
HAL Id: hal-00765963
https://hal.science/hal-00765963

Submitted on 17 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling the Misunderstanding in Interactions:
Definition and Solution

Phuong Thao Pham, Mourad Rabah, Pascal Estraillier

To cite this version:
Phuong Thao Pham, Mourad Rabah, Pascal Estraillier. Handling the Misunderstanding in Interac-
tions: Definition and Solution. International Conference on Software Engineering & Applications,
Dec 2011, Singapour, Singapore. pp.47-52, �10.5176/2251-2217_SEA42�. �hal-00765963�

https://hal.science/hal-00765963
https://hal.archives-ouvertes.fr

Handling the Misunderstanding in Interactions:
Definition and Solution

Phuong Thao Pham

L3I Laboratory
University of La Rochelle

La Rochelle, France
phuong_thao.pham@univ-lr.fr

Mourad Rabah
L3I Laboratory

University of La Rochelle
La Rochelle, France

mourad.rabah@univ-lr.fr

Pascal Estraillier
L3I Laboratory

University of La Rochelle
La Rochelle, France

pascal.estraillier@univ-lr.fr

Abstract In this paper we introduce our explorative work on
the concepts and taxonomy of the misunderstanding in
interaction and on the architectural mechanism solving this
problem in interactive systems. System actors interacting during
the software execution may face misunderstandings when the
internal data of at least one actor evolve differently from other

, after the same sequence of interactions within a
common context. We formally define the misunderstandings in
interaction and propose an architecture including mechanisms to
detect, treat and avoid them. These mechanisms insure the
consistency of system s actor data at the end of each interaction
sequence in the application scenario.

Interactive system; adaptativity; misunderstanding; agent-based
approach; fault-tolerance

I. INTRODUCTION
Early in the history of computer science, the users looked

forward to affect dynamically programs execution according to
their actions. This promoted the interactivity and gave rise to
the category of interactive systems. Games and simulators are
examples of such systems. In these systems, the users and the
internal agents can modify systems content and progress in real
time through input adjustments. The evolution of interactive
system introduced the need to adapt the system execution not

 actions, but to user behaviors. They hence
became adaptive to support the execution of adaptive
applications. Our work deals with the management of the
interactivity in interactive systems with adaptive execution.

The interactive applications adaptativity is based on three
logics: i) l the designer
logic what the system is supposed to do, ii) s
logic, called the system logic and describing system behavior
according to system parameters how the system works, and,
iii) l the user logic what the
user is trying to do. The interactive systems involve advanced
human-machine interactions and storylines based on predefined
application scenarios. In order to perform the adaptativity, the
system must capture user behaviors from their interactions.
Then, according to system logic and designer logic, the system
adjusts its execution to what it perceives of user logic. In
general, the execution process of an interactive system is not
constant, even not predictable.

In an interactive system, the human users are the main
participants. Besides, there are also other types of actors, such
as virtual characters in video games, narrator who manages the

application scenario plot
With different roles in the system, they represent the class of
actors involved From this point of
view, [1] defines the notion of interaction an action carried
out by an actor towards another actor and modifying the state

Obviously,

Our work focuses on the system logic consistency
management according to actors behavior interpretation. The
system may misunderstand actors intentions. This may lead to
an erroneous interpretation of their behavior and an erroneous
adaptation of system execution. This misunderstanding may
concern user-system interactions, but it can also appear in any
kind of interaction between any system actors. The
misunderstanding may results from the incomplete actors data
or the non-determinism of actors behavior.

