locate a lower edge

At this point, we work in a ladder defined by two fractions f = p
q and g = p′

q′ of
Fn. This step consists in localising Λ in the ladder by computing the highest
ray under Λ in Fn. In [12], this step is performed as a binary search among the
rays of the ladder. However, each stage of the binary search requires to solve a
diophantine equation with the extended Euclidean algorithm, reaching a total
complexity of O(log2 n).
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Figure 3: Illustration of Algorithm 1: the dichotomy is performed on the red
rays only.

Our algorithm, presented in Algorithm 1 and illustrated in Figure 3, also
performs a dichotomy (line 4), but only on the rays of smallest slope passing
through the points of abscissa p

q (in red in Figure 3).
Thanks to Property 4, this set of points can be defined as on line 1, and the

rays of smallest slope are computed in time O(1) in the ladder using Corollary 2
(line 2). On line 4, the ray of greatest slope is computed from the ray of smallest
slope thanks to Property 3. On line 5, the value x is not an integer value, but
the closest lower ray can be easily computed using Property 3.

Algorithm 1: Search in the ladder

Let vi = (pq ,
i
q ), i ∈ Z, 0 ≤ i ≤ q1

Let Ri(xi, yi) be the ray of smallest slope passing through vi2

Perform a dichotomy on the Ri to compute j ∈ [|0, q − 1|] such that Λ is3

above Rj and below Rj+1

if Λ is under the ray of greatest slope through vj+1 then Return Rj4

else
Compute the slope x of the line passing through vj+1 and Λ5

Compute [x] as the value xj+1 + kq nearest to and lower than x, k ∈ Z6

Return R([x], (j+1)+p.[x]
q )7

In Figure 3, on the left, the point Λ is located under the ray of greatest slope
passing through vj+1 (in green, line 4 in Algorithm 1), Rj is returned. On the
right, the point Λ is in between the rays passing through vj+1 : the slope of the
line passing through vj+1 and Λ is computed (in blue, line 5 in Algorithm 1),
and is rounded to find the nearest lower ray.
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4.3 Find the characteristic point

Let us denote by M and N the two points defined as the intersection between the
ray R(x, y) returned by Algorithm 1 and the vertical lines defining the ladder,

i.e. α = p
q and α′ = p′

q′ as defined in Section 4.1. The segment [MN ] is part of
a lower edge of the facet of Fn containing Λ in Fn.

The first step of the algorithm detailed in Algorithm 2 is to compute the
extremities of the lower edge containing [MN ]. To do so, the key point is to use
Property 1 to characterize the points of intersection between a ray and other
rays. Given a ray R(x, y) of the Farey Fan Fn and a point v(pq ,

r
q ) on this ray, v

is the crossing point of several rays if and only if q ≤ max(x, n− x). Thus, the
abscissa of the left (resp. right) extremity of the lower edge is given by the term
of the Farey series of order max(x, n − x) lower than (resp. greater than) and

closest to p
q (resp. p′

q′ ) (line 1 of Algorithm 2). Given a fraction, computing the
next term in a Farey series of given order cannot be solved in constant time but
requires a call to the extended Euclidean algorithm. From these two fractions
p

q and p
q we compute the two points O of R with abscissa equal to

p

q and O of

R with abscissa equal to p
q (line 2).

At this point, [OO] is a lower edge of the facet containing Λ. Then, the
three cases illustrated in Figure 4 can occur: either O or O is the characteristic
point (case (a) and (b)), or not (case (c)). We use Property 5 to distinguish
between these cases:

• if R is the ray of smallest slope in O, then O is the characteristic point:
the condition line 3 refers to Corollary 1;

• if R is the ray of greatest slope in O, then O is the characteristic point:
the condition line 4 refers to Corollary 1;

• otherwise, the facet is lower triangular, and the abscissa of the charac-
teristic point is given by the mediant of the abscissae of the lower edge
extremities, i.e. O and O (direct consequence of Property 1): on line 5,
the mediant is computed, and the point of R with this abscissa is the
characteristic point.

4.4 Complexity

Lemma 1. The complexity of the algorithm described in Section 4 is in O(log(n)),
where n is the length of the DSS.

Proof. We assume a computing model where standard arithmetic operations
are done in constant time. Finding the ladder is done using the algorithm of
Charrier and Buzer [3] that has a complexity of O(log(n)).

