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This paper concerns the inverse problem of retrieving the principal coefficient in a Korteweg-de Vries (KdV) equation from boundary measurements of a single solution. The Lipschitz stability of this inverse problem is obtained using a new global Carleman estimate for the linearized KdV equation. The proof is based on the Bukhgeȋm-Klibanov method.

Introduction

The Korteweg-de Vries (KdV) equation y t (t, x) + y xxx (t, x) + y x (t, x) + y(t, x)y x (t, x) = 0, is a nonlinear dispersive equation that serves as a mathematical model to study the propagation of long water waves in channels of relatively shallow depth and flat bottom [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF]. In this model, the function y = y(t, x) represents the surface elevation of the water wave at time t and at position x. Since the works by Johnson [START_REF] Johnson | On the development of a solitary wave moving over an uneven bottom[END_REF] and Grimshaw [START_REF] Grimshaw | Evolution equations for long, nonlinear internal waves in stratified shear flows[END_REF] (see also the recent survey [START_REF] Grimshaw | Solitary waves propagating over variable topography[END_REF]), the study of water waves moving over variable topography has been considered. If we denote h = h(x) the function describing the variations in depth of the channel, then the proposed model becomes (after scaling) y t (t, x) + h 2 (x)y xxx (t, x) + ( h(x)y(t, x)) x + 1 h(x) y(t, x)y x (t, x) = 0.

In a recent paper, Israwi [START_REF] Israwi | Variable depth KdV equations and generalizations to more nonlinear regimes[END_REF] proposes a correction to this model by saying that the main coefficient is not h 2 (x)y xxx (t, x) but h 5 2 (x)y xxx (t, x). Thus, we are leaded to consider variable coefficients KdV equations to model the water wave propagation in non-flat channels.

The original inverse problem which motivated this paper can be stated in a informal way as "to recover information on the topography of a channel (denoted by h) by means of boundary measurements of a water wave (given by y)". This kind of coefficient inverse problem is by now classical and referred to as the determination of coefficients in evolution partial differential equations (pde's) by means of the partial knowledge of a single solution.

Many other inverse problems on KdV equations could be studied with possible applications. For example the pulsatile blood flow in an arterial compartment can be modelized by KdV equation, see [START_REF] Crépeau | A reduced model of pulsatile flow in an arterial compartment[END_REF] for details. It leads to several open inverse problems, as the determination of the flow at the input of the arteria with only one measure at the output, or the determination of physical coefficients like stiffness of arterias. Those open inverse problems are very relevant for cardiovascular medicine.

Since the pioneer works by Bukhgeȋm, Klibanov and Malinsky [START_REF] Bukhgeȋm | Uniqueness in the large of a class of multidimensional inverse problems[END_REF][START_REF] Klibanov | Newton-Kantorovich method for threedimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data[END_REF], there have been a number of papers devoted to the proof of uniqueness and stability for inverse problems concerning the determination of source or coefficients in pde's by means of the localized knowledge of a single solution.

The problem of recovering sources has been first addressed for hyperbolic equations in [START_REF] Puel | On a global estimate in a linear inverse hyperbolic problem[END_REF][START_REF] Puel | Generic well-posedness in a multidimensional hyperbolic inverse problem[END_REF] and for parabolic equations in [START_REF] Imanuvilov | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF]. The determination of coefficients has also drawn the attention of many authors. Among the most classical results for the wave equation, we can mention the determination of a potential from boundary [START_REF] Yamamoto | Uniqueness and stability in multidimensional hyperbolic inverse problems[END_REF] or internal [START_REF] Imanuvilov | Global Lipschitz stability in an inverse hyperbolic problem by interior observations[END_REF] measurements and the determination of the main coefficient from boundary [START_REF] Bellassoued | Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients[END_REF][START_REF] Klibanov | Lipschitz stability of an inverse problem for an acoustic equation[END_REF] or internal [START_REF] Imanuvilov | Determination of a coefficient in an acoustic equation with a single measurement[END_REF] observation. Regarding the problem of recovering coefficients in parabolic equations, we send the interested reader to the survey [START_REF] Yamamoto | Carleman estimates for parabolic equations and applications[END_REF] by Yamamoto and the references therein.

Concerning dispersive equations, a stability result was obtained in [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF] for the problem of recovering the potential in a Schrödinger equation. That paper motivated several further works as [START_REF] Cardoulis | Inverse problem for the Schrödinger operator in an unbounded strip[END_REF][START_REF] Mercado | Lionel Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights[END_REF], where appropriate Carleman estimates were proven in different contexts. To the best of our knowledge, there are no previous works concerning coefficient inverse problems for KdV equations.

Most of the references given above are inspired by what is often called the Bukhgeȋm-Klibanov method (see the recent book [START_REF] Beilina | Approximate global convergence and adaptivity for coefficient inverse problems[END_REF] or the survey [START_REF] Klibanov | Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems[END_REF]), which was meant to prove global uniqueness results for single-measurement coefficients inverse problems. Roughly speaking, it consists in two steps. The first step comprises the time differentiation of the governing pde, getting an auxiliary system, in which the unknown coefficient appears now in the initial condition. The second step relies on the application of a Carleman estimate whose parameters and weight are crucial to drive to the conclusion. An idea of Imanuvilov and Yamamoto, presented for the first time in [START_REF] Imanuvilov | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF] (for parabolic equation) and then often used (for other pde's), allows to use the appropriate global Carleman inequality to estimate the unknown coefficient in terms of internal or boundary measurements of the solution. The main drawback of this method, that is not lifted yet is the hypothesis that at least one initial condition, (or some of its derivatives) never vanishes in the domain.

This article is a first step in order to address the problem of recovering the topography of the channel by means of boundary measurements of the water wave. Indeed, we will deal with a KdV equation posed on a bounded interval [0, L] with an unknown third-order coefficient:

   y t + a(x)y xxx + y x + yy x = 0, ∀(x, t) ∈ (0, L) × (0, T ), y(0, t) = y(L, t) = y x (L, t) = 0, ∀t ∈ (0, T ), y(x, 0) = y 0 (x), ∀x ∈ (0, L), (2) 
where the initial data y 0 is known. The unknown coefficient a = a(x) is assumed to be time independent. The case where we have several unknown coefficients (as in the equation ( 1)) is very hard to deal with. There are few results in this direction and they ask many conditions on the coefficients. See for instance [START_REF] Cardoulis | Simultaneous identification of the diffusion coefficient and the potential for the Schrödinger operator with only one observation[END_REF] where a Schrödigner equation is considered on an unbounded strip. Up to our knowledge, this paper solves the first coefficient inverse problem for the KdV equation. As mentioned before, the Bukhgeȋm-Klibanov method requires a Carleman estimate for the equation. This type of inequalities has already been proven for the KdV equation on a bounded interval in the framework of control problems. The control of this equation from the left Dirichlet boundary condition have been studied in [START_REF] Rosier | Control of the surface of a fluid by a wavemaker[END_REF] and [START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF], where the authors get the null-controllability of this equation by proving one-parameter Carleman estimates. Unlike those papers, here we will prove a twoparameter estimate in order to be able to deal with a space dependent main coefficient.