In this paper, we define what the misunderstanding in
interaction is and how it arises, in order to, on one hand, detect
and treat it, and on the other hand, prevent it structurally. Our
approach for the misunderstanding management is based on:
i) system architecture definition, to build the system overall
structure, ii) events and interactions observation to detect the
misunderstandings, and iii) consistency mechanisms to
treat/avoid the misunderstandings. To detect, treat and avoid
the misunderstanding in interactions, we suggest adding the
appropriate mechanisms in system architecture that will control
a interactions and insure the coherency between actors
and system s all along the execution. These mechanisms
are inspired by fault-tolerant techniques, since
misunderstandings may be seen as threats to system service
providing according to dependability point of view. Our aim is
to elaborate generic and reusable mechanisms avoiding the
user-system misunderstandings and to include them into
classical interactive system architecture. We suggest in this
papers way to achieve this.

II. RECENT WORK
In the recent research, we can find several works dealing

with the user-system dialogue where the communication is
done through a real human language [2-5]. According to
Rapaport [4], negotiation is the key to understanding. A
cognitive agent understands by negotiating with the
interlocutor or by hypothesizing the meaning of an unknown
word

mailto:phuong_thao.pham@univ-lr.fr
Mourad Rabah

Mourad Rabah
Published in Proceedings of the 2nd International Conference on Software Engineering & Applications (SEA’2011), Singapore, pp. 47-52, december 2011

mailto:mourad.rabah@univ-lr.fr
mailto:pascal.estraillier@univ-lr.fr

itself about something external by comparing it perception and
internal knowledge in order to change or correct its own
misunderstandings. Other works propose to use confidence
scores to measure the reliability of each word in a recognized
sentence [6]. Besides, Lopez-Cozar proposed to implement a
frame correction module, which is independent of speech
recognizer [3]. This module corrects misunderstandings in a
sentence, caused by the errors in speech recognition, by
replacing the incorrect frame with an adequate one.

Karsenty and Botherel applied the adaptable and adaptive
transparency strategies to TRAVELS project with the goal of
helping the uses to understand and react appropriately to
system rejections and misunderstandings [2]. The ability of

users on how to correct misunderstandings are two ways to
help users handle the occurred problems. This strategy is very
effective in misunderstanding detection and raises the rate of
appropriate user responses after system rejections.

All of these works deal with the problem in speech dialogue
where the misunderstandings are the more frequent. But the
misunderstanding can be found in other forms of interaction
like actions, gest
treat the misunderstandings between the actors themselves,
besides the user-system misunderstandings. It is not easy to
recognize such class of misunderstandings

III. MISUNDERSTANDING IN INTERACTIONS
a set of information that can be used to

characterize the situation of an entity [7]. An entity in our
work is an actor involved in the interaction. A situation is an
interaction sequence involving several actors and defining the
interaction context. Thus, an interaction during system
execution is carried out between at least two actors, but within
a common context.

A. ocal Vision and the Context
A lot of work proved that the context is related to the

[8-9]. There is interdependence between the
common context and the actors located in this context. An
actor performs its activities depending on the current situation
and the available contextual information [10]. Each actor has
to observe and perceive the world, to interpret with its own
logic, to combine with its existing knowledge to construct its
own contextual vision and to update the new knowledge. This

local vision

The local vision own knowledge about the extern
s with other

actors (other states), and its own profile (internal state).
This local vision can be represented by a state vector. Thanks

The actors are now able to interact with the others more
intelligently with strategy and coordination. However, the
local vision is not static. It evolves during interaction
sequences. The perceived data are not always identical
between different actors due to different capacity of cognition.
As consequence, their local visions may start to differ, then
become inconsistent. That can lead to different
comprehensions of a same fact (a sentence, an action, a
state If the actors use this inconsistent data in future
interactions, that may lead to a misunderstanding.

We give the following definition: Two actors are in a
misunderstanding state when: they are in interaction with
each other and there are incoherent data in their local visions
about the same fact. A fact is considered as objective data or
absolute reference to system, actors or resources states. If
we consider the interactions between two actors like the acts
of language, the misunderstanding can be observed when two
actors think that they talk about the same thing whereas they
actually talk about different things [4].

