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Abstract

In the last decade, the Jensen’s inequality has been intensively used in the context of time-delay or sampled-data systems since
it is an appropriate tool to obtain tractable stability conditions expressed in terms linear matrix inequalities (LMI). However,
it is also well-known that this inequality unavoidably introduces an undesirable conservatism in the stability conditions and
looking at the literature, reducing this gap is a relevant issue and an open problem. In this paper, we propose an alternative
inequality based on the Fourier Theory, more precisely on the Wirtinger inequalities. It is shown that this resulting inequality
encompasses the Jensen’s one and also leads to tractable LMI conditions. In order to illustrate the potential gain of employing
this new inequality with respect to the Jensen’s one, two applications on time-delay and sampled-data stability analysis are
provided.
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1 Introduction

The last decade has shown an increasing research activity on time-delay and/or sampled-data systems analysis
and control due to both emerging adapted theoretical tools and also practical issues in the engineering field and
information technology (see [31], [22]) and references therein). In the case of linear system, many techniques allow to
derive efficient criteria proving the stability of such systems. Among them, two frameworks, different in their spirits
have been recognised as a powerful methodologies. The first one relies on Robust Analysis. In this framework, the time
delay/sampled data system is transformed into a closed loop between a stable nominal system and a perturbation
element depending either on the delay or the sampling process (which is also modelled by a time varying delay).
The perturbation element is then embedded into some norm-bounded uncertainties and the use of scaled small gain
theorem [24, 10], IQCs [18], or separation approach [3] allows then to derive efficient stability criteria. The challenge
is then to reduce the conservatism either by constructing elaborated interconnections which generally include state
augmentation [1] or by using finer L2 induced norm upperbound evaluation [24], often based on Cauchy-Schwartz
inequality [3]. Another popular approach is the use of a Lyapunov function to prove stability. For sampled data
systems, two approaches have been sucessfully proposed. The first one relies on impulsive systems and some piecewise
linear Lyapunov functions [25] but it often requires a constant sampling frequency. This approach have been then
extended by considering discontinuous Lyapunov functions which allow to consider aperiodic sampling [21, 22]. In the
second approach, the sampled state is modeled by a time varying delayed state. In that case, the original system is
recasted into a time varying delay system where Lyapunov-Krasovskii functional [6] or Lyapunov-Razumikhin can be
used directly. Hence, for sampled data systems and time delay systems as well, the last decade has seen a tremendous
emergence of research devoted to the construction of Lyapunov-Krasovskii functional which aims at reducing the
inherent conservatism of this approach. Several attempts has been done concerning the choice of the structure of V
by choosing extended state based Lyapunov-Krasovskii functional ([1, 19]), discretized Lyapunov functional ([13])
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or discontinuous Lyapunov functions [28]. Apart the choice of V , an important source of conservatism relies also on
the way to bound some cross terms arisen when manipulating the derivative of V . According to the literature on
this subject (see [27, 15, 30] for some recent papers), a common feature of all these techniques is the use of slack
variables [16] and more or less refined Jensen inequality [30, 32, 22]. At this point, it is clear that for both the two
frameworks - Robust Analysis and Lyapunov functional-, a part of the conservatism comes from the use of Jensen
inequality or Cauchy Schwartz inequalities, usually used to get tractable criteria. But, as it has been shown in [4],
Jensen’s inequality can be viewed as a special case of Cauchy Schwartz inequality. Based on this observation, the
objective of the present paper is then to propose to show how to use another class of inequalities called Wirtinger
inequalities, which are well known in Fourier Analysis. Notice that this class of inequalities has been recently used to
exhibit a new Lyapunov function to prove the stability of sampled-data system [22]. In this paper, its use combined
with some special properties of sampled data systems has led to some interesting criteria expressed in terms of
LMIs, which are less conservative at least on examples. In the present paper, contrary to the work of [22], we do not
construct some new Lyapunov functional. We aim rather at developing new inequalities to be used to reduce the
conservatism when computing the derivative of V . Wirtinger inequalities allow to consider a more accurate integral
inequalities which can include the Jensen’s one as a special case. The resulting inequalities depend not only on the
state x(t) and the delayed or sampled state but also on the integral of the state over a delay or sampling interval.
This new signal is then directly integrated into a suitable classical Lyapunov function, highlighting so the features of
Wirtinger inequality. Hence, it results some new stability criteria for time delay systems and sampled data systems
directly expressed in terms of LMIs.

Notations: Throughout the paper Rn denotes the n-dimensional Euclidean space with vector norm | · |, Rn×m is
the set of all n×m real matrices, and the notation P > 0, for P ∈ Rn×n, means that P is symmetric and positive

definite. The symmetric matrix

[
A B

∗ C

]
stands for

[
A B

BT C

]
. Moreover, for any square matrix A ∈ Rn×n, we define

He(A) = A + AT . The space of functions φ : [a, b] → Rn, which are absolutely continuous on [a, b), have a finite
limθ→b− φ(θ) and have square integrable first order derivatives is denoted by W [a, b].

