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Abstract

This paper concerns the inverse problem of retrieving the principal coefficient in a
Korteweg-de Vries (KdV) equation from boundary measurements of a single solution.
The Lipschitz stability of this inverse problem is obtained using a new global Carleman
estimate for the linearized KdV equation. The proof is based on the Bukhgĕım-Klibanov
method.
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1 Introduction
The Korteweg-de Vries (KdV) equation

yt(t, x) + yxxx(t, x) + yx(t, x) + y(t, x)yx(t, x) = 0,

is a nonlinear dispersive equation that serves as a mathematical model to study the
propagation of long water waves in channels of relatively shallow depth and flat bottom
[33]. In this model, the function y = y(t, x) represents the surface elevation of the
water wave at time t and at position x. Since the works by Johnson [32] and Grimshaw
[24] (see also the recent survey [25]), the study of water waves moving over variable
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topography has been considered. If we denote h = h(x) the function describing the
variations in depth of the channel, then the proposed model becomes (after scaling)

yt(t, x) + h2(x)yxxx(t, x) + (
√
h(x)y(t, x))x +

1√
h(x)

y(t, x)yx(t, x) = 0. (1)

In a recent paper, Israwi [31] proposes a correction to this model by saying that the main
coefficient is not h2(x)yxxx(t, x) but h

5
2 (x)yxxx(t, x). Thus, we are leaded to consider

variable coefficients KdV equations to model the water wave propagation in non-flat
channels.

The original inverse problem which motivated this paper can be stated in a informal
way as

“to recover information on the topography of a channel (denoted by h) by
means of boundary measurements of a water wave (given by y)”.

This kind of coefficient inverse problem is by now classical and referred to as the deter-
mination of coefficients in evolution partial differential equations (pde’s) by means of
the partial knowledge of a single solution.

Many other inverse problems on KdV equations could be studied with possible ap-
plications. For example the pulsatile blood flow in an arterial compartment can be
modelized by KdV equation, see [20] for details. It leads to several open inverse prob-
lems, as the determination of the flow at the input of the arteria with only one measure
at the output, or the determination of physical coefficients like stiffness of arterias.
Those open inverse problems are very relevant for cardiovascular medicine.

Since the pioneer works by Bukhgĕım, Klibanov and Malinsky [13, 35], there have
been a number of papers devoted to the proof of uniqueness and stability for inverse
problems concerning the determination of source or coefficients in pde’s by means of
the localized knowledge of a single solution.

The problem of recovering sources has been first addressed for hyperbolic equations
in [39, 40] and for parabolic equations in [27]. The determination of coefficients has
also drawn the attention of many authors. Among the most classical results for the
wave equation, we can mention the determination of a potential from boundary [45] or
internal [28] measurements and the determination of the main coefficient from boundary
[7, 36] or internal [29] observation. Regarding the problem of recovering coefficients in
parabolic equations, we send the interested reader to the survey [44] by Yamamoto and
the references therein.

Concerning dispersive equations, a stability result was obtained in [5] for the prob-
lem of recovering the potential in a Schrödinger equation. That paper motivated several
further works as [14, 37], where appropriate Carleman estimates were proven in differ-
ent contexts. To the best of our knowledge, there are no previous works concerning
coefficient inverse problems for KdV equations.

Most of the references given above are inspired by what is often called the Bukhgĕım-
Klibanov method (see the recent book [6] or the survey [34]), which was meant to prove
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global uniqueness results for single-measurement coefficients inverse problems. Roughly
speaking, it consists in two steps. The first step comprises the time differentiation of the
governing pde, getting an auxiliary system, in which the unknown coefficient appears
now in the initial condition. The second step relies on the application of a Carleman
estimate whose parameters and weight are crucial to drive to the conclusion. An idea of
Imanuvilov and Yamamoto, presented for the first time in [27] (for parabolic equation)
and then often used (for other pde’s), allows to use the appropriate global Carleman
inequality to estimate the unknown coefficient in terms of internal or boundary mea-
surements of the solution. The main drawback of this method, that is not lifted yet
is the hypothesis that at least one initial condition, (or some of its derivatives) never
vanishes in the domain.

This article is a first step in order to address the problem of recovering the topog-
raphy of the channel by means of boundary measurements of the water wave. Indeed,
we will deal with a KdV equation posed on a bounded interval [0, L] with an unknown
third-order coefficient:

yt + a(x)yxxx + yx + yyx = 0, ∀(x, t) ∈ (0, L)× (0, T ),
y(0, t) = y(L, t) = yx(L, t) = 0, ∀t ∈ (0, T ),
y(x, 0) = y0(x), ∀x ∈ (0, L),

(2)

where the initial data y0 is known. The unknown coefficient a = a(x) is assumed to
be time independent. The case where we have several unknown coefficients (as in the
equation (1)) is very hard to deal with. There are few results in this direction and
they ask many conditions on the coefficients. See for instance [15] where a Schrödigner
equation is considered on an unbounded strip.

Up to our knowledge, this paper solves the first coefficient inverse problem for the
KdV equation. As mentioned before, the Bukhgĕım-Klibanov method requires a Car-
leman estimate for the equation. This type of inequalities has already been proven for
the KdV equation on a bounded interval in the framework of control problems. The
control of this equation from the left Dirichlet boundary condition have been studied in
[43] and [23], where the authors get the null-controllability of this equation by proving
one-parameter Carleman estimates. Unlike those papers, here we will prove a two-
parameter estimate in order to be able to deal with a space dependent main coefficient.

The inverse problem we are interested in can be stated as follows.

Inverse problem: Retrieve the principal coefficient a = a(x) of equation (2) from
the measurement of yx(0, t), yxx(0, t) and yxx(L, t) on (0, T ), where y is the solution of
equation (2).