The localization of a lower edge is done with Algorithm 1: the computation
of the Ri (line 2) is done in constant time thanks to Corollary 2, such that the
global complexity of lines 2 and 3 is O(log(q)) with q ≤ n. The operations done
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Algorithm 2: Find the characteristic point

Let R(x, y) be the ray output by Algorithm 1

Let M(pq ,
r
q ) and N(p

′

q′ ,
r′

q′ ) belonging to R

Let
p

q and p
q be the fractions before p

q and after p′

q′ in the Farey Series of1

order max(x, n− x).
Let O (resp. O) be the intersection point between α =

p

q (resp. p
q ) and R2

if x− q < O then Return O else3

if x+ q > n then Return O else4

Let p̃
q̃ =

p+p

q+q . Return the intersection point between α = p̃
q̃ and R5

M N

p

q

p
q

R(x, y)
OO

(a)

M

N

p

q
p
q

R(x, y)

O

O

(b)

M

N

O

p

q
p
q

R(x, y)

p̃
q̃

O

(c)

Figure 4: Three cases for the lower edge [OO]: (a) all the rays passing through
O (in blue) have a slope greater than x and O is the characteristic point; (b) all
the rays passing through O (in blue) have a slope smaller than x and O is the
characteristic point; (c) neither O nor O is the solution, and the characteristic
point is found with a mediant computation.

in lines 4 to 7 are done in constant time, and the complexity of Algorithm 1 is
in O(log(q)).

Algorithm 2 performs the last step of the algorithm. On line 1, two calls
to the extended Euclidean algorithm are necessary to compute the lower edge
extremities, which takes O(log(n)). All the other operations of this algorithm
take O(1), which ends the proof.

Algorithm 2 can actually be optimized so that the call to the extended
Euclidean algorithm (line 1) is not always necessary. These optimizations consist
in the study of particular cases that are not presented here to keep the algorithm
as clear as possible. All in all they do not change the theoretical complexity but
lower the constant term, and slightly improve the practical efficiency.

This algorithm solves Problem 2 in O(log(n)) where n is the order of the
Farey fan. From the equivalence of Problems 1 and 2, this algorithm also solves
Problem 1 in logarithmic time where n is the length of the DSS.
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5 Experimentation

We have implemented the presented algorithm using the open-source library
DGtal [1]1. The algorithm is very easy to implement and does not require
continuous fractions implementation as in [14, 15]. The algorithms of Said and
Lachaud [14, 15] being implemented in this library, comparing the algorithms
was then an easy task. We also conducted the experimentation along the same
protocol as the one they proposed as a test file in DGtal. Basically, the idea
is to randomly choose a maximal value N for the parameter b of the DSL (a
is smaller than b), then fix a maximal value for the length n of the DSS, and
finally randomly choose a shift µ and the abscissa of the DSS first point. Each
experiment is conducted for 10000 randomly chosen parameters.

The algorithms are executed to compute the characteristics of the DSS con-
tained in the DSL. For each algorithm, the total running time is measured and
divided by the total number of trials.

Figure 5 represents the results obtained for N = 106 in (a) , N = 109 in (b)
and n taking all the value of the form 10.2k in the interval [10, N ]. The graph
represents the execution time in ms versus the maximal length n of the DSS.

The first observation is that SmartDSS is clearly slower than the other two
algorithms. The second observation concerns the behaviour of the curves: the
execution time increases with n for our algorithm while it decreases for Re-
versedSmartDSS. This is consistent with the complexities of the algorithms.
The complexity of our algorithm is logarithmic in the length of the DSS while
the complexity of ReversedSmartDSS depends on the difference of depth of the
slope of the DSL and the slope of the DSS. Consequently, our algorithm is
more efficient for short DSSs, while for ReversedSmartDSS, the greater is n, the
smaller is the difference of slopes, and the more efficient is the algorithm.

It is thus interesting to study the value of n for which the two curves cross
each other. We see in Figure 5 that this value is 104 for N = 106 and 106 for
N = 109. Other experiments show that this value is 103 for N = 104 and that
the threshold ratio n

N below which our algorithm is faster tends to decrease with
N .

6 Conclusion

We have proposed an algorithm to compute the characteristics of a DSS which
is a subsegment of a DSL of known characteristics. We use the Farey fan and
its numerous arithmetical properties to design a very efficient both theoretically
and practically, and easy to implement algorithm to solve this problem.

We prensented the algorithm in the case where the DSL parameters are
rational fractions. However, it can be straightforwardly extended to deal with
irrational parameters.

1The C++ code of this algorithm is freely available on the webpage http://www.

gipsa-lab.grenoble-inp.fr/~isabelle.sivignon.
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Figure 5: Runtime comparison of our algorithm and the algorithms of [14, 15]

The exprimental section has shown that our algorithm is faster than the
ReversedSmartDSS algorithm when the length of the DSS is sufficiently smaller
than the DSL period. This suggests that the ReversedSmartDSS algorithm
should be prefered when the DSL parameters are issued from the recognition of
a DSS on an image, and that our algorithm would perform better to draw a DSS
given by floating-point vertices on an image. It would however be interesting to
deepen this comparison.
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