2 Preliminaries

In the sequel, the following notations will be considered. For any real numbers a < b, we consider a differentiable
function ω : [a, b] → Rn and the vector Ω(a, b) given by

Ω(a, b) =
[

ωT (b), ωT (a), 1
b−a

∫ b

a
ωT (u)du

]T

.

2.1 Jensen’s inequality

Let recall the well-known Jensen’s inequality.

Lemma 1 For given symmetric positive definite matrices R > 0 and for any differentiable signal ω in [a, b] → Rn,
the following inequality holds:

∫ b

a
ω̇(u)Rω̇(u)du ≥ 1

b−a

(∫ b

a
ω̇(u)du

)T

R
(∫ b

a
ω̇(u)du

)
= 1

b−aΩT (a, b)WT
1 RW1Ω(a, b), (1)

where W1 =
[

I −I 0
]
.

The proof is omitted and can be found in several reference books (see [13], [26]). In the context of time-delay systems
and sampled-data systems, this inequality has been the core of several important contributions (see [13, 15] for time
delay systems or [22] and references therein for sampled data systems) : it is usually used to bound some integral
terms of the form

∫ b

a
ω̇(u)Rω̇(u)du which arise when calculating the derivative of Lyapunov function. Naturally, it

is likely to entail some inherent conservatism and several works have been devoted to the reduction of such a gap
[4, 12]. In the present paper, we propose to use a different class of inequalities called Wirtinger inequalities in order
to obtain new bounds for this integral and therefore to improve the results for the stability analysis of time-delay
and/or sampled-data systems. In [29], a first result on the use of Wirtinger inequality was presented. The present
paper proposes a more accurate analysis of this class of inequalities and its application to a larger class of problems.
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2.2 Different Wirtinger inequalities

In the literature [17], Wirtinger inequalities are referred as inequalities which estimate the integral of the derivative
function with the help of the integral of the function. Often proved using Fourier analysis, it exists several versions
which depend on the characteristics or constraints we impose on the function. Let firstly recall the initial Wirtinger
inequality adapted to our purpose.

Lemma 2 Let z ∈ W [a, b] such that z(a) = z(b) and
∫ b

a
z(u)du = 0. Then, for any symmetric positive definite

matrix R = RT ∈ Rn×n, the following inequality holds

∫ b

a

żT (u)Rż(u)du ≥ 4π2

(b− a)2

∫ b

a

zT (u)Rz(u)du, (2)

and the equality holds when z(u) = a1 sin
(

2π(u−a)
b−a

)
+ b1 cos

(
2π(u−a)

b−a

)
, for any a1 and b1 in Rn.

Proof : The proof is based on the one-dimensional Wirtinger inequality provided in [17] and adapted to the case of
vector function using the same method as in [22]. ♦

Notice that in order to use this first inequality, we need to impose two constraints z(a) = z(b) and
∫ b

a
z(u)du = 0

which may be difficult to fulfil. A classical exercise in Fourier analysis and which can be found for instance in [17]
allows to derive another result described letter on. The idea is to relax the constraint

∫ b

a
z(u)du = 0 at a price of an

increasing gap between the two terms composing the inequality.

Lemma 3 Let z ∈ W [a, b] and z(a) = z(b) = 0. Then, for any symmetric positive definite matrix R = RT ∈ Rn×n,
the following inequality holds ∫ b

a

żT (u)Rż(u)du ≥ π2

(b− a)2

∫ b

a

zT (u)Rz(u)du, (3)

and equality holds when z(u) = a1 sin
(

π(u−a)
b−a

)
for any a1 in Rn.

Proof : Without loss of generality, consider that a = 0. Consider the function z̃ defined over [−b, b] such that
z̃(u) = z(u) for all u ∈ [0, b] and z̃(u) = −z(−u) for all u ∈ [−b, 0). Since z̃(0+) = z̃(0−) = 0, the function z̃
is continuous and piecewise differentiable over [−b, b]. Moreover, it is easy to see that this function z̃ satisfies the
conditions of Lemma 2 which allow to conclude the proof. ♦
As it is explained in the next lemma, a last version of the Wirtinger inequality can be obtained by removing the
constraint z(b) = 0.

Lemma 4 Let z ∈ W [a, b] and z(a) = 0. Then, for any symmetric positive definite matrix R = RT ∈ Rn×n, the
following inequality holds ∫ b

a

żT (u)Rż(u)du ≥ π2

4(b− a)2

∫ b

a

zT (u)Rz(u)du, (4)

and equality holds when z(u) = a1 sin
(

π(u−a)
2(b−a)

)
for any a1 in Rn.