A partial and local answer for this nonlinear inverse problem will be proved in this
paper. To be more specific, let us denote by y and ỹ the solutions of Equation (2) cor-
responding to coefficients a and ã respectively (we shall also use the notation y[a], y[ã]).
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Stability: Estimate ‖ã− a‖L2(0,L) by suitable norms of the measurements ‖ỹx(0, t)−
yx(0, t)‖, ‖ỹxx(0, t)− yxx(0, t)‖ and ‖ỹxx(L, t)− yxx(L, t)‖.

The next theorem is the main result of this article and gives the stability result for
the inverse problem under consideration.

Theorem 1 Let r0, a0, α and K be given positive constants. Assume that the initial
data y0 ∈

{
w ∈ H7(0, L); w(0) = w(L) = w′(L) = 0

}
satisfies for every x ∈ [0, L]

y′′′0 (x) = y′′′0 (L− x) (3)

and
|y′′′0 (x)| ≥ r0 > 0. (4)

Define the set

Σ(a0, α) =
{
a ∈W 6,∞(0, L)

/
∀x ∈ [0, L], a(x) ≥ a0 > 0, a(x) = a(L− x),

and ‖a‖W 6,∞(0,L) ≤ α
}
. (5)

Then, there exists a constant C = C(L, T, r0, a0, α,K) > 0 such that

C‖a− ã‖L2(0,L) ≤ ‖yx(0, t)− ỹx(0, t)‖H1(0,T ) + ‖yxx(0, t)− ỹxx(0, t)‖H1(0,T )

+ ‖yxx(L, t)− ỹxx(L, t)‖H1(0,T ) (6)

for every a, ã in Σ(a0, α) such that the corresponding solutions of Equation (2) satisfy

max{‖y‖W 1,∞(0,T ;W 3,∞(0,L)), ‖ỹ‖W 1,∞(0,T ;W 3,∞(0,L))} ≤ K.

Remark 1 In the Appendix, we will sketch the proof of the fact that the required hy-
potheses on a ∈ W 6,∞(0, L) and y0 ∈

{
w ∈ H7(0, L); w(0) = w(L) = w′(L) = 0

}
are

enough to guarantee that the solution of (2) lies in W 1,∞(0, T ;W 3,∞(0, L)) (see Propo-
sition 3). Thus, the set of trajectories where Theorem 1 is valid is not empty. We
mention that hypothesis y0 ∈ H7(0, L) is not sharp, see Remark 6 in the Appendix.

Remark 2 The symmetry hypothesis on the initial data and the main coefficient are
technical points coming from our proof. More precisely, they allow us to extend the
solution of KdV equation to negative times, in order to apply the Bukhgĕım-Klibanov
method.

Remark 3 Concerning the question of the minimal number of boundary measurement
required in Theorem 1, one could expect to get estimate (6) with either one measurement
at x = L or two measurements at x = 0, but not with just one measurement at x = 0.
This is based on the fact that Carleman estimates imply some observability inequalities,
which do not hold for the linear KdV equation with only one observation at x = 0. This
lack of observability holds for some critical lengths L, as one can read in [42, 19, 16, 17].
On the other hand, we need in this paper three measurements because of the symmetry
assumptions and the extension to negative times used.
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Other related papers on this type of inverse problem for pde’s can be listed: [1, 26]
(one dimensional fourth order parabolic equation), [10, 4, 3] (discontinuous coefficients),
[2] (network of one dimensional waves) [9, 8] (logarithmic stability estimates), [21]
(parabolic system), [41] (unknown coefficient in the nonlinearity), [46, 15, 21] (two un-
known coefficients). We also mention some important books which can be the starting
point to study inverse problems [30], Carleman estimates [22], and control theory for
partial differential equations [18].

Outline: In section 2, a two-parameters global Carleman estimate for the linearized
KdV equation with non-constant main coefficient is obtained. It is then used in section
3, following the Bukhgĕım-Klibanov method, to prove the desired stability result. As
mentioned before, the Appendix A is concerned with the Cauchy problem.

2 Carleman estimate
In this section, a global Carleman inequality will be proven for the linearized KdV
equation on the domain denoted here by Q := (0, L) × (−T, T ). As mentioned in the
introduction, there are in the literature some Carleman estimates for the KdV equation
with constant main coefficient posed on a bounded interval [43, 23]. In this work we
deal with non-constant coefficients a = a(x). We prove a two-parameter (s, λ) Carle-
man estimate in order to avoid extra hypothesis on the coefficients when solving the
inverse problem.

Let us consider d ∈ L∞((−T, T ) × (0, L)), b ∈ L∞(−T, T ;W 1,∞(0, L)) and a ∈
W 3,∞(0, L), with a(x) ≥ a0 for every x ∈ [0, L], and ‖a‖W 3,∞(0,L) ≤ α, where a0, α > 0.
We define the operator

P = ∂t + a(x)∂xxx + b(x, t)∂x + d(x, t) (7)

and the space

V =
{
v ∈ L2(−T, T ;H3 ∩H1

0 (0, L))
/
Pv ∈ L2((0, L)× (−T, T ))

}
. (8)

Consider β ∈ C3([0, L]) such that for some r > 0 we have

0 < r ≤ β(x) and 0 < r ≤ β′(x), ∀x ∈ (0, L). (9)

We define, for each λ > 0, the functions

φ(x, t) =
e2λ‖β‖∞ − eλβ(x)

(T + t)(T − t)
, θ(x, t) =

eλβ(x)

(T + t)(T − t)
(10)

for (x, t) ∈ [0, L]× (−T, T ). Let us notice that there exists a constant C = C(T ) such
that

0 <
1
C
≤ θ(x, t) and |θt(x, t)| ≤ Cθ2(x, t), ∀(x, t) ∈ [0, L]× (−T, T ). (11)

We will prove the following Carleman estimate.
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Theorem 2 Let φ and θ be defined by (10), and let P be the linearized KdV operator
defined in (7). There exist s0 > 0, λ0 > 0 and a constant C(L, T, s0, λ0, α, a0, r) > 0
such that for every s ≥ s0 and λ ≥ λ0,∫ T

−T

∫ L

0
e−2sφ

(
s5λ6θ5|u|2 + s3λ4θ3|ux|2 + sλ2θ|uxx|2

)
dxdt

≤ C
∫ T

−T

∫ L

0
e−2sφ|Pu|2dxdt+ Cs3λ3

∫ T

−T
e−2sφ(L,t)θ3(L, t)|ux(L, t)|2dt

+ Csλ

∫ T

−T
e−2sφ(L,t)θ(L, t)|uxx(L, t)|2dt (12)

for all u ∈ V defined by (8).