B. Formal Presentation
Many works, as [11-12] use the finite state system to

represent interactive systems. Besides, the linear logic and
Petri net has been used by [1] to model the actions and the
scenario. We choose the linear logic ([13]) to formalize the
misunderstanding because it allows representing states by
atoms. Let two actors A and B interacting in the presence of
the fact f from the extern world. The atom is the absolute
reference to f. The knowledge perceived by A and B about the
fact f is presented by the atoms and . The perception can
be seen as an internal action which cannot be observed by the
other actors. The perception of A and B about f is shown in the
figure 1 and two following logic formulas:

Misunderstanding in interaction appears when is
different from :

The distance measures the difference level between
and :

The ideal situation, e.g. without misunderstanding, is when
the perception of A and B on a fact f is identical:

 and the distance

C. Classification of Misunderstandings
We have identified several kinds of misunderstandings.

1) According to dimension: point of views.
 Symmetric misunderstanding: none of the actors has

correct knowledge on f.
 , and .

 Partial misunderstanding:
o From A point of view: and
o From B point of view: and

2) According to severity: misunderstanding consequences
on the interactions define two boundary levels.

 Minor: non blocking misunderstanding, without
significant effect on actors interactions.

 Catastropic: misunderstanding causing interaction
interruption and/or deadlock.

3) According to frequency: misunderstandings reccurence.
 Seldom misunderstanding: rare or single.

f

A B

EA
f EB

f

Ef

Figure 1 - Actors A and B perceive the fact f in interaction

 Frequent misunderstanding: reccurent.
4) According to revelation: misunderstanding perception.

 Revealed misunderstanding: detected by an algorithm
or perceived as consequence of the interaction
sequence. The revealed misunderstanding is called
active when it may produce a deadlock in interaction.
Otherwise, it is dormant.

 Latent misunderstanding: not yet detected
misunderstanding that may rise, propagate or create
new misunderstandings.

D. What Elements Cause Misunderstandings?
Misunderstandings in interaction has various causes

1) Different references: When interacting actors have
different contexts. The interactions between actors are carried
out under a concrete context that influences their behaviors.
The actors locating in different reference worlds will talk
about different things. For instance bug is a kind
of insect. But in the computer bug refers to an
error, mistake or fault that produces an incorrect program
execution. If the interaction context is not enough clear, the

will not be synchronized and
misunderstanding conditions may be established.

2) Different logic: The actions of an actor also depend on
his own logic which is the deduction rules. For exemple: Two

actor A, an old person means a person over 60 years: old(x)
 age(x)>60year). For the actor B, an old person means the

oldest known person: old(x) y age(x) age(y). If B asks A
for an old person, B will expect the oldest person, whereas A
will just provide someone old but not especially the oldest. If
B asks again, A may provide different answer and A and B
will be in a misunderstanding since each actor has his own
logic.

3) Semantic ambiguity: The wrong interpretation during
the interactions can bring to a different perception. Semantic is

 [4], the external world is reflected subjectively in

obvious that an actor can interpret as correct or wrong a fact
because of the lack of information or the imperfection of
observation. For instance: in an e-learning application, a
camera has to check student presence. Due to the limitation of
the camera scope, a student may be warned because of his
absence even he is still there but out of the camera scope.
E. Consequences

Misunderstanding in interaction has various outcomes.
1) Intearction deviation: The interaction chain between

two actors diverge from the planned scenario. An actor can
estimate incorrectly the state of his interaction partners
because of misunderstandings. As result, the actor will make a
wrong decision based on the wrong observed state of its
partners. Instead of an appropriate action according to the

diverge from its normal
logic and from the logic of other interacting actors.

2) Interaction Deadlock: This problem arises when the
misunderstanding is revealed and the actors, of course, get
stuck in the middle of the interaction. In this case, an actor
receives an answer or a demand that he does not expect,
because he is expecting some others reaction. The interaction

sequence will be broken. Both or each actor does not know
what to do anymore.