Proof : Without loss of generality, consider this time that b = 0 and therefore a < 0. Consider the function z̃ defined
over [a,−a] such that z̃(u) = z(u) for all u ∈ [a, 0] and z̃(u) = z(−u) for all u ∈ [0,−a). Since z̃(0+) = z̃(0−),
the function z̃ is continuous and piecewise differentiable over [a,−a]. Moreover it is easy to see that this function z̃
satisfies the conditions of Lemma 3 which allows to conclude the proof. ♦

Remark 1 The inequality (4) has been already employed in [22], leading to a new type of Lyapunov-Krasovskii
functionals for sampled-data systems. Our approach differs significantly from [22] since we only use this inequality
for estimating an upper-bound of the derivative of the Lyapunov functional. An interesting future feature should the
extension of our work by considering the techniques proposed by Fridman et al [22].
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Finally, we have proposed three different inequalities which are very closed to Jensen’s inequality in its essence.
Nevertheless, the function has to meet several constraints which are not generally satisfied if, for instance, the
function z is related to the states of a dynamical system. The next section shows how to overcome such a problem
and how to construct relevant new inequalities.

3 Application of the Wirtinger inequalities

The objective of this section is twofold. On the first hand, based on Lemma 2, 3 and 4, we aim at providing new
tractable inequalities, which can be easily implemented into a convex optimisation scheme. On the other hand,
we propose some inequalities which are proved to be less conservative than Jensen’s one. Indeed, recall that the
objectives of the present paper are to obtain new lower bounds of the integral

∫ b

a
ω̇(u)Rω̇(u)du, in order to be

consistent with the Jensen’s inequality. Thus a first step consists in defining appropriate function z such that this
integral appears naturally in the developments. Thus a necessary condition is that the function z as the following
form

z(u) = γω(u)− y(u), (5)

where ω ∈ W [a, b] is the vector function which was employed in the original Jensen’s inequality in Lemma 1, γ is a
constant and y(u) is a function of u and are chosen so that the function z satisfies the different constraints imposed
by Lemma 2, 3 or 4.

Based on the first Wirtinger inequality and choosing an appropriate function z, we propose a first corollary:

Corollary 5 For a given symmetric positive definite matrix R > 0, any differentiable function ω in [a, b] → Rn,
then the following inequality holds:

∫ b

a

ω̇(u)Rω̇(u)du ≥ 1
(b− a)

ΩT (a, b)WT
1 RW1Ω(a, b), (6)

where W1 =
[

I −I 0
]
.

Proof : The main contribution here is to propose an appropriate interesting signal z of the form given in (5) which
satisfies the conditions of Lemma 2. Consider the following signal

z(u) = ω(u)− 1
b− a

∫ b

a

ω(u)du−
[
u− a

b− a
− 1

2

]
(ω(b)− ω(a)),

which has been built in order to satisfy the condition of Lemma 2. Then, computing inequality (2) leads to

∫ b

a

żT (u)Rż(u)du =
∫ b

a

ω̇T (u)Rω̇(u)du− 1
b− a

(ω(b)− ω(a))T R(ω(b)− ω(a)) ≥ 4π2

(b− a)2

∫ b

a

zT (u)Rz(u)du.

Furthermore, applying the Jensen’s inequality to the righthand side of (2) leads to

∫ b

a

zT (u)Rz(u)du ≥ 1
b− a

∫ b

a

zT (u)duR

∫ b

a

z(u)du.

Noting that
∫ b

a
z(u)du = 0 allows to conclude the proof. ♦

Remark 2 It is important to stress that the previous corollary is equivalent to the classical Jensen’s inequality.
Indeed the Jensen’s inequality is included in the left-hand-side of the original Wirtinger inequality when using the
proposed signal z. Consequently, the use of this lemma seems not relevant as it is presented now. However it can be
noticed that the previous corollary provides another demonstration of the Jensen’s inequality.
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The main problem comes from the constraint
∫ b

a
z(u)du = 0 which does not allow to give a lower bound of the

left-hand side of (2). In the following corollary, we propose to use Lemma 3 in which this constraint has been
removed.

Corollary 6 For a given symmetric positive definite matrix R > 0, any differentiable function ω in [a, b] → Rn,
then the following inequality holds:

∫ b

a

ω̇(u)Rω̇(u)du ≥ 1
b− a

ΩT (a, b)
[
WT

1 RW1 + π2WT
2 RW2

]
Ω(a, b), (7)

where W1 is given in Lemma 1, and W2 =
[

I/2 I/2 −I
]
.

Proof : For any function ω ∈ W [a, b], consider a signal z given by

z(u) = ω(u)− u− a

b− a
ω(b)− b− u

b− a
ω(a), ∀u ∈ [a, b].

By construction, the function z(u) satisfies the conditions of Lemma 3, i.e. z(a) = z(b) = 0. The computation of the
left-hand-side of the inequality stated in Lemma 3 leads to:

∫ b

a
żT (u)