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We demonstrate experimentally that multiple four-wave mixing pumped by a dual-frequency input in a

single-mode fiber is modulationally unstable. This collective type of instability leads, in the anomalous

dispersion regime, to sideband growth around all-orders of four-wave mixing. This is in contrast with the

normal dispersion regime where our measurements show that four-wave mixing exhibits no instability. Our

conclusions are based on the first systematic mapping of the phenomenon as a function of the dual-pump input

frequency separation.
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Modulational instability (MI) is a well known pro-
cess [1], according to which a modulation at frequency
Ωm grows exponentially at the expense of a pump wave
(carrier eigenmode) at frequency ω0. When such a mod-
ulation grows out of noise (spontaneous MI), its peak
frequency depends on power as determined by the non-
linear phase-matching condition, which for a scalar field,
requires anomalous group-velocity dispersion (GVD).
While MI is still a subject of active investigation in this
regime [2,3], it has also been considerably generalized to
include two-component pump eigenmodes (incoherently
coupled pumps) such as in the polarization case studied
experimentally under different conditions [4, 5]. A fur-
ther noteworthy generalization of MI entails the growth
of sidebands on top of two pump components which ex-
change energy in a periodic fashion, as originally pre-
dicted in Refs. [6, 7] and first proven experimentally in
quadratic media [8]. Interestingly enough, in this case the
MI process can be seen as a parametric resonance in a
system where the longitudinal periodicity is intrinsically
built-in owing to the pump dynamics [9]. An interaction
which falls under such class of problems is also multiple
four-wave mixing (mFWM) pumped by a dual-frequency
input beam [10]. In fact, when two co-polarized pump
frequencies ω± = ω0 ± Ωp (pump detuning 2Ωp) are
launched along an optical fiber, they produce mFWM,
i.e. generation of the odd harmonics of the input modu-
lation, namely ω0 ± nΩp with n = 3, 5, ... [11–14] (note
that, unlike the standard MI, in this case no pump is
present at ω0 = (ω+ + ω−)/2, which is used only as
the reference central frequency of the generated mFWM
spectrum). The mFWM process is characteristic of any
Kerr media and can be observed also in other settings,
e.g. semiconductor photonic crystal guides [15], or in the
spatial domain [16]. mFWM is exploited for important
applications which range from signal regeneration [17]
to parametric amplification [18] and pulse-train genera-
tion [13, 19, 20], and is also being investigated with ref-
erence to fundamental phenomena [21].
It has been recently shown that the recurrent evolu-

tion of the pump and the FWM sidebands allows for

Fig. 1. Experimental setup. ECL: external cavity laser;
PM: phase modulator; OSA: optical spectrum analyzer.

MI to manifest, in the anomalous GVD regime, as the
exponential growth of an extra-modulation at frequency
Ωm of the primary modulation and its mFWM harmon-
ics, owing to the generation of photon pairs at frequency
ω0 ± nΩp ±Ωm [10]. This prediction relies on the exten-
sion of the approach to stability to account for FWM
via a Floquet type of analysis [10], thus considerably
improving previous approaches based on incoherently
coupled nonlinear Schrödinger (NLS) equations [22, 23],
which were argued to neglect FWM [24]. The underly-
ing mechanism of this MI process is the fact that the
two pump frequencies ω± are unstable, provided the
GVD is anomalous, and transfer their modulation (aris-
ing from the growth of frequency Ωm from noise) over all
the mFWM products. However, at variance with conven-
tional scalar MI, in this case the net amplification of the
extra-modulation occurs over several periods of conver-
sion and backconversion of mFWM. Moreover, mFWM
sidebands do not acquire their modulation directly be-
cause otherwise they would be modulated at a different
frequency owing to their much lower power. Because of
these features we denoted this phenomenon as collec-
tive MI. The purpose of this letter is to report the first
experimental observation of this process in a standard
telecom fiber by means of a systematic mapping of the
phenomenon as a function of the initial two pumps fre-
quency detuning.
The experimental setup developed in order to charac-