3) Propagation of misunderstanding: If the misunder-
standing is not detected or revealed, it can be propagated all
along the scenario and the execution of the application.
Furthermore, the misunderstanding severity may increase.

IV. MEASURES
To estimate misunderstanding importance and assess the

efficiency of misunderstanding handling techniques, we
propose a set of measures. These measures are inspired by the
dependability domain [14].

A. Interaction States
The interaction between the actors can be in one of the

three states according to the misunderstandings and their
handling. The Markov chain in figure 3 shows the transition
between the interactions states. Let the
variable associated to the interaction states.

 Stable state (): nominal interactions, without
misunderstanding or with potential misunderstanding
but non-revealed.

 Adapted state (): adapted (or reinforced)
interactions in order to avoid the misunderstandings.

 Misunderstanding state (): the interactions
interrupted or deviate totally from the scenario plot
with revealed misunderstandings.

p10: adaptation rate in order to avoid misunderstanding
occurrences; p1-1: probability that the actors falls in
misunderstanding; p-11: rate of successful adaptation and
repair. The interactions are restored from misunderstanding
state through reparations, and from adapted state through
adaptations.

From this Markov chain, we can estimate the efficiency of
coherency management mechanisms and the robustness of
system architecture from the transition probabilities.

 A reliable system without misunderstanding in
interaction should have p-1-1 = 0 and p11 high.

 The adaptation is efficient if p00 is low and p01 higher
than p0-1.

 The repair from misunderstanding is efficient if p-11 or
p-10 > 0, and p-1-1 is very low.

B. Variables Related to Misunderstandings
To complete the measures by probabilities, we introduce

some criteria for the static measures, included variables, rates,
and estimators.

 : Time to the kth misunderstanding after the (k-1)th
reparation (: time to the first misunderstanding).

 : Time to the kth repair after the kth misunderstanding.
 : Cumulative number of all misunderstandings

between initial moment and t, between initial and final
moment.

1 0 -1

p-11

p10

p01

p0-1

Figure 2 - Transition between the interactions states

p-10

p00

p11 p-1-1

p1-1

C. Static Average Estimators
 N: number of tested interaction sequences, [i]: statistic

of the i th sequence.
 MTFM (Mean Time to First Misunderstanding):

 MTBM (Mean Time between Misunderstanding) :

A reliable system should have MTFM and MTBM as high
as possible. If MTFM and MTBM are low, that means that the
system falls in misunderstanding easily or frequently.

D. Rate of Misunderstanding
 N1(t): number of sequences with misunderstanding

from initial moment to t
 N(t): number of sequences with misunderstanding at

the moment t
 Initial misunderstanding rate:

 Misunderstanding rate at time t:

 Misunderstanding intensity during interaction
sequence:

A system which is well prevented and repaired from the
misunderstanding if

V. HOW TO MANAGE MISUNDERSTANDINGS?

A. Necessary Misunderstanding Occurrence Conditions
An interaction can be in misunderstanding if:
 - At least two actors

participate in interaction sequence. The misunderstanding
occurs only when actors interact with each other.

 - Inconsistency of local data: The knowledge
are totally different or contain a part of different data. There is
data inconsistency in the

 - Data Sharing: Different data is used as
shared information or common contents between participant
actors during the interactions. If this shared data is neither
declared explicitly nor synchronised before the interaction
dialogue begins, no one can detect possible misunderstanding.

If these three conditions are met, the misunderstanding will
occur. If two actors have inconsistent data, but they never
interact with each other, the misunderstanding will never arise.
Moreover, they may have different data about a same fact, but
if they do not use it as shared data during the interaction, they
will not face misunderstanding.