Remark 4 When looking for a one-parameter Carleman estimate (as in [23, 43] where
φ = β(x)

(t+T )(T−t)), some hypothesis on the second derivative of the function β have to be
imposed. The use of the second parameter λ allows to omit them.

Proof: Let s > 0 and define Ws = {e−sφu /u ∈ V}. For u ∈ V, we set w = e−sφu and
we define the operator Pφ from Ws to L2((0, L)× (−T, T )) by

Pφw = e−sφP (esφw).

After straightforward computations, we write

Pφw = P1w + P2w +Rw

where, for a constant m > 0 to be chosen later,

P1w = wt + 3as2φ2
xwx + awxxx + 3ams2φxφxxw, (13)

P2w = as3φ3
xw + 3asφxwxx + 3swx(aφx)x, (14)

and

Rw = bsφxw + bwx + asφxxxw + 3as2φxφxxw + dw

+sφtw − 3saxφxwx − 3ams2φxφxxw. (15)

Therefore,

‖Pφw −Rw‖2L2(Q) = ‖P1w‖2L2(Q) + 2 〈P1w,P2w〉+ ‖P2w‖2L2(Q) (16)

where 〈·, ·〉 is the L2(Q) scalar product.

Step 1. Explicit calculations
Notice that w(0, t) = w(L, t) = 0 for all t ∈ (−T, T ) and w(x,±T ) = 0 for all x ∈
(0, L). This is due to the fact that w = e−sφu, with u ∈ L2(−T, T ;H1

0 (0, L)) and
lim
t→±T

φ(x, t) = +∞.
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By developing 〈P1w,P2w〉, we get

〈P1w,P2w〉 =
∑

i=1,...,4; j=1,...,3

Ii,j

where Ii,j is the L2(Q) scalar product of the i-th term in (13) with the j-th term in
(14). By integrations by parts, we obtain:

• I1,1 = −3s3

2

∫∫
Q
aφ2

xφxt|w|2dxdt =
3
2
s3λ3

∫∫
Q
aβ3

xθ
2θt|w|2dxdt ;

• I1,2 = −3s
∫∫

Q
(aφx)xwxwtdxdt+

3s
2

∫∫
Q
aφxt|wx|2dxdt

= −3s
∫∫

Q
(aφx)xwxwtdxdt−

3
2
sλ

∫∫
Q
aβxθt|wx|2dxdt ;

• I1,3 = 3s
∫∫

Q
(aφx)xwxwtdxdt ;

• I2,1 = −3s5

2

∫∫
Q

(a2φ5
x)x|w|2dxdt

=
3
2
s5λ5

∫∫
Q

(a2β5
x)xθ5|w|2dxdt+

15
2
s5λ6

∫∫
Q
a2β6

xθ
5|w|2dxdt ;

• I2,2 = −9s3

2

∫∫
Q

(a2φ3
x)x|wx|2dxdt+

9s3

2

∫ T

0
a2φ3

x|wx|2
∣∣∣x=L
x=0

dt

=
9
2
s3λ3

∫∫
Q

(a2β3
x)xθ3|wx|2dxdt+

27
2
s3λ4

∫∫
Q
a2β4

xθ
3|wx|2dxdt

−9
2
s3λ3

∫ T

0
a2β3

xθ
3|wx|2

∣∣∣x=L
x=0

dt ;

• I2,3 = 9s3
∫∫

Q
aφ2

x(aφx)x|wx|2dxdt

= −9s3λ3

∫∫
Q
aβ2

x(aβx)xθ3|wx|2dxdt− 9s3λ4

∫∫
Q
a2β4

xθ
3|wx|2dxdt ;

• I3,1 =
3s3

2

∫∫
Q

(a2φ3
x)x|wx|2dxdt−

s3

2

∫∫
Q

(a2φ3
x)xxx|w|2dxdt−

s3

2

∫ T

0
a2φ3

x|wx|2
∣∣∣x=L
x=0

dt

= −3
2
s3λ3

∫∫
Q

(a2β3
x)xθ3|wx|2dxdt−

9
2
s3λ4

∫∫
Q
a2β4

xθ
3|wx|2dxdt

+
s3λ3

2

∫∫
Q

(a2β3
xθ

3)xxx|w|2dxdt+
s3λ3

2

∫ T

0
a2β3

xθ
3|wx|2

∣∣∣x=L
x=0

dt ;

• I3,2 = −3s
2

∫∫
Q

(a2φx)x|wxx|2dxdt+
3s
2

∫ T

0
a2φx|wxx|2

∣∣∣x=L
x=0

dt

=
3
2
sλ

∫∫
Q

(a2βx)xθ|wxx|2dxdt+
3
2
sλ2

∫∫
Q
a2β2

xθ|wxx|2dxdt

−3
2
sλ

∫ T

0
a2βxθ|wxx|2

∣∣∣x=L
x=0

dt ;
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• I3,3 = −3s
∫∫

Q
a(aφx)x|wxx|2dxdt+

3s
2

∫∫
Q

[a(aφx)x]xx|wx|2dxdt

−3s
2

∫ T

0
(a(aφx)x)x|wx|2

∣∣∣x=L
x=0

dt+ 3s
∫ T

0
a(aφx)xwxwxx

∣∣∣x=L
x=0

dt

= 3sλ
∫∫

Q
a(aβx)xθ|wxx|2dxdt+ 3sλ2

∫∫
Q
a2β2

xθ|wxx|2dxdt

+
3
2
sλ

∫ T

0
(a(aβxθ)x)x |wx|

2
∣∣∣x=L
x=0

dt− 3
2
sλ

∫∫
Q

(a(aβxθ)x)xx |wx|
2dxdt

−3sλ
∫ T

0
a(aβxθ)xwxwxx

∣∣∣x=L
x=0

dt ;