terize the collective nature of the MI building on top of
mFWM process in fibers is illustrated in Fig. 1. It con-
sists of two external cavity lasers (ECL) centered around
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λ0 = 1550 nm and coupled by means of a 50 : 50 coupler,
with remotely adjustable relative frequency detuning. A
phase modulator (PM), driven by a 100-MHz RF signal
is then used to prevent any Brillouin back-scattering ef-
fect in the fiber under test. The dual-pumps are then
amplified by means of an Erbium Doped Fiber Ampli-
fier (EDFA) to reach a total average power of 800 mW.
A 5-nm optical filter is also inserted to limit the impact
of amplified spontaneous emission from the EDFA be-
fore injection into a 10-km long standard single mode
fiber (SMF-28). The SMF has physical parameters as
follows: the dispersion is D = 17 ps/nm km with a slope
S = dD/dλ = 0.05 ps/nm2 km, the nonlinear Kerr co-
efficient is γ = 2πn2I/λ0Aeff = 1.3 W−1 km−1, and
the linear loss is α = 0.2 dB/km. At the output of the
fiber, the signal is then characterized in the spectral do-
main by means of an optical spectrum analyzer (OSA).
Thanks to a home-made remote control algorithm devel-
oped in a Labview environment, a spectral mapping of
the phenomenon is achieved by a synchronization proce-
dure which allows to monitor the resulting output spec-
trum as a function of the frequency detuning between
the two pumps in a range limited by the amplifier band-
width and for a constant average power.

Fig. 2. (a-c) Experimental output spectra showingMI de-
veloping over mFWM for balanced (a) and imbalanced
(c) pumps at ∆fp = 100 GHz and P = 800 mW. (b-d)
color maps of output spectrum as a function of detun-
ing ∆fp ranging from −10 to 250 GHz, measured in the
balanced (b) and imbalanced (d) case. Open dots corre-
spond to the most unstable frequency fMI from theory.

The results of our experiments, obtained for a con-
stant total average power P = 800 mW, are summarized
in Fig. 2. Figure 2(a) show a typical output spectrum ob-
tained for a balanced input (400 mW on each pump) de-
tuned by ∆fp = Ωp/π = 100 GHz (in order to compare
with the normalized units used in Ref. [10], this corre-
sponds to a pump detuning 2Ω = 2.8). As shown in Fig.
2(a), MI sidebands corresponding to a extra-modulation
at frequency fm = 34 GHz grows spontaneously from
noise over the mFWM. In Fig. 2(a), the MI sidebands
owing to such extra-modulation are clearly seen around
n = 1, 3, 5 FWM sidebands. The Floquet stability anal-
ysis [10] of the FWM predicts that the maximally un-
stable modulation frequency turns out to coincide with

Fig. 3. (a) Output spectrum calculated from Eq. (1) with
same parameters as in Fig. 2(a). The MI gain is also
reported around the pumps for comparison (thin red line,
vertical a.u.) (b) Corresponding evolution along the fiber
of the power of one of the pumps.

the peak gain frequency of the standard scalar MI asso-
ciated with a single pump. Starting from the fiber pa-
rameters, namely a GVD k′′ ≃ −22 ps2/km and a non-
linear length Znl = (γP/2)−1 ≃ 1.9 Km associated with
the pump power P/2 = 400 mW, we estimate such fre-

quency to be fMI =
√

2/(|k′′|Znl)/(2π) = 34.86 GHz, in
good agreement with the value observed from the spec-
tra. It is important, however, to emphasize that the phe-
nomenon possess an intrinsic collective nature, with the
same modulation frequency fm growing on top of the
pumps and higher FWM orders as well. Assuming, vicev-
ersa, that MI could develop around e.g. the first-order
FWM sideband (n = 3) independently from the mod-
ulation acquired by the pumps, one should have been
observed such sidebands to develop a modulation one or-
der of magnitude slower according to their power level,
which is -20 dB below the pump power, see Fig. 2(a).
In order to investigate the dependence of collective MI