B. Handling Approaches
The aim of misunderstanding management is to avoid

misunderstanding occurrence as much as possible and, in the
case that the misunderstanding happens anyway, it should be
eliminated. In addition, before the misunderstanding is
detected, the interactions between two actors may have
already deviated from the planned scenario. We must
intervene to synchronize their data and their behaviors. We
classify the misunderstanding management into three classes:

1) Ignoring: Just ignore the problem if the
misunderstanding is minor. It is like the Ostrich Algorithm in
deadlock treatment.

2) Prevention: Prevent misunderstanding occurrence by
denying one of the three necessary conditions mentioned
previously. If one condition is missing, we decrease the
possibility of misunderstanding occurence. Hence, for each
condition:

 : Separate the actors containing the potential misunder-
standing in their local visions. If it is possible, it is better not
to put them together in interaction.

 :
inconsistency. Ideally, their knowledge should be identical and
coherent all along the i
data consistency should be checked after each sequence of
interactions and synchronized.

 : Declare explicitly and check the consistency of the
shared data necessary to a given interaction before the
dialogue between the actors begins. Another way is to isolate
the different data and avoid its use in during the interactions.

3) Tolerance: Detect the latent misunderstanding during
the interaction and resolve it when it became active.

:
this step is to detect and to eliminate both latent and revealed
misunderstandings, if possible, before interaction deadlock.

: The misunderstanding can affect the interaction result
by a deviation or a deadlock. Hence, we have to cure this
situation by appropriate handling mechanism. Either the
system rollbacks to a misunderstanding free state in order to
retry the interaction or it continues but with reinforcement

transparent manner for the user, but with respect to the
designer

C. Misunderstanding, Dependability and Adaptativity
Misunderstandings are similar to the threads (fault, error,

failure) affecting system service in the dependability domain.
For instance, the byzantine or inconsistent failure happens
when some or all the system users perceive differently service
correctness [15]. T mode
confusion
users expect [12]. These examples show the effects of
different users perceptions in the system. The
principles of misunderstanding tolerance are similar to the
fault-tolerance with error detection and system recovery [15].
The implemented mechanisms track down the system service
deviation, and put the system into degraded mode or
restoration., We suggest adapting fault-tolerant techniques to
misunderstanding management in interactive applications.

To prevent the conditions , our work will focus on
coherency mechanisms and software design structure to
improve
the common context, the system and the others actors states.
Adaptativity is an advanced characteristic of interactive
systems that helps the system to reinforce the interaction
efficiency [16-19]. It is the aptitude of the system, on one side,

behaviors towards the nominal ones defined in the system
logic according to the designer logic. The adaptativity can
help the system to solve active misunderstanding case by
proposing reinforced interactions in which are appropriate
to insure the final objectives. Furthermore, because the system

has to observe the actors, a good observation will help the
system to estimate and perceive more correctly the state of the
actors so that the system can detect itself if it misunderstands
the actors. The system can also be a middle agent between the
actors to detect the inconsistency between them. From the
classification of methods in the previous section, we will
follow two principal directions: adaptativity and fault
tolerance, not in a separated but in combined way.

VI. CONTRIBUTION

A. General Architecture
We propose a robust system architecture with additionnal

specific components that ensure misunderstanding in
interaction detection and management. We also propose a
mechanism of static and structural analysis installed into the
proposed architecture to prevent misunderstandings. Finally,
in order to handle revealed misunderstandings, we integrate
the adaptive treatment mechanismes to the dynamic
execution. They are inspired and adapted from fault-tolerance
techniques cause misunderstanding nature is similar to the
error and fault treatment in dependability domain.

Several architecture models have been proposed according
to the specific purpose of each work [16-17], [20-22]. We
chose the approach in [19] that is a multi-agent-based
architecture as a starting point. The advantage of this approach
is that each agent can be organized and work autonomously
and strategically. We added a special agent called script agent
besides the adaptation unit to manage the consistency. Figure
3 shows our overall architecture.

1) Observer agent: observes
formalize, normalize and transfer them to the scenario agent.