• I4,1 = 3ms5
∫∫

Q
a2φ4

xφxx|w|2dxdt

= −3ms5λ5

∫∫
Q
a2β4

xβxxθ
5|w|2dxdt− 3ms5λ6

∫∫
Q
a2β6

xθ
5|w|2dxdt ;

• I4,2 = −9ms3
∫∫

Q
a2φ2

xφxx|wx|2dxdt+
9ms3

2

∫∫
Q

(a2φ2
xφxx)xx|w|2dxdt

= 9ms3λ3

∫∫
Q
a2β2

xβxxθ
3|wx|2dxdt+ 9ms3λ4

∫∫
Q
a2β4

xθ
3|wx|2dxdt

−9m
2
s3λ3

∫∫
Q

(
a2β2

xβxxθ
3
)
xx
|w|2dxdt− 9m

2
s3λ4

∫∫
Q

(
a2β4

xθ
3
)
xx
|w|2dxdt ;

• I4,3 = −9ms3

2

∫∫
Q

(aφxφxx(aφx)x)x |w|
2dxdt

=
9m
2
s3λ3

∫∫
Q

(
aβxβxxθ

2(aβxθ)x
)
x
|w|2dxdt+

9m
2
s3λ4

∫∫
Q

(
aβ3

xθ
2(aβxθ)x

)
x
|w|2dxdt.

Therefore,

〈P1w,P2w〉 =
(

15
2
− 3m

)
s5λ6

∫∫
Q
a2β6

xθ
5|w|2dxdt+ 9ms3λ4

∫∫
Q
a2β4

xθ
3|wx|2dxdt

+
9
2
sλ2

∫∫
Q
a2β2

xθ|wxx|2dxdt+B +X1

(17)
where X1 and B satisfy the following. The term X1 gathers the non-dominating terms
and satisfies that there exists a positive constant C = C(L, T, α, r) independent of s
and λ, (which may change from line to line) such that, using (11), we get

|X1| ≤ C(s3λ6 + s5λ5)
∫∫

Q
θ4|w|2 dxdt+ C(sλ4 + s3λ3)

∫∫
Q
θ2|wx|2 dxdt. (18)

The term B gathers the boundary terms. We split them as follows

B := B+ +B− +B∗ (19)

with the notations

B+ = 4s3λ3

∫ T

−T

(
a2β3

xθ
3
) ∣∣∣
x=0
|wx(0, t)|2dt+

3
2
sλ

∫ T

−T

(
a2βxθ

) ∣∣∣
x=0
|wxx(0, t)|2dt,
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B− = −4s3λ3

∫ T

−T

(
a2β3

xθ
3
) ∣∣∣
x=L
|wx(L, t)|2dt− 3

2
sλ

∫ T

−T

(
a2βxθ

) ∣∣∣
x=L
|wxx(L, t)|2dt,

B∗ = +
3
2
sλ

∫ T

−T
(a(aβxθ)x)x

∣∣∣
x=L
|wx(L, t)|2dt− 3

2
sλ

∫ T

−T
(a(aβxθ)x)x

∣∣∣
x=0
|wx(0, t)|2dt

− 3sλ
∫ T

−T
a(aβxθ)x

∣∣∣
x=L

wx(L, t)wxx(L, t)dt+ 3sλ
∫ T

−T
a(aβxθ)x

∣∣∣
x=0

wx(0, t)wxx(0, t)dt.

Step 2. Dominating terms
By choosing, and fixing, m such that

0 < m <
5
2
, (20)

we obtain that there exists a constant C = C(L, T, a0, r) > 0 such that:(
15
2
− 3m

)
s5λ6

∫∫
Q
a2β6

xθ
5|w|2dxdt ≥ Cs5λ6

∫∫
Q
θ5|w|2dxdt;

9ms3λ4

∫∫
Q
a2β4

xθ
3|wx|2dxdt ≥ Cs3λ4

∫∫
Q
θ3|wx|2dxdt;

9
2
sλ2

∫∫
Q
a2β2

xθ|wxx|2dxdt ≥ Csλ2

∫∫
Q
θ|wxx|2dxdt.

We introduce the notation given by

‖w‖2s,λ,θ = s5λ6

∫∫
Q
θ5|w|2dxdt+ s3λ4

∫∫
Q
θ3|wx|2dxdt+ sλ2

∫∫
Q
θ|wxx|2dxdt.

From (18) we obtain that

|X1| ≤ C
(

1
s2

+
1
λ

)
‖w‖2s,λ,θ.

Therefore, choosing s and λ large enough, from (17) we get some C > 0 depending
only on L, T, α, a0, r, s0 and λ0 and is such that, for all s > s0, λ > λ0,

C‖w‖2s,λ,θ ≤ 〈P1w,P2w〉 −B. (21)

Step 3. Boundary terms
From (19) and (21), considering that B+ and −B− are non-negative, we write

C‖w‖2s,λ,θ +B+ ≤ 〈P1w,P2w〉 −B− −B∗. (22)

Now, we shall deal with the boundary terms in B∗, that has no sign. We will bound |B∗|
by above. For the four integrals one by one, using (11) and Cauchy-Schwarz inequality,
this gives:∣∣∣∣32sλ

∫ T

−T
(a(aβxθ)x)x

∣∣∣
x=L
|wx(L)|2dt

∣∣∣∣ ≤ Csλ3

∫ T

−T
a2(L)β3

x(L)θ(L)|wx(L)|2dt, (23)
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∣∣∣∣32sλ
∫ T