The inverse problem we are interested in can be stated as follows.

Inverse problem: Retrieve the principal coefficient a = a(x) of equation ( 2) from the measurement of y x (0, t), y xx (0, t) and y xx (L, t) on (0, T ), where y is the solution of equation [START_REF] Baudouin | Global carleman estimate on a network for the wave equation and application to an inverse problem[END_REF].

A partial and local answer for this nonlinear inverse problem will be proved in this paper. To be more specific, let us denote by y and ỹ the solutions of Equation (2) corresponding to coefficients a and ã respectively (we shall also use the notation y[a], y[ã]).

Stability: Estimate ã -a L 2 (0,L) by suitable norms of the measurements ỹx (0, t)y x (0, t) , ỹxx (0, t) -y xx (0, t) and ỹxx (L, t) -y xx (L, t) .

The next theorem is the main result of this article and gives the stability result for the inverse problem under consideration.

Theorem 1 Let r 0 , a 0 , α and K be given positive constants. Assume that the initial data y 0 ∈ w ∈ H 7 (0, L); w(0) = w(L) = w (L) = 0 satisfies for every x ∈ [0, L]

y 0 (x) = y 0 (L -x) (3) 
and

|y 0 (x)| ≥ r 0 > 0. ( 4 
)
Define the set

Σ(a 0 , α) = a ∈ W 6,∞ (0, L) ∀x ∈ [0, L], a(x) ≥ a 0 > 0, a(x) = a(L -x),
and a W 6,∞ (0,L) ≤ α . (5)

Then, there exists a constant C = C(L, T, r 0 , a 0 , α, K) > 0 such that

C a -ã L 2 (0,L) ≤ y x (0, t) -ỹx (0, t) H 1 (0,T ) + y xx (0, t) -ỹxx (0, t) H 1 (0,T ) + y xx (L, t) -ỹxx (L, t) H 1 (0,T ) (6) 
for every a, ã in Σ(a 0 , α) such that the corresponding solutions of Equation (2) satisfy max{ y W 1,∞ (0,T ;W 3,∞ (0,L)) , ỹ W 1,∞ (0,T ;W 3,∞ (0,L)) } ≤ K.

Remark 1 In the Appendix, we will sketch the proof of the fact that the required hypotheses on a ∈ W 6,∞ (0, L) and y 0 ∈ w ∈ H 7 (0, L); w(0) = w(L) = w (L) = 0 are enough to guarantee that the solution of (2) lies in W 1,∞ (0, T ; W 3,∞ (0, L)) (see Proposition 3). Thus, the set of trajectories where Theorem 1 is valid is not empty. We mention that hypothesis y 0 ∈ H 7 (0, L) is not sharp, see Remark 6 in the Appendix.

Remark 2

The symmetry hypothesis on the initial data and the main coefficient are technical points coming from our proof. More precisely, they allow us to extend the solution of KdV equation to negative times, in order to apply the Bukhgeȋm-Klibanov method.

Remark 3 Concerning the question of the minimal number of boundary measurement required in Theorem 1, one could expect to get estimate (6) with either one measurement at x = L or two measurements at x = 0, but not with just one measurement at x = 0. This is based on the fact that Carleman estimates imply some observability inequalities, which do not hold for the linear KdV equation with only one observation at x = 0. This lack of observability holds for some critical lengths L, as one can read in [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF][START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF][START_REF] Cerpa | Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain[END_REF][START_REF] Cerpa | Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain[END_REF].

On the other hand, we need in this paper three measurements because of the symmetry assumptions and the extension to negative times used.

Other related papers on this type of inverse problem for pde's can be listed: [1, 26] (one dimensional fourth order parabolic equation), [START_REF] Benabdallah | Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation[END_REF][START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF][START_REF] Baudouin | An inverse problem for Schrödinger equations with discontinuous main coefficient[END_REF] (discontinuous coefficients), [START_REF] Baudouin | Global carleman estimate on a network for the wave equation and application to an inverse problem[END_REF] (network of one dimensional waves) [START_REF] Bellassoued | Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation[END_REF][START_REF] Bellassoued | Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by arbitrary boundary observation[END_REF] (logarithmic stability estimates), [START_REF] Cristofol | Identification of two coefficients with data of one component for a non linear parabolic system[END_REF] (parabolic system), [START_REF] Roques | On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation[END_REF] (unknown coefficient in the nonlinearity), [START_REF] Yamamoto | Global uniqueness and stability for a class of multidimensional inverse hyperbolic problems with two unknowns[END_REF][START_REF] Cardoulis | Simultaneous identification of the diffusion coefficient and the potential for the Schrödinger operator with only one observation[END_REF][START_REF] Cristofol | Identification of two coefficients with data of one component for a non linear parabolic system[END_REF] (two unknown coefficients). We also mention some important books which can be the starting point to study inverse problems [START_REF] Isakov | Inverse problems for partial differential equations[END_REF], Carleman estimates [START_REF] Fursikov | Controllability of evolution equations[END_REF], and control theory for partial differential equations [START_REF] Coron | Control and nonlinearity[END_REF].

Outline: In section 2, a two-parameters global Carleman estimate for the linearized KdV equation with non-constant main coefficient is obtained. It is then used in section 3, following the Bukhgeȋm-Klibanov method, to prove the desired stability result. As mentioned before, the Appendix A is concerned with the Cauchy problem.

Carleman estimate

In this section, a global Carleman inequality will be proven for the linearized KdV equation on the domain denoted here by Q := (0, L) × (-T, T ). As mentioned in the introduction, there are in the literature some Carleman estimates for the KdV equation with constant main coefficient posed on a bounded interval [START_REF] Rosier | Control of the surface of a fluid by a wavemaker[END_REF][START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF]. In this work we deal with non-constant coefficients a = a(x). We prove a two-parameter (s, λ) Carleman estimate in order to avoid extra hypothesis on the coefficients when solving the inverse problem.