2) Scenario agent: makes decision about scenario

permanent objective defined by the designer. This agent tries
to find the best way to evolve the application execution.

components and are all different interaction and activity
sequences that can take place in the application, as for instance
all the scenes possible in a theater play.

3) Director agent: then receives the decision taken by the
scenario agent. In its turn, it will take charge of the production
of adaptive scenario such as a modification, an answer, an
action adapting to user

4) Script agent: tracks inconsistency, in 3 steps:
Detection: Detect, confine or partition the inconsistency

between the actors in a situation in order to identify the causes
of misunderstanding.

Treatment: Apply the mechanism or strategy to remove the
inconsistency, to correct the deflected state that brought the
situation into the incoherence.

Evaluation: Estimate the efficiency of treatments in order
to improve applied mechanism for the next time.

B. Consistence Management
When has the script agent to accomplish its tasks? As said

in the previous section, we divide the execution of an

sequence of interactions between several actors within a

certain common context. To enter into a situation, some
- must be satisfied. And to

leave it, it must product some results during the interactions,
-

The confinement of interactions in a situation allows us to set
up the treatment mechanisms for ambiguity and

script agent is
placed between the participating actors to synchronize the data
and detect the inconsistency. The tasks of consistency
manager are: i) to prevent misunderstanding occurrences, ii) to
tolerate the misunderstanding in the case of their occurrences,
iii) to eliminate both latent and revealed misunderstandings.

If we divide a situation into three phases, here is how our
mechanism does work:

1) Prologue phase: To avoid the first cause of
misunderstandings different references, the script agent
make local visions in
relation with the interacting content, before the interactions
begin. If the knowledge data of all actors are the same since
the beginning, they may will talk about the same subject,
reducing the possibility of misunderstanding. If the
inconsistency exists, a negotiation step will be established
between two actors. Then either one or several of them will
modify its/their data or the different data will be isolated and
not considered in the interactions.

2) Interaction phase: when the interactions are carried out,
the actors will update their local data step by step, since they
always observe and perceive each other. Despite of agreement
in initial local visions, misunderstanding may anyway occur
during the interactions. It is why the local data is synchronized
all along the interaction to avoid different data in local visions.

3) Epilogue phase: at the end of the second phase, all the
interactions have been done. If the post-conditions are

Adaptive System

Scenario Agent
Script Agent

Make decision

Director
Agent

Detect

Treat
Treat

Eval
uate

Scenario
modification

User

Figure 3. General proposed architecture of interactive system

Application Engine
Software and hardware

resources

IHM
User Interface Observation

Observer
Agent

Planning
Scenario

-‐ Analyze the
user state

-‐ Calculate the
distance

Det

User state

Behaviors + events

Library of
« situations»

Resources

Data System

User
Profiles

Data

Adaptive
Scenario

Evaluate

fulfilled, the situation terminates with the expected results.
But, if, for some reason, the post-conditions are not reached,
the script agent has to intervene. It has to detect and settle the
existing incoherency in order to avoid the propagation of
misunderstanding to next situations. The script agent can also
propose to the actors to do some supplementary interactions,
called the reinforcing interactions, or if necessary, bring the
whole situation back to a previous stable state. The final goal
of this phase is to quit the situation with the appropriate post-
conditions and without latent or active misunderstanding.

VII. CONCLUSION AND PERSPECTIVE

misunderstanding in interactive systems. We have defined
how the misunderstandings in interaction arise and what
consequences that has on left interactions and interacting
actors behaviors. There is misunderstanding when involved

may happen are not on the
same granularity level. Among the consequences, we can
mention: i) system reactivity slow down, since the system has
to compensate the actors local data deviation; ii) players
exasperation, since the system does not react as expected;
iii) system total or partial deadlock, since the system does not
understand what the player is doing.