−T
(a(aβxθ)x)x

∣∣∣
x=0
|wx(0)|2dt

∣∣∣∣ ≤ Csλ3

∫ T

−T
a2(0)β3

x(0)θ(0)|wx(0)|2dt, (24)

∣∣∣∣3sλ ∫ T

−T
a(aβxθ)x

∣∣∣
x=L

wx(L)wxx(L)dt
∣∣∣∣

≤ Cs2λ3

∫ T

−T
a2(L)β3

x(L)θ(L)|wx(L)|2dt+ Cλ

∫ T

−T
a2(L)βx(L)θ(L)|wxx(L)|2dt, (25)

and∣∣∣∣3sλ ∫ T

−T
a(aβxθ)x

∣∣∣
x=0

wx(0)wxx(0)dt
∣∣∣∣

≤ Cs2λ3

∫ T

−T
a2(0)β3

x(0)θ(0)|wx(0)|2dt+ Cλ

∫ T

−T
a2(0)βx(0)θ(0)|wxx(0)|2dt. (26)

From inequalities (23) to (26) we get that

|B∗| ≤ C

s
B+ +

C

s
|B−|.

Therefore, taking s0 large enough, inequality (22) becomes, for all s > s0,

‖w‖2s,λ,θ +B+ ≤ C 〈P1w,P2w〉+ C|B−|. (27)

Step 4. Carleman estimate for w.
Since B+ ≥ 0, inequality (27) yields

‖w‖2s,λ,θ ≤ C 〈P1w,P2w〉+ Cs3λ3

∫ T

−T
a2(L)β3

x(L)θ3(L, t)|wx(L, t)|2dt

+ Csλ

∫ T

−T
a2(L)βx(L)θ(L, t)|wxx(L, t)|2dt. (28)

Moreover, from (15) we have

‖Pφw −Rw‖2L2(Q) ≤ 2‖Pφw‖2L2(Q) + 2‖Rw‖2L2(Q)

≤ 2‖Pφw‖2L2(Q) + Cs4λ6

∫∫
Q
θ2|w|2 dxdt+ Cs2λ2

∫∫
Q
|wx|2 dxdt.

Therefore, choosing again s0 and λ0 large enough, we have proved the following.

Proposition 1 There exist s0, λ0 > 0 and a constant C = C(L, T, s0, λ0, α, a0, r) > 0
such that for all s ≥ s0, for all λ ≥ λ0,

s5λ6

∫ T

−T

∫ L

0
θ5|w|2dxdt+ s3λ4

∫ T

−T

∫ L

0
θ3|wx|2dxdt+ sλ2

∫ T

−T

∫ L

0
θ|wxx|2dxdt

+
∫ T

−T

∫ L

0
|P1w|2dxdt+

∫ T

−T

∫ L

0
|P2w|2dxdt ≤ C

∫ T

−T

∫ L

0
|Pφw|2dxdt

+ Cs3λ3

∫ T

−T
θ3(L, t)|wx(L, t)|2dt+ Csλ

∫ T

−T
θ(L, t)|wxx(L, t)|2dt (29)
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for all w ∈ Ws := {e−sφv : v ∈ V}.

Step 5. Back to the variable u
The Carleman estimate stated in Theorem 2 will now be deduced from Proposition 1.
It is only a matter of going back to the variable u ∈ V. Recall that u = esφw and
u(0, t) = u(L, t) = 0 for all t ∈ (−T, T ). One easily checks that there exists a positive
constant C = C(L, T, s0, λ0, α, a0, r) such that for all x ∈ (0, L) and t ∈ (−T, T ),

e−2sφ|ux|2 ≤ 2|wx|2 + Cs2λ2θ2|w|2, and
e−2sφ|uxx|2 = 2|wxx|2 + Cs2λ2θ2|wx|2 + Cs4λ4θ2|w|2.

Hence the left hand side of (12) is estimated by the left hand side of (29).
Moreover, we have Pφw = e−sφPu, and concerning the boundary terms, using

v(0, t) = v(L, t) = 0 for all t ∈ (−T, T ) we obtain that in {0, L} × (−T, T ),

|wx|2 ≤ Ce−2sφ|vx|2, and
|wxx|2 ≤ Ce−2sφ

(
|vxx|2 + s2λ2θ2|vx|2

)
.

Therefore, for s0 and λ0 large enough, Theorem 2 directly follows from Proposition 1.

3 Inverse Problem
This section is devoted to the proof of the Lipschitz stability result stated in Theo-
rem 1 about the inverse problem of retreiving the main coefficient a in Equation (2)
from boundary measurements of the solution. We recall here that we will use the
Bukhgĕım-Klibanov method. In the sake of clarity, we divide the proof in several steps.

Step 1. Local solution of the inverse problem
We consider two coefficients a, ã and the corresponding solutions of (2), y and ỹ, and
we define

u(x, t) := y(x, t)− ỹ(x, t), and σ(x) := ã(x)− a(x).

The function u satisfies
ut + a(x)uxxx + (1 + ỹ)ux + yxu = σỹxxx, ∀(x, t) ∈ (0, L)× (0, T ),
u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0 ∀t ∈ (0, T ),
u(x, 0) = 0, ∀x ∈ (0, L).

(30)

We consider now z(x, t) := ut(x, t), which satisfies the system
zt + a(x)zxxx + (1 + ỹ)zx + yxz = f, ∀(x, t) ∈ (0, L)× (0, T ),
z(0, t) = 0, z(L, t) = 0, zx(L, t) = 0 ∀t ∈ (0, T ),
z(x, 0) = σ(x)y′′′0 (x), ∀x ∈ (0, L),

(31)

where
f = σ(x)ỹxxxt − yxtu− ỹtux. (32)
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These two partial differential equations, (30) in u and (31) in z, are eligibles for the
Carleman estimate of the previous section, with b = 1 + ỹ and d = yx, provided that
b ∈ L∞(−T, T ;W 1,∞(0, L)) and d ∈ L∞((−T, T )× (0, L)).