Let us consider

d ∈ L ∞ ((-T, T ) × (0, L)), b ∈ L ∞ (-T, T ; W 1,∞ (0, L)
) and a ∈ W 3,∞ (0, L), with a(x) ≥ a 0 for every x ∈ [0, L], and a W 3,∞ (0,L) ≤ α, where a 0 , α > 0. We define the operator

P = ∂ t + a(x)∂ xxx + b(x, t)∂ x + d(x, t) (7) 
and the space

V = v ∈ L 2 (-T, T ; H 3 ∩ H 1 0 (0, L)) P v ∈ L 2 ((0, L) × (-T, T )) . (8) 
Consider β ∈ C 3 ([0, L]) such that for some r > 0 we have

0 < r ≤ β(x) and 0 < r ≤ β (x), ∀x ∈ (0, L). (9) 
We define, for each λ > 0, the functions

φ(x, t) = e 2λ β ∞ -e λβ(x) (T + t)(T -t) , θ(x, t) = e λβ(x) (T + t)(T -t) (10) for (x, t) ∈ [0, L] × (-T, T ). Let us notice that there exists a constant C = C(T ) such that 0 < 1 C ≤ θ(x, t) and |θ t (x, t)| ≤ Cθ 2 (x, t), ∀(x, t) ∈ [0, L] × (-T, T ). (11) 
We will prove the following Carleman estimate.

Theorem 2 Let φ and θ be defined by [START_REF] Benabdallah | Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation[END_REF], and let P be the linearized KdV operator defined in [START_REF] Bellassoued | Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients[END_REF]. There exist s 0 > 0, λ 0 > 0 and a constant C(L, T, s 0 , λ 0 , α, a 0 , r) > 0 such that for every s ≥ s 0 and λ ≥ λ 0 ,

T -T L 0 e -2sφ s 5 λ 6 θ 5 |u| 2 + s 3 λ 4 θ 3 |u x | 2 + sλ 2 θ|u xx | 2 dxdt ≤ C T -T L 0 e -2sφ |P u| 2 dxdt + Cs 3 λ 3 T -T e -2sφ(L,t) θ 3 (L, t)|u x (L, t)| 2 dt + Csλ T -T e -2sφ(L,t) θ(L, t)|u xx (L, t)| 2 dt (12)
for all u ∈ V defined by [START_REF] Bellassoued | Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by arbitrary boundary observation[END_REF].

Remark 4 When looking for a one-parameter Carleman estimate (as in [START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF][START_REF] Rosier | Control of the surface of a fluid by a wavemaker[END_REF] where

φ = β(x) (t+T )(T -t)
), some hypothesis on the second derivative of the function β have to be imposed. The use of the second parameter λ allows to omit them. Proof: Let s > 0 and define W s = {e -sφ u / u ∈ V}. For u ∈ V, we set w = e -sφ u and we define the operator P φ from W s to L 2 ((0, L) × (-T, T )) by P φ w = e -sφ P (e sφ w).

After straightforward computations, we write

P φ w = P 1 w + P 2 w + Rw
where, for a constant m > 0 to be chosen later,

P 1 w = w t + 3as 2 φ 2 x w x + aw xxx + 3ams 2 φ x φ xx w, (13) 
P 2 w = as 3 φ 3 x w + 3asφ x w xx + 3sw x (aφ x ) x , (14) 
and

Rw = bsφ x w + bw x + asφ xxx w + 3as 2 φ x φ xx w + dw +sφ t w -3sa x φ x w x -3ams 2 φ x φ xx w. (15) 
Therefore,

P φ w -Rw 2 L 2 (Q) = P 1 w 2 L 2 (Q) + 2 P 1 w, P 2 w + P 2 w 2 L 2 (Q) (16) 
where

•, • is the L 2 (Q) scalar product.
Step 1. Explicit calculations Notice that w(0, t) = w(L, t) = 0 for all t ∈ (-T, T ) and w(x, ±T ) = 0 for all x ∈ (0, L). This is due to the fact that w = e -sφ u, with u ∈ L 2 (-T, T ; H 1 0 (0, L)) and lim t→±T φ(x, t) = +∞.

By developing P 1 w, P 2 w , we get P 1 w, P 2 w = i=1,...,4; j=1,...,3

I i,j
where I i,j is the L 2 (Q) scalar product of the i-th term in [START_REF] Bukhgeȋm | Uniqueness in the large of a class of multidimensional inverse problems[END_REF] with the j-th term in [START_REF] Cardoulis | Inverse problem for the Schrödinger operator in an unbounded strip[END_REF]. By integrations by parts, we obtain:

• I 1,1 = - 3s 3 2 Q aφ 2 x φ xt |w| 2 dxdt = 3 2 s 3 λ 3 Q aβ 3 x θ 2 θ t |w| 2 dxdt ; • I 1,2 = -3s Q (aφ x ) x w x w t dxdt + 3s 2 Q aφ xt |w x | 2 dxdt = -3s Q (aφ x ) x w x w t dxdt - 3 2 sλ Q aβ x θ t |w x | 2 dxdt ; • I 1,3 = 3s Q (aφ x ) x w x w t dxdt ; • I 2,1 = - 3s 5 2 Q (a 2 φ 5 x ) x |w| 2 dxdt = 3 2 s 5 λ 5 Q (a 2 β 5 x ) x θ 5 |w| 2 dxdt + 15 2 s 5 λ 6 Q a 2 β 6 x θ 5 |w| 2 dxdt ; • I 2,2 = - 9s 3 2 Q (a 2 φ 3 x ) x |w x | 2 dxdt + 9s 3 2 T 0 a 2 φ 3 x |w x | 2 x=L x=0 dt = 9 2 s 3 λ 3 Q (a 2 β 3 x ) x θ 3 |w x | 2 dxdt + 27 2 s 3 λ 4 Q a 2 β 4 x θ 3 |w x | 2 dxdt - 9 2 s 3 λ 3 T 0 a 2 β 3 x θ 3 |w x | x=L x=0 dt ; • I 2,3 = 9s 3 Q aφ 2 x (aφ x ) x |w x | 2 dxdt = -9s 3 λ 3 Q aβ 2 x (aβ x ) x θ 3 |w x | 2 dxdt -9s 3 λ 4 Q a 2 β 4 x θ 3 |w x | 2 dxdt ; • I 3,1 = 3s 3 2 Q (a 2 φ 3 x ) x |w x | 2 dxdt - s 3 2 Q (a 2 φ 3 x ) xxx |w| 2 dxdt - s 3 2 T 0 a 2 φ 3 x |w x | 2 x=L x=0 dt = - 3 2 s 3 λ 3 Q (a 2 β 3 x ) x θ 3 |w x | 2 dxdt - 9 2 s 3 λ 4 Q a 2 β 4 x θ 3 |w x | 2 dxdt + s 3 λ 3 2 Q (a 2 β 3 x θ 3 ) xxx |w| 2 dxdt + s 3 λ 3 2 T 0 a 2 β 3 x θ 3 |w x | x=L x=0 dt ; • I 3,2 = - 3s 2 Q (a 2 φ x ) x |w xx | 2 dxdt + 3s 2 T 0 a 2 φ x |w xx | 2 x=L x=0 dt = 3 2 sλ Q (a 2 β x ) x θ|w xx | 2 dxdt + 3 2 sλ 2 Q a 2 β 2 x θ|w xx | 2 dxdt - 3 2 sλ T 0 a 2 β x θ|w xx | x=L x=0 dt ; • I 3,3 = -3s Q a(aφ x ) x |w xx | 2 dxdt + 3s 2 Q [a(aφ x ) x ] xx |w x | 2 dxdt - 3s 2 T 0 (a(aφ x ) x ) x |w x | 2 x=L x=0 dt + 3s T 0 a(aφ x ) x w x w xx x=L x=0 dt = 3sλ Q a(aβ x ) x θ|w xx | 2 dxdt + 3sλ 2 Q a 2 β 2 x θ|w xx | 2 dxdt + 3 2 sλ T 0 (a(aβ x θ) x ) x |w x | 2 x=L x=0 dt - 3 2 sλ Q (a(aβ x θ) x ) xx |w x | 2 dxdt -3sλ T 0 a(aβ x θ) x w x w xx x=L x=0 dt ; • I 4,1 = 3ms 5 Q a 2 φ 4 x φ xx |w| 2 dxdt = -3ms 5 λ 5 Q a 2 β 4 x β xx θ 5 |w| 2 dxdt -3ms 5 λ 6 Q a 2 β 6 x θ 5 |w| 2 dxdt ; • I 4,2 = -9ms 3 Q a 2 φ 2 x φ xx |w x | 2 dxdt + 9ms 3 2 Q (a 2 φ 2 x φ xx ) xx |w| 2 dxdt = 9ms 3 λ 3 Q a 2 β 2 x β xx θ 3 |w x | 2 dxdt + 9ms 3 λ 4 Q a 2 β 4 x θ 3 |w x | 2 dxdt - 9m 2 s 3 λ 3 Q a 2 β 2 x β xx θ 3 xx |w| 2 dxdt - 9m 2 s 3 λ 4 Q a 2 β 4 x θ 3 xx |w| 2 dxdt ; • I 4,3 = - 9ms 3 2 Q (aφ x φ xx (aφ x ) x ) x |w| 2 dxdt = 9m 2 s 3 λ 3 Q aβ x β xx θ 2 (aβ x θ) x x |w| 2 dxdt + 9m 2 s 3 λ 4 Q aβ 3 x θ 2 (aβ x θ) x x |w| 2 dxdt.
Therefore,

P 1 w, P 2 w = 15 2 -3m s 5 λ 6 Q a 2 β 6 x θ 5 |w| 2 dxdt ( 17 
)
+ 9ms 3 λ 4 Q a 2 β 4 x θ 3 |w x | 2 dxdt + 9 2 sλ 2 Q a 2 β 2 x θ|w xx | 2 dxdt + B + X 1
where X 1 and B satisfy the following. The term X 1 gathers the non-dominating terms and satisfies that there exists a positive constant C = C(L, T, α, r) independent of s and λ, (which may change from line to line) such that, using [START_REF] Bona | Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces[END_REF], we get

|X 1 | ≤ C(s 3 λ 6 + s 5 λ 5 ) Q θ 4 |w| 2 dxdt + C(sλ 4 + s 3 λ 3 ) Q θ 2 |w x | 2 dxdt. ( 18 
)
The term B gathers the boundary terms. We split them as follows

B := B + + B -+ B * (19) 
with the notations

B + = 4s 3 λ 3 T -T a 2 β 3 x θ 3 x=0 |w x (0, t)| 2 dt + 3 2 sλ T -T a 2 β x θ x=0 |w xx (0, t)| 2 dt, B -= -4s 3 λ 3 T -T a 2 β 3 x θ 3 x=L |w x (L, t)| 2 dt - 3 2 sλ T -T a 2 β x θ x=L |w xx (L, t)| 2 dt, B * = + 3 2 sλ T -T (a(aβ x θ) x ) x x=L |w x (L, t)| 2 dt - 3 2 sλ T -T (a(aβ x θ) x ) x x=0 |w x (0, t)| 2 dt -3sλ T -T a(aβ x θ) x x=L w x (L, t)w xx (L, t)dt + 3sλ T -T a(aβ x θ) x x=0 w x (0, t)w xx (0, t)dt.
Step 2. Dominating terms By choosing, and fixing, m such that

0 < m < 5 2 , (20) 
we obtain that there exists a constant C = C(L, T, a 0 , r) > 0 such that:

15 2 -3m s 5 λ 6 Q a 2 β 6 x θ 5 |w| 2 dxdt ≥ Cs 5 λ 6 Q θ 5 |w| 2 dxdt; 9ms 3 λ 4 Q a 2 β 4 x θ 3 |w x | 2 dxdt ≥ Cs 3 λ 4 Q θ 3 |w x | 2 dxdt; 9 2 sλ 2 Q a 2 β 2 x θ|w xx | 2 dxdt ≥ Csλ 2 Q θ|w xx | 2 dxdt.
We introduce the notation given by

w 2 s,λ,θ = s 5 λ 6 Q θ 5 |w| 2 dxdt + s 3 λ 4 Q θ 3 |w x | 2 dxdt + sλ 2 Q θ|w xx | 2 dxdt.
From [START_REF] Coron | Control and nonlinearity[END_REF] we obtain that

|X 1 | ≤ C 1 s 2 + 1 λ w 2 s,λ,θ .
Therefore, choosing s and λ large enough, from [START_REF] Cerpa | Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain[END_REF] we get some C > 0 depending only on L, T, α, a 0 , r, s 0 and λ 0 and is such that, for all s > s 0 , λ > λ 0 ,

C w 2 s,λ,θ ≤ P 1 w, P 2 w -B. (21) 
Step 3. Boundary terms From ( 19) and ( 21), considering that B + and -B -are non-negative, we write

C w 2 s,λ,θ + B + ≤ P 1 w, P 2 w -B --B * . (22) 
Now, we shall deal with the boundary terms in B * , that has no sign. We will bound |B * | by above. For the four integrals one by one, using [START_REF] Bona | Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces[END_REF] and Cauchy-Schwarz inequality, this gives:

3 2 sλ T -T (a(aβ x θ) x ) x x=L |w x (L)| 2 dt ≤ Csλ 3 T -T a 2 (L)β 3 x (L)θ(L)|w x (L)| 2 dt, 3 2 sλ T -T (a(aβ x θ) x ) x x=0 |w x (0)| 2 dt ≤ Csλ 3 T -T a 2 (0)β 3 x (0)θ(0)|w x (0)| 2 dt, 3sλ T -T a(aβ x θ) x x=L w x (L)w xx (L)dt ≤ Cs 2 λ 3 T -T a 2 (L)β 3 x (L)θ(L)|w x (L)| 2 dt + Cλ T -T a 2 (L)β x (L)θ(L)|w xx (L)| 2 dt, and 
3sλ T -T a(aβ x θ) x x=0 w x (0)w xx (0)dt ≤ Cs 2 λ 3 T -T a 2 (0)β 3 x (0)θ(0)|w x (0)| 2 dt + Cλ T -T a 2 (0)β x (0)θ(0)|w xx (0)| 2 dt.
From these last four inequalities we get that

|B * | ≤ C s B + + C s |B -|.
Therefore, taking s 0 large enough, inequality [START_REF] Fursikov | Controllability of evolution equations[END_REF] becomes, for all s > s 0 ,

w 2 s,λ,θ + B + ≤ C P 1 w, P 2 w + C|B -|. (23) 
Step 4. Carleman estimate for w. Since B + ≥ 0, inequality (23) yields

w 2 s,λ,θ ≤ C P 1 w, P 2 w + Cs 3 λ 3 T -T a 2 (L)β 3 x (L)θ 3 (L, t)|w x (L, t)| 2 dt + Csλ T -T a 2 (L)β x (L)θ(L, t)|w xx (L, t)| 2 dt. ( 24 
)
Moreover, from [START_REF] Cardoulis | Simultaneous identification of the diffusion coefficient and the potential for the Schrödinger operator with only one observation[END_REF] we have

P φ w -Rw 2 L 2 (Q) ≤ 2 P φ w 2 L 2 (Q) + 2 Rw 2 L 2 (Q) ≤ 2 P φ w 2 L 2 (Q) + Cs 4 λ 6 Q θ 2 |w| 2 dxdt + Cs 2 λ 2 Q |w x | 2 dxdt.
Therefore, choosing again s 0 and λ 0 large enough, we have proved the following.

Proposition 1 There exist s 0 , λ 0 > 0 and a constant C = C(L, T, s 0 , λ 0 , α, a 0 , r) > 0 such that for all s ≥ s 0 , for all λ ≥ λ 0 ,

s 5 λ 6 T -T L 0 θ 5 |w| 2 dxdt + s 3 λ 4 T -T L 0 θ 3 |w x | 2 dxdt + sλ 2 T -T L 0 θ|w xx | 2 dxdt + T -T L 0 |P 1 w| 2 dxdt + T -T L 0 |P 2 w| 2 dxdt ≤ C T -T L 0 |P φ w| 2 dxdt + Cs 3 λ 3 T -T θ 3 (L, t)|w x (L, t)| 2 dt + Csλ T -T θ(L, t)|w xx (L, t)| 2 dt (25)
for all w ∈ W s := {e -sφ v : v ∈ V}.

Step 5. Back to the variable u The Carleman estimate stated in Theorem 2 will now be deduced from Proposition 1.

It is only a matter of going back to the variable u ∈ V. Recall that u = e sφ w and u(0, t) = u(L, t) = 0 for all t ∈ (-T, T ). One easily checks that there exists a positive constant C = C(L, T, s 0 , λ 0 , α, a 0 , r) such that for all x ∈ (0, L) and t ∈ (-T, T ),

e -2sφ |u x | 2 ≤ 2|w x | 2 + Cs 2 λ 2 θ 2 |w| 2
, and

e -2sφ |u xx | 2 = 2|w xx | 2 + Cs 2 λ 2 θ 2 |w x | 2 + Cs 4 λ 4 θ 2 |w| 2 .
Hence the left hand side of ( 12) is estimated by the left hand side of [START_REF] Grimshaw | Solitary waves propagating over variable topography[END_REF]. Moreover, we have P φ w = e -sφ P u, and concerning the boundary terms, using u(0, t) = u(L, t) = 0 for all t ∈ (-T, T ) we obtain that in {0, L} × (-T, T ),

|w x | 2 ≤ Ce -2sφ |u x | 2 ,
and
|w xx | 2 ≤ Ce -2sφ |u xx | 2 + s 2 λ 2 θ 2 |u x | 2 .
Therefore, for s 0 and λ 0 large enough, Theorem 2 directly follows from Proposition 1.

Inverse Problem

This section is devoted to the proof of the Lipschitz stability result stated in Theorem 1 about the inverse problem of retreiving the main coefficient a in Equation ( 2) from boundary measurements of the solution. We recall here that we will use the Bukhgeȋm-Klibanov method. In the sake of clarity, we divide the proof in several steps.

Step 1. Local solution of the inverse problem

We consider two coefficients a, ã and the corresponding solutions of (2), y and ỹ, and we define u(x, t) := y(x, t) -ỹ(x, t), and σ(x) := ã(x) -a(x).

The function u satisfies

   u t + a(x)u xxx + (1 + ỹ)u x + y x u = σ ỹxxx , ∀(x, t) ∈ (0, L) × (0, T ), u(0, t) = 0, u(L, t) = 0, u x (L, t) = 0 ∀t ∈ (0, T ), u(x, 0) = 0, ∀x ∈ (0, L). (26) 
We consider now z(x, t) := u t (x, t), which satisfies the system

   z t + a(x)z xxx + (1 + ỹ)z x + y x z = f, ∀(x, t) ∈ (0, L) × (0, T ), z(0, t) = 0, z(L, t) = 0, z x (L, t) = 0 ∀t ∈ (0, T ), z(x, 0) = σ(x)y 0 (x), ∀x ∈ (0, L), (27) 
where f = σ(x)ỹ xxxt -y xt u -ỹt u x . One should notice that we have now σ, that we seek to estimate, appearing not only in the source term of the equation, but also into the initial condition.