We showed that the misunderstandings in interactive
system research are not explicitly considered in existing work.
We proposed to add appropriate mechanisms to interactive
system architecture in order to avoid them. These mechanisms
are consistency manager components that ensure i) data
consistency between interacting actors during the interaction
sequences, and ii) data synchronization at the end of the
interaction sequences in order to attest a misunderstanding
free ending. We have described our architecture including
these mechanisms and making the system adaptive even if
initially it was not. Indeed, the constancy management can be
seen as adaptation mechanism controlling the interactions.

represents a set of interactions between several actors within a
certain context. We use this notion as structuring element of
overall sys
scenarios as situation sequences in a situation graph. The
situation structuring and formalization is the other axis of our
perspective work. Our work is still in progress. We mentioned
that the misunderstanding problem in interactive systems
looks like the dependability threats in dependability domain.
Thus, we are exploring in our current work to what extent
goes this similarity and how we can reuse the fault-tolerance
principles in misunderstanding avoidance and treatment. To
do this, we are comparing systems proprieties and requirement
between interactive and fault-tolerant systems in order to
establish their similarities and differences. This will lead us to
identify what fault-tolerant mechanisms can be reused and
readapted in interactive systems field.

To validate our approach we are applying our architecture
in an e-learning project framework. The project is devoted to
the development of a virtual classroom and a set of pedagogic
e-tools. In this environment, teachers and learners will carry
out learning session as in a classical classroom. However, they
will face up to misunderstandings due to the system's
interfaces and systems mechanisms to catch and manage

users behaviors. In this framework, we aim to
apply our architecture and the defined coherency management
mechanisms to improve the interactions between teachers and
learners and to increase the final system's efficiency.

REFERENCES
[1] A. Prigent,

(International Simulation and gaming association) Georgia Institute of
technology, pp. 1-19, 2005.

[2]
Speech Communication, vol. 45, no. 3, pp. 305-

324, Mar. 2005.
[3] R. López-cózar, Z. Callejas, N. Ábalos, G. Espejo, and D. Griol,

Speech Communication,
pp. 523-530, 2010.

[4]
Cognition, pp. 397-427, 2000.

[5]

3, pp. 282 - 303, 2004.
[6]

Speech Communication, vol. 45, no. 5, p. 455_470, 2005.
[7] Personal and

Ubiquitous Computing, vol. 5, no. 1, pp. 4-7, Feb. 2001.
[8] Personal

and Ubiquitous Computing, vol. 8, no. 1, pp. 19-30, Feb. 2004.
[9]

Psychologica Belgica, vol. 40, no. 227-245, 2000.
[10] -

Interpretation 3D
Image Processing & Applications, 2010.

[11]

Reliability Engineering and System Safety, vol. 75, no. 2, pp.
147-165, Feb. 2002.

[12] S. Combéfis, P. -Based
Approach to the Analysis of Human-Computer Interaction Categories

EICS
SIGCHI symposium on Engineering interactive computing systems,
2009, pp. 101-110.

[13] J.- Advances
in Linear Logic, 1995, pp. 1-42.

[14]
définitions [Dependability - Techniques de

- Electronique,, vol. 5, pp. 1-19, 2005.
[15] J.-

IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING,
vol. 1, no. 1, pp. 11-33, 2004.

[16] Int. J. Hum.-
Comput. Stud., vol. 40, no. 3, pp. 455-472, 1994.

[17]

[18] C. Stephanidis, A. Paramythis, D. Akoumianakis, and M. Sfyrakis,
-Adapting Web-

1998, pp. 1-17.

[19] eractive educational
games for autistic children with agent- 4th

,
2005, pp. 422 432.

[20]
to autonomous age Knowledge-Based Systems, vol. 6, no. 4, pp.
197-219, Dec. 1993.

[21]
User

Modeling and User-Adapted Interaction, vol. 20, no. 5, pp. 383-453,
Nov. 2010.

[22] The human-computer
interaction handbook: Fundamentals, evolving technologies and
emerging applications (2nd ed.), pp. 433-458, 2008.