This regularity is fulfilled thanks to the hypothesis on the regularity of y0, a and ã,
which ensures the corresponding solutions y and ỹ to be regular enough. See Proposi-
tion 3 in the Appendix.

Step 2. Extension to negative time
In order to estimate σ through z(x, 0) using Carleman inequalities, we shall extend the
solutions of our equation to negative times. The equation is still valid for the extended
function thanks to the assumption (3) on y0.

In order to extend the KdV equation to the interval (−T, T ), we define the symmetric
extension of any function g defined on [0, L]× [0, T ] by

ĝ(x, t) =

{
g(x, t) if x ∈ [0, L], t ∈ [0, T ],
g(L− x,−t) if x ∈ [0, L], t ∈ [−T, 0).

(33)

One should notice that this extension satisfies f̂ ĝ = f̂g. We also define the following
anti-symmetric extension to [0, L]× [−T, T ] of any function g defined on [0, L]× [0, T ]
by

ǧ(x, t) =

{
g(x, t) if x ∈ [0, L], t ∈ [0, T ],
−g(L− x,−t) if x ∈ [0, L], t ∈ [−T, 0).

(34)

Therefore, we first assume that the initial data z0(x) = z(x, 0) of equation (31)
satisfies

z0(x) = z0(L− x) ∀x ∈ [0, L], (35)

meaning that we have to assume this for a, ã and y′′′0 . Then, we extend the solution y
of equation (2) by ŷ and f (defined by (32)) by f̌ .
Now we can define v := ẑ on [0, L]× [−T, T ], which satisfies the equation given by

vt + a(x)vxxx + (1 + ˆ̃y)vx + ŷxv = f̌ , ∀x ∈ (0, L), t ∈ (−T, T ),
v(0, t) = 0, v(L, t) = 0, ∀t ∈ (−T, T ),
vx(L, t) = 0, ∀t ∈ (0, T ),
vx(L, t) = −zx(0,−t), ∀t ∈ (−T, 0),
v(x, 0) = σ(x)y′′′0 (x), ∀x ∈ (0, L).

(36)

Since we extended the KdV equation to negative times we are now able to apply the
Carleman estimate proved above for solutions settled in (0, L)× (−T, T ).

Step 3. First use of the Carleman estimate
Following the definitions stated in the proof of Theorem 1, we set w = e−sφv and since
we have w(0, t) = w(L, t) = 0 and w(x,±T ) = 0 (because of the weight function φ), we
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can either compute or estimate the following integral

I :=
∫ 0

−T

∫ L

0
wP1w dxdt.

=
∫ 0

−T

∫ L

0
w(wt + 3as2φ2

xwx + awxxx + 3as2φxφxxw) dxdt
(37)

where P1 has been defined in (13) and m = 1 chosen according to (20).
First of all, making integrations by parts, it is not difficult to see that

I =
1
2

∫ L

0
|w(x, 0)|2dx+R,

where

R =
∫ 0

−T

∫ L

0

(
3as2φ2

xwxw + awxxxw + 3as2φxφxx|w|2
)
dxdt

= −3
2
s2λ2

∫ 0

−T

∫ L

0
(aβ2

xθ
2)x|w|2 dxdt−

∫ 0

−T

∫ L

0
awxxwx dxdt+

∫ 0

−T

∫ L

0
ax|wx|2 dxdt

−1
2

∫ 0

−T

∫ L

0
axxx|w|2 dxdt+ 3ms2λ2

∫ 0

−T

∫ L

0
aβx(βxx + λβ2

x)θ2|w|2 dxdt

Using a ∈ Σ(a0, α), β ∈ C3([0, L]), the property (11) of θ and Cauchy-Schwartz
inequality, one obtains

|R| ≤ C
∫ T

−T

∫ L

0
(s2λ3θ3|w|2 + |wx|2 + |wxx|2) dxdt

for the same generic constant C > 0 as in the previous section.
Hence, estimating the quantity s

5
2 I by Carleman inequality (29), and choosing s0 large

enough to absorb the terms of R by the dominant ones of the left hand side of (29), we
prove

s
5
2

∫ L

0
|w(x, 0)|2 dx ≤ 2s5

∫ T

−T

∫ L

0
|w|2 dxdt+ 2

∫ T

−T

∫ L

0
|P1w|2 dxdt+ 2s

5
2 |R|

≤ C

∫ T

−T

∫ L

0
e−2sφ|f̌(x, t)|2 dxdt+ Cs3λ3

∫ T

−T
θ3(L, t)|wx(L, t)|2 dt

+ Csλ

∫ T

−T
θ(L, t)|wxx(L, t)|2 dt. (38)

On the one hand, since we assume that |y′′′0 (x)| ≥ r0 > 0, we have

s
5
2

∫ L

0
|w(x, 0)|2dx = s

5
2

∫ L

0
e−2sφ(0)|σ(x)y′′′0 (x)|2dx ≥ s

5
2 r20

∫ L

0
e−2sφ(0)|σ(x)|2dx.

(39)
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Therefore, by (38) and (39), fixing λ > λ0, and using the definition of f̌ from (34), we
get that

s
5
2

∫ L

0
e−2sφ(x,0)|σ(x)|2dx

≤ C

∫ T

−T

∫ L

0
e−2sφ|f̌(x, t)|2 dxdt+ Cs3

∫ T

−T
θ3(L, t)|wx(L, t)|2 dt

+ Cs

∫ T

−T
θ(L, t)|wxx(L, t)|2 dt

≤ C

∫ T

0

∫ L

0
e−2sφ|f(x, t)|2 dxdt+ Cs3

∫ T

0
e−2sφ(L,t)θ3(L, t)|zx(0, t)|2 dt

+ Cs

∫ T

0
e−2sφ(L,t)θ(L, t)|zxx(0, t)|2 dt+ Cs

∫ T

0
e−2sφ(L,t)θ(L, t)|zxx(L, t)|2 dt

(40)

the last inequality being true by the fact that θ and φ are even in time, w = e−sφv =
e−sφẑ with definition (33), and the boundary properties of z in (31).