Step 2. Extension to negative time In order to estimate σ through z(x, 0) using the Carleman estimate of the previous section, we shall extend the partial differential equations ( 26) in u and ( 27) in z to negative times. In order to extend these linearized KdV equations to the interval (-T, T ), we define the symmetric extension of any function g defined on [0, L] × [0, T ] by

ĝ(x, t) = g(x, t) if x ∈ [0, L], t ∈ [0, T ], g(L -x, -t) if x ∈ [0, L], t ∈ [-T, 0). ( 28 
)
One should notice that this extension satisfies f ĝ = f g. We also define the following anti-symmetric extension to [0, L] × [-T, T ] of any function g defined on [0, L] × [0, T ] by

ǧ(x, t) = g(x, t) if x ∈ [0, L], t ∈ [0, T ], -g(L -x, -t) if x ∈ [0, L], t ∈ [-T, 0). ( 29 
)
Therefore, we first assume that the initial data z 0 (x) = z(x, 0) of equation ( 27)

satisfies z 0 (x) = z 0 (L -x) ∀x ∈ [0, L], (30) 
meaning that we have to assume this for a, ã and y 0 , as we did in assumptions ( 3) and ( 5). We define the extension of y (resp. ỹ) solution of equation ( 2) by ŷ (resp. ŷ). Now we can define v := ẑ on [0, L] × [-T, T ], which satisfies the equation given by

           v t + a(x)v xxx + (1 + ŷ)v x + ŷx v = f , ∀x ∈ (0, L), t ∈ (-T, T ), v(0, t) = 0, v(L, t) = 0, ∀t ∈ (-T, T ), v x (L, t) = 0, ∀t ∈ (0, T ), v x (L, t) = -z x (0, -t), ∀t ∈ (-T, 0), v(x, 0) = σ(x)y 0 (x), ∀x ∈ (0, L). (31) 
The partial differential operator of this equation is eligible for the Carleman estimate of Theorem 2, according to [START_REF] Bellassoued | Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients[END_REF] with b = 1 + ŷ and d = ŷx , provided that b ∈ L ∞ (-T, T ; W 1,∞ (0, L)) and d ∈ L ∞ ((-T, T ) × (0, L)). This regularity is fulfilled thanks to the hypothesis on the regularity of y 0 , a and ã, which ensures the corresponding solutions y and ỹ to be regular enough. See Proposition 3 in the Appendix.

Step 3. First use of the Carleman estimate Following the definitions stated in the proof of Theorem 1, we set w = e -sφ v and since we have w(0, t) = w(L, t) = 0 and w(x, ±T ) = 0 (because of the weight function φ), we can either compute or estimate the following integral

I := 0 -T L 0 w P 1 w dxdt = 0 -T L 0 w(w t + 3as 2 φ 2 x w x + aw xxx + 3as 2 φ x φ xx w) dxdt (32) 
where P 1 has been defined in [START_REF] Bukhgeȋm | Uniqueness in the large of a class of multidimensional inverse problems[END_REF] and m = 1 chosen according to [START_REF] Crépeau | A reduced model of pulsatile flow in an arterial compartment[END_REF]. First of all, making integrations by parts, it is not difficult to see that

I = 1 2 L 0 |w(x, 0)| 2 dx + R, where R = 0 -T L 0 3as 2 φ 2 x w x w + aw xxx w + 3as 2 φ x φ xx |w| 2 dxdt = - 3 2 s 2 λ 2 0 -T L 0 (aβ 2 x θ 2 ) x |w| 2 dxdt - 0 -T L 0 aw xx w x dxdt + 0 -T L 0 a x |w x | 2 dxdt - 1 2 0 -T L 0 a xxx |w| 2 dxdt + 3ms 2 λ 2 0 -T L 0 aβ x (β xx + λβ 2 x )θ 2 |w| 2 dxdt
Using a ∈ Σ(a 0 , α), β ∈ C 3 ([0, L]), the property (11) of θ and Cauchy-Schwartz inequality, one obtains

|R| ≤ C T -T L 0 (s 2 λ 3 θ 3 |w| 2 + |w x | 2 + |w xx | 2 ) dxdt
for the same generic constant C > 0 as in the previous section. Hence, estimating the quantity s 5 2 I by Carleman inequality (25), and choosing s 0 large enough to absorb the terms of R by the dominant ones of the left hand side of (25), we prove

s 5 2 L 0 |w(x, 0)| 2 dx ≤ 2s 5 T -T L 0 |w| 2 dxdt + 2 T -T L 0 |P 1 w| 2 dxdt + 2s 5 2 |R| ≤ C T -T L 0 e -2sφ | f (x, t)| 2 dxdt + Cs 3 λ 3 T -T θ 3 (L, t)|w x (L, t)| 2 dt + Csλ T -T θ(L, t)|w xx (L, t)| 2 dt.
On the one hand, since we assume that |y 0 (x)| ≥ r 0 > 0, we have Therefore, by these two last estimates, fixing λ > λ 0 , we get

s 5 2 L 0 e -2sφ(x,0) |σ(x)| 2 dx ≤ C T -T L 0 e -2sφ | f (x, t)| 2 dxdt + Cs 3 T -T θ 3 (L, t)|w x (L, t)| 2 dt + Cs T -T θ(L, t)|w xx (L, t)| 2 dt
and using the definition of f from [START_REF] Imanuvilov | Determination of a coefficient in an acoustic equation with a single measurement[END_REF], and the fact that θ and φ are even in time, w = e -sφ v = e -sφ ẑ with definition [START_REF] Imanuvilov | Global Lipschitz stability in an inverse hyperbolic problem by interior observations[END_REF], and the boundary properties of z in ( 27), we obtain

s 5 2 L 0 e -2sφ(x,0) |σ(x)| 2 dx ≤ C T 0 L 0 e -2sφ(x,t) + e -2sφ(L-x,t) |f (x, t)| 2 dxdt + Cs 3 T 0 e -2sφ(L,t) θ 3 (L, t)|z x (0, t)| 2 dt + Cs T 0 e -2sφ(L,t) θ(L, t)|z xx (0, t)| 2 dt + Cs T 0 e -2sφ(L,t) θ(L, t)|z xx (L, t)| 2 dt. (33)
On the other hand, since φ(x, t) ≥ φ(x, 0) for all (x, t) ∈ (0, L)×(-T, T ), and ỹt , y xt and ỹxxxt belong to L ∞ ((0, L)×(0, T )) (recall that y 0 ∈ {w ∈ H 7 (0, L); w(0) = w(L) = w (L) = 0} and a, ã ∈ Σ(a 0 , α), which implies that y, ỹ ∈ W 1,∞ (0, T ; W 3,∞ (0, L))), we can write

T 0 L 0 e -2sφ(x,t) |f (x, t)| 2 dxdt = T 0 L 0 e -2sφ(x,t) |σ(x)ỹ xxxt -y xt u -ỹt u x | 2 dxdt ≤ C L 0 e -2sφ(x,0) |σ(x)| 2 dx + C T 0 L 0 e -2sφ(x,t) (|u| 2 + |u x | 2 ) dxdt.
and also,

T 0 L 0 e -2sφ(L-x,t) |f (x, t)| 2 dxdt = T 0 L 0 e -2sφ(L-x,t) |σ(x)ỹ xxxt -y xt u -ỹt u x | 2 dxdt ≤ C L 0 e -2sφ(L-x,0) |σ(x)| 2 dx + C T 0 L 0 e -2sφ(L-x,t) (|u| 2 + |u x | 2 ) dxdt ≤ C L 0 e -2sφ(x,0) |σ(x)| 2 dx + C 0 -T L 0 e -2sφ(x,t) (|û| 2 + |û x | 2 ) dxdt Thus, we get, T -T L 0 e -2sφ | f (x, t)| 2 dxdt ≤ C L 0 e -2sφ(x,0) |σ(x)| 2 dx + C T -T L 0 e -2sφ(x,t) (|û| 2 + |û x | 2 ) dxdt (34)
Here, the second term in the right hand side has to be estimated, and this is done using again a Carleman inequality.