on the pump detuning, we have also recorded spectra
[such as the one in Fig. 2(a)] for different pump detun-
ings. In particular our set-up allows to tune the wave-
length detuning between the lasers in steps of ∆λ = 0.01
nm over a whole range which is equivalent to frequency
detunings ranging from 250 down to −10 GHz (so to in-
clude as a reference ∆fp = 0, where FWM is expected
to vanish), while keeping fixed the injected power at 800
mW. The result is illustrated in the (color) level map
in Fig. 2(b). First, mFWM are clearly observed to corre-
spond to the diagonal brighter narrow lines, which grows
in number as the detuning Ωp is decreased (mFWM
becomes more and more efficient as its figure of merit
γP/(|k′′|Ω2

p) grows larger [13]), until a strong spectral
broadening due to mFWM explosion is observed just
near the dark point which corresponds to ∆fp = 0, where
mFWM is found indeed to vanish. From the map we
clearly see that the collective MI frequency fm remains
locked to the value fMI (see empty circles in the figure),
basically not exhibiting any dependance on the pump
detuning, as expected from the linear stability analy-
sis. Sidebands due to collective MI remain clearly visible
in Fig. 2(b) in the range 70 − 250 GHz. They disap-
pear when they coalescence with the mFWM sidebands,
which occurs around a pump detuning Ωp ≃ 70 GHz.
At lower detunings, not only the MI becomes resonant
with the mFWM but also the latter looses its features
of recurrence [13]. Under such conditions the Floquet
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approach looses its validity and the assessment of the
linear stability problem in the presence of (highly effi-
cient) mFWM still remains a challenging open problem
that will require new approaches.
We have also studied the robustness of the phe-

nomenon against the imbalance of the pumps. Figure
2(c-d) display a typical output spectrum and the rela-
tive map against the pump detuning obtained when the
pumps are imbalanced by about 10% (input power frac-
tions η = P+/P = 0.56 and 1 − η = 0.44, respectively).
As shown the collective MI is still visible, though the
sidebands due to the extra-modulation at frequency fm
are more clearly pronounced around the stronger pump.
In our experiment we have found that the MI spectrum
is very sensitive to the pump imbalance and tends to
disappear for stronger asymmetries.
The collective MI process can be described by means of

a single NLS equation, whose nonlinear term contains all
the beating products that give rise to mFWM orders. In
order to assess whether a quantitative agreement exists,
we have performed simulations of the NLS equation

i
∂E

∂Z
− k′′

2

∂2E

∂T 2
+ γ|E|2E = −i

α

2
E, (1)

using the parameters of the fiber and the input E0(T ) =√
P [

√
η exp(iπ∆fpT ) +

√
1− η exp(−iπ∆fpT )] in the

presence of white noise. A typical spectrum obtained
with the same parameters as in Fig. 2(a) is reported in
Fig. 3(a) for the balanced case η = 0.5 (similar results are
obtained in the unbalanced case). The comparison be-
tween Fig. 2(a) and Fig. 3(a) allows us to conclude that
a satisfactory quantitative agreement exists. As shown
in Fig. 3(b) MI develops on top of a periodic evolution,
from which the system adiabatically decays as soon as
the MI leads to a substantial amplification of the extra-
modulation, a feature which, however, we are not able
to measure.
Finally we have also investigated experimentally the

same phenomenon in the normal GVD regime. To ac-
cess this regime we have replaced the SMF with a 6 Km
long non-zero dispersion-shifted fiber (NZDSF) with dis-
persion D = −2.5 ps/nm km (slope S = 0.07 ps/nm2

km), nonlinear Kerr coefficient γ = 1.7 W−1 km−1, and
linear loss coefficient is α = 0.2 dB/km. We report a typ-
ical spectrum obtained for ∆fp = 100 GHz and P = 800
mW and the relative map against the pump detuning
in Fig. 4(a) and 4(b), respectively. By comparing Fig.
4(a,b) with 2(a,b), it is clear that, in the normal GVD
regime, the dynamics is fully dominated by mFWM even
at large detunings and we observe no sidebands arising
from collective MI, as anticipated on the basis of the
linear stability analysis [10].
In summary, our experiments show that mFWM

mixing exhibits, in the anomalous GVD regime, the
onset of collective MI process whose signature is the
appearance of an extra-modulation at fixed frequency
around all orders of the primary mixing process.
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Fig. 4. Same as in Fig. 2(a-b) for balanced input in the
normal GVD regime.
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Colman, A. De Rossi, M. Santagiustina, C. G. Someda,
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