On the other hand, since φ(x, t) ≤ φ(x, 0) for all (x, t) ∈ (0, L)×(−T, T ), and ỹt, yxt
and ỹxxxt belong to L∞((0, L)×(0, T )) (recall that y0 ∈ {w ∈ H7(0, L); w(0) = w(L) =
w′(L) = 0} and a, ã ∈ Σ(a0, α), which implies that y, ỹ ∈ W 1,∞(0, T ;W 3,∞(0, L))), we
can write

∫ T

0

∫ L

0
e−2sφ|f(x, t)|2 dxdt =

∫ T

0

∫ L

0
e−2sφ|σ(x)ỹxxxt − yxtu− ỹtux|2 dxdt

≤ C
∫ L

0
e−2sφ(x,0)|σ(x)|2 dx+ C

∫ T

0

∫ L

0
e−2sφ(|u|2 + |ux|2) dxdt.

Here, the second term in the right hand side has to be estimated, and this is done using
again a Carleman inequality.

Step 4. Second use of the Carleman estimate
Applying now Carleman estimate (12) to the equation satisfied by û that is the extension
of (30) to negative times, and where the first and zero-th order potentials are b(x, t) =
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1 + ˆ̃y(x, t), and d(x, t) = ŷx(x, t), we obtain∫ T

0

∫ L

0
e−2sφ(|u|2 + |ux|2) dxdt

≤ C

∫ T

−T

∫ L

0
e−2sφ|σỹxxx|2dxdt+ Cs3

∫ T

−T
e−2sφ(L,t)θ3(L, t)|ûx(L, t)|2dt

+ Cs

∫ T

−T
e−2sφ(L,t)θ(L, t)|ûxx(L, t)|2dt

≤ C

∫ L

0
e−2sφ(x,0)|σ(x)|2dxdt+ Cs3

∫ T

0
e−2sφ(L,t)θ(L, t)|ux(0, t)|2 dt

+ Cs

∫ T

0
e−2sφ(L,t)θ(L, t)|uxx(0, t)|2 dt+ Cs

∫ T

0
e−2sφ(L,t)θ(L, t)|uxx(L, t)|2 dt. (41)

Thus, we can write∫ T

0

∫ L

0
e−2sφ|f(x, t)|2dxdt

≤ C
∫ L

0
e−2sφ(x,0)|σ(x)|2dxdt+ Cs3

∫ T

0
e−2sφ(L,t)θ(L, t)|ux(0, t)|2 dt

+ Cs

∫ T

0
e−2sφ(L,t)θ(L, t)|uxx(0, t)|2 dt+ Cs

∫ T

0
e−2sφ(L,t)θ(L, t)|uxx(L, t)|2 dt (42)

and from (40) and (42), choosing s0 large enough, we deduce that

s
5
2

∫ L

0
e−2sφ(0)|σ(x)|2dx ≤ Cs3

∫ T

0
e−2sφ(L,t)θ(L, t)(|ux(0, t)|2 + |zx(0, t)|2) dt

+ Cs

∫ T

0
e−2sφ(L,t)θ(L, t)(|uxx(0, t)|2 + |zxx(0, t)|2) dt

+ Cs

∫ T

0
e−2sφ(L,t)(|uxx(L, t)|2 + |zxx(L, t)|2) dt (43)

Taking into account that z = ut = ∂t(y − ỹ) the result of Theorem 1 directly follows
from (43).

A Cauchy problem
In this appendix, we state the well-posedness results for the KdV equation considered
in the paper. We only give the main ideas in the proofs because the tools are pretty
similar to those applied for the constant coefficient case, which is already standard in
the literature (see [11], [12], [42], [19] and [18]). It is worthwhile to emphasis that these
results allow to get, under smoothness hypothesis on the data, the existence of solutions
for the KdV equation with the regularity required for our approach in order to prove
the stability of the inverse problem.
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We consider a main coefficient satisfying

∃a0 ∈ R, ∀x ∈ [0, L] a(x) ≥ a0 > 0. (44)

Let us introduce, for any s ≥ 0 the space

Bs = C([0, T ], Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L)) (45)

and consider only the principal part of the equation, i.e. we study the problem
yt + a(x)yxxx = f, ∀(x, t) ∈ (0, L)× (0, T ),
y(0, t) = 0, y(L, t) = 0, ∀t ∈ (0, T ),
yx(L, t) = 0, ∀t ∈ (0, T ),
y(0, x) = y0(x), ∀x ∈ (0, L).

(46)

In order to take into account the coefficient a = a(x) we work in the space X =
L2(0, L) endowed with the inner product

〈w1, w2〉X :=
∫ L

0

1
a(x)

w1(x)w2(x)dx.

Notice that since a ∈ L∞(0, L) satisfies (44), the norm defined by the inner product
〈·, ·〉X is equivalent to the L2-norm.

In the domain D(A) = {w ∈ H3(0, L)
/
w(0) = w(L) = w′(L) = 0}, we define the

operator A : D(A) ⊂ X → X as A(w) = −aw′′′. It is easy to see that both A and its
adjoint operator A∗ are dissipative, and therefore, by standard semigroup theory (for
instance a corollary of Lumer-Phillips Theorem, see Chapter 1 in [38]), we get that A
generates a strongly continuous semigroup in L2(0, L).

Thus, if y0 ∈ L2(0, L), a ∈ L∞(0, L) satisfies (44) and f ∈ L1(0, T, L2(0, L)) then
the linear KdV equation (46) has a unique solution (called mild solution) in the space
C([0, T ], L2(0, L)). Applying the multipliers technique, we get a Kato smoothing effect,
which implies y ∈ L2(0, T ;H1(0, L)) and thus y ∈ B0. This regularity is indeed obtained
by multiplying formally equation (46) by x

a(x)y(t, x) and integrating in (0, L) × (0, T ).
This proves the following result.