Step 4. Second use of the Carleman estimate Applying now Carleman estimate [START_REF] Bona | A Nonhomogeneous Boundary-Value Problem for the Korteweg-de Vries Equation Posed on a Finite Domain[END_REF] to the equation satisfied by û that is the extension of (26) to negative times, and where the first and zero-th order potentials are b(x, t) = 1 + ŷ(x, t), and d(x, t) = ŷx (x, t), we obtain

T -T L 0 e -2sφ (|û| 2 + |û x | 2 ) dxdt ≤ C T -T L 0 e -2sφ |σ ỹxxx | 2 dxdt + Cs 3 T -T e -2sφ(L,t) θ 3 (L, t)|û x (L, t)| 2 dt + Cs T -T e -2sφ(L,t) θ(L, t)|û xx (L, t)| 2 dt ≤ C L 0 e -2sφ(x,0) |σ(x)| 2 dxdt + Cs 3 T 0 e -2sφ(L,t) θ(L, t)|u x (0, t)| 2 dt + Cs T 0 e -2sφ(L,t) θ(L, t)|u xx (0, t)| 2 dt + Cs T 0 e -2sφ(L,t) θ(L, t)|u xx (L, t)| 2 dt.
Thus, from [START_REF] Klibanov | Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems[END_REF], we can write, [START_REF] Klibanov | Newton-Kantorovich method for threedimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data[END_REF] and from [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF] and [START_REF] Klibanov | Newton-Kantorovich method for threedimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data[END_REF], choosing s 0 large enough, we deduce that

T 0 L 0 e -2sφ | f (x, t)| 2 dxdt ≤ C L 0 e -2sφ(x,0) |σ(x)| 2 dxdt + Cs 3 T 0 e -2sφ(L,t) θ(L, t)|u x (0, t)| 2 dt + Cs T 0 e -2sφ(L,t) θ(L, t)|u xx (0, t)| 2 dt + Cs T 0 e -2sφ(L,t) θ(L, t)|u xx (L, t)| 2 dt
s 5 2 L 0 e -2sφ(0) |σ(x)| 2 dx ≤ Cs 3 T 0 e -2sφ(L,t) θ(L, t)(|u x (0, t)| 2 + |z x (0, t)| 2 ) dt + Cs T 0 e -2sφ(L,t) θ(L, t)(|u xx (0, t)| 2 + |z xx (0, t)| 2 ) dt + Cs T 0 e -2sφ(L,t) (|u xx (L, t)| 2 + |z xx (L, t)| 2 ) dt (36)
Taking into account that z = u t = ∂ t (y -ỹ) the result of Theorem 1 directly follows from [START_REF] Klibanov | Lipschitz stability of an inverse problem for an acoustic equation[END_REF].

A Cauchy problem

In this appendix, we state the well-posedness results for the KdV equation considered in the paper. We only give the main ideas in the proofs because the tools are pretty similar to those applied for the constant coefficient case, which is already standard in the literature (see [START_REF] Bona | Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces[END_REF], [START_REF] Bona | A Nonhomogeneous Boundary-Value Problem for the Korteweg-de Vries Equation Posed on a Finite Domain[END_REF], [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF] and [START_REF] Coron | Control and nonlinearity[END_REF]). It is worthwhile to emphasis that these results allow to get, under smoothness hypothesis on the data, the existence of solutions for the KdV equation with the regularity required for our approach in order to prove the stability of the inverse problem.

We consider a main coefficient satisfying

∃a 0 ∈ R, ∀x ∈ [0, L] a(x) ≥ a 0 > 0. ( 37 
)
Let us introduce, for any s ≥ 0 the space

B s = C([0, T ], H s (0, L)) ∩ L 2 (0, T ; H s+1 (0, L))
and consider only the principal part of the equation, i.e. we study the problem

       y t + a(x)y xxx = f, ∀(x, t) ∈ (0, L) × (0, T ), y(0, t) = 0, y(L, t) = 0, ∀t ∈ (0, T ), y x (L, t) = 0, ∀t ∈ (0, T ), y(0, x) = y 0 (x), ∀x ∈ (0, L). (38) 
In order to take into account the coefficient a = a(x) we work in the space X = L 2 (0, L) endowed with the inner product

w 1 , w 2 X := L 0 1 a(x) w 1 (x)w 2 (x)dx.
Notice that since a ∈ L ∞ (0, L) satisfies ( 37), the norm defined by the inner product •, • X is equivalent to the L 2 -norm.

In the domain D(A) = {w ∈ H 3 (0, L) w(0) = w(L) = w (L) = 0}, we define the operator A : D(A) ⊂ X → X as A(w) = -aw . It is easy to see that both A and its adjoint operator A * are dissipative, and therefore, by standard semigroup theory (for instance a corollary of Lumer-Phillips Theorem, see Chapter 1 in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), we get that A generates a strongly continuous semigroup in L 2 (0, L).

Thus, if y 0 ∈ L 2 (0, L), a ∈ L ∞ (0, L) satisfies (37) and f ∈ L 1 (0, T, L 2 (0, L)) then the linear KdV equation ( 38) has a unique solution (called mild solution) in the space C([0, T ], L 2 (0, L)). Applying the multipliers technique, we get a Kato smoothing effect, which implies y ∈ L 2 (0, T ; H 1 (0, L)) and thus y ∈ B 0 . This regularity is indeed obtained by multiplying formally equation ( 38) by x a(x) y(t, x) and integrating in (0, L) × (0, T ). This proves the following result.

Proposition 2 Let y 0 ∈ L 2 (0, L), a ∈ L ∞ (0, L) verifying (37) and f ∈ L 1 (0, T, L 2 (0, L)).
Then the linear KdV equation (38) has a unique solution in the space B 0 . Moreover, there exist C > 0 such that

y B 0 ≤ C y 0 L 2 (0,T ) + f L 1 (0,T,L 2 (0,L)) .
Depending on the regularity of the data, we can prove the existence of more regular solutions. Let us consider y solution of [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]. The function u := y t satisfies

       u t + a(x)u xxx = f t , ∀(x, t) ∈ (0, L) × (0, T ), u(0, t) = 0, u(L, t) = 0, ∀t ∈ (0, T ), u x (L, t) = 0, ∀t ∈ (0, T ), u(0, x) = f (0, x) -a(x)y 0xxx , ∀x ∈ (0, L). (39) 
Assuming that f t ∈ L 1 (0, T ; L 2 (0, L)) and y 0 ∈ D(A), we have that (f (0, x)a(x)y 0xxx ) ∈ L 2 (0, L), and then Proposition 2 implies that u = y t ∈ B 0 .

If additionally we ask f ∈ B 0 , then by equation [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] we have a(x)y xxx = f -y t ∈ B 0 , and if a ∈ W 1,∞ (0, L) satisfies [START_REF] Mercado | Lionel Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights[END_REF] we get that the original solution satisfies y ∈ B 3 .

Analyzing in the same way each one of the equations fulfilled by y tt and y ttt , we get the following result.

Proposition 3 Let y 0 ∈ H 9 (0, L) ∩ D(A), a ∈ W 6,∞ (0, L) verifying (37), and f ∈ B 6 such that f t ∈ B 3 , f tt ∈ B 0 , and f ttt ∈ L 1 (0, T, L 2 (0, L)). Then the linear KdV equation (38) has a unique solution in the space B 9 . This solution also satisfies y t ∈ B 6 , y tt ∈ B 3 and y ttt ∈ B 0 .

Remark 5 The hypothesis a ∈ W 6,∞ (0, L) is used to ensure that the initial condition of the problem solved by y ttt belongs to the space L 2 (0, L).

In order to prove a similar result for the nonlinear system        y t + a(x)y xxx + y x + yy x = 0, ∀(x, t) ∈ (0, L) × (0, T ), y(0, t) = 0, y(L, t) = 0, ∀t ∈ (0, T ), y x (L, t) = 0, ∀t ∈ (0, T ), y(0, x) = y 0 (x), ∀x ∈ (0, L),

we define the map Π : ỹ ∈ B 0 → Π(ỹ) = y ∈ B 0

where Π(ỹ) = y is the solution of [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] with f replaced by (-ỹ x -ỹ ỹx ). For ỹ ∈ B 0 , we have ỹ ∈ L 2 (0, T ; H 1 (0, L)), and therefore ỹ ỹx ∈ L 1 (0, T ; L 2 (0, L)). Thus we are able to use Proposition 2 with the right-hand side f = (-ỹ x -ỹ ỹx ) to define Π(ỹ) = y ∈ B 0 . Applying a fixed point argument in small time and global a priori estimates to deal with the long-time case, we obtain the following Proposition 4 Let y 0 ∈ L 2 (0, L) and a ∈ L ∞ (0, L) verifying [START_REF] Mercado | Lionel Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights[END_REF]. Then, the nonlinear KdV equation (40) has a unique solution in the space B 0 .

We can also prove the nonlinear result in the more regular framework.

Proposition 5 Let y 0 ∈ H 9 (0, L) ∩ D(A) and a ∈ W 6,∞ (0, L) verifying [START_REF] Mercado | Lionel Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights[END_REF]. Then, the nonlinear KdV equation (40) has a unique solution in the space B 9 .

The proof of Proposition 5 can be done as before (with a fixed point argument and global a priori estimates) with the same map Π but now defined in the space Y := {y ∈ B 9 y t ∈ B 6 , y tt ∈ B 3 and y ttt ∈ B 0 } instead of B 0 . Let us notice that the nonlinearity ỹ ỹx satisfies all the hypothesis required in Proposition 3 for the right hand side f provided that ỹ ∈ Y.

Using some interpolation arguments, we can prove the following result, which gives us the existence of solutions as we require in order to solve our Inverse Problem in Theorem 1.

Theorem 3 Let y 0 ∈ H 7 (0, L) ∩ D(A) and a ∈ W 6,∞ (0, L) satisfying [START_REF] Mercado | Lionel Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights[END_REF]. Then the nonlinear KdV equation (40) has a unique solution in the space B 7 . Furthermore y t ∈ B 4 and therefore y ∈ W 1,∞ (0, T ; W 3,∞ (0, L)).

Indeed, the proof of this result can be deduced from the Interpolation Theorem by Bona and Scott ( [START_REF] Bona | Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces[END_REF], see Theorem 4.3 in [12]). This theorem is applied in the following way. Denoting by S the mapping which sends the initial condition y 0 to the solution y of the equation [START_REF] Puel | Generic well-posedness in a multidimensional hyperbolic inverse problem[END_REF], by Propositions 4 and 5 we have that S : L 2 (0, L) -→ B 0 and S : H 9 (0, L) ∩ D(A) -→ B 9 are well defined. Additionally, two inequalities are needed (see (i) and (ii) from Theorem 4.3 in [START_REF] Bona | A Nonhomogeneous Boundary-Value Problem for the Korteweg-de Vries Equation Posed on a Finite Domain[END_REF]):

• The first one is the estimation of S(y 01 )-S(y 02 ) B 0 in terms of y 01 -y 02 L 2 (0,L) , which can be proven exactly in the same way as in the proof of Proposition 4.2 of [START_REF] Bona | A Nonhomogeneous Boundary-Value Problem for the Korteweg-de Vries Equation Posed on a Finite Domain[END_REF], but now using our Proposition 2.

• The second one consists in estimating S(y 0 ) B 9 by y 0 H 9 (0,L) , which can be proven from Proposition 5 and following Proposition 15 in [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF].

From the Interpolation Theorem we get that S : H 7 (0, L) ∩ D(A) → B 7 is well defined, with gives us the proof of Theorem 3.

Remark 6 A sharper result can be obtained with y 0 ∈ H s (0, L)∩D(A) where s > 6+ 1 2 . In that case, previous arguments give the existence of a solution y ∈ B s with y t ∈ B s-3 , and then y txxx ∈ C([0, T ], H q (0, L)) with q > 1/2. Thus, we obtain for system (40) a solution y ∈ W 1,∞ (0, T ; W 3,∞ (0, L)).

ee

  -2sφ(0) |σ(x)y 0 (x)| 2 dx ≥ s -2sφ(0) |σ(x)| 2 dx.
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