Proposition 2 Let y0 ∈ L2(0, L), a ∈ L∞(0, L) verifying (44) and f ∈ L1(0, T, L2(0, L)).
Then the linear KdV equation (46) has a unique solution in the space B0. Moreover,
there exist C > 0 such that

‖y‖B0 ≤ C
(
‖y0‖L2(0,T ) + ‖f‖L1(0,T,L2(0,L))

)
.

Depending on the regularity of the data, we can prove the existence of more regular
solutions. Let us consider y solution of (46). The function u := yt satisfies

ut + a(x)uxxx = ft, ∀(x, t) ∈ (0, L)× (0, T ),
u(0, t) = 0, u(L, t) = 0, ∀t ∈ (0, T ),
ux(L, t) = 0, ∀t ∈ (0, T ),
u(0, x) = f(0, x)− a(x)y0xxx, ∀x ∈ (0, L).

(47)
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Assuming that ft ∈ L1(0, T ;L2(0, L)) and y0 ∈ D(A), we have that (f(0, x) −
a(x)y0xxx) ∈ L2(0, L), and then Proposition 2 implies that u = yt ∈ B0.

If additionally we ask f ∈ B0, then by equation (46) we have a(x)yxxx = f−yt ∈ B0,
and if a ∈W 1,∞(0, L) satisfies (44) we get that the original solution satisfies y ∈ B3.

Analyzing in the same way each one of the equations fulfilled by ytt and yttt, we get
the following result.

Proposition 3 Let y0 ∈ H9(0, L) ∩D(A), a ∈W 6,∞(0, L) verifying (44), and f ∈ B6

such that ft ∈ B3, ftt ∈ B0, and fttt ∈ L1(0, T, L2(0, L)). Then the linear KdV equation
(46) has a unique solution in the space B9. This solution also satisfies yt ∈ B6, ytt ∈ B3

and yttt ∈ B0.

Remark 5 The hypothesis a ∈ W 6,∞(0, L) is used to ensure that the initial condition
of the problem solved by yttt belongs to the space L2(0, L).

In order to prove a similar result for the nonlinear system
yt + a(x)yxxx + yx + yyx = 0, ∀(x, t) ∈ (0, L)× (0, T ),
y(0, t) = 0, y(L, t) = 0, ∀t ∈ (0, T ),
yx(L, t) = 0, ∀t ∈ (0, T ),
y(0, x) = y0(x), ∀x ∈ (0, L),

(48)

we define the map
Π : ỹ ∈ B0 → Π(ỹ) = y ∈ B0

where Π(ỹ) = y is the solution of (46) with f replaced by (−ỹx − ỹỹx). For ỹ ∈ B0, we
have ỹ ∈ L2(0, T ;H1(0, L)), and therefore ỹỹx ∈ L1(0, T ;L2(0, L)). Thus we are able
to use Proposition 2 with the right-hand side f = (−ỹx− ỹỹx) to define Π(ỹ) = y ∈ B0.
Applying a fixed point argument we obtain the following.

Proposition 4 Let y0 ∈ L2(0, L) and a ∈ L∞(0, L) verifying (44). Then, the nonlin-
ear KdV equation (48) has a unique solution in the space B0.

We can also prove the nonlinear result in the more regular framework.

Proposition 5 Let y0 ∈ H9(0, L) ∩ D(A) and a ∈ W 6,∞(0, L) verifying (44). Then,
the nonlinear KdV equation (48) has a unique solution in the space B9.

The proof of Proposition 5 can be done by using a fixed point argument with the same
map Π as before but now defined in the space

Y := {y ∈ B9
/
yt ∈ B6, ytt ∈ B3 and yttt ∈ B0}

instead of B0. Let us notice that the nonlinearity ỹỹx satisfies all the hypothesis required
in Proposition 3 for the right hand side f provided that ỹ ∈ Y.

Using some interpolation arguments, we can prove the following result, which gives
us the existence of solutions as we require in order to solve our Inverse Problem in
Theorem 1.
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Theorem 3 Let y0 ∈ H7(0, L) ∩ D(A) and a ∈ W 6,∞(0, L) satisfying (44). Then
the nonlinear KdV equation (48) has a unique solution in the space B7. Furthermore
yt ∈ B4 and therefore y ∈W 1,∞(0, T ;W 3,∞(0, L)).

Indeed, the proof of this result can be deduced from the Interpolation Theorem by
Bona and Scott ([11], see Theorem 4.3 in [12]). This theorem is applied in the following
way. Denoting by S the mapping which sends the initial condition y0 to the solution y
of the equation (48), by Propositions 4 and 5 we have that

S : L2(0, L) −→ B0 (49)

and
S : H9(0, L) ∩D(A) −→ B9 (50)

are well defined. Additionally, two inequalities are needed (see (i) and (ii) from Theorem
4.3 in [12]):

• The first one is the estimation of ‖S(y01)−S(y02)‖B0 in terms of ‖y01−y02‖L2(0,L),
which can be proven exactly in the same way as in the proof of Proposition 4.2 of
[12], but now using our Proposition 2.

• The second one consists in estimating ‖S(y0)‖B9 by ‖y0‖H9(0,L), which can be
proven from Proposition 5 and following Proposition 15 in [19].

From the Interpolation Theorem we get that S : H7(0, L)∩D(A)→ B7 is well defined,
with gives us the proof of Theorem 3.

Remark 6 A sharper result can be obtained with y0 ∈ Hs(0, L)∩D(A) where s > 6+ 1
2 .

In that case, previous arguments give the existence of a solution y ∈ Bs with yt ∈ Bs−3,
and then ytxxx ∈ C([0, T ], Hq(0, L)) with q > 1/2. Thus, we obtain for system (48) a
solution y ∈W 1,∞(0, T ;W 3,∞(0, L)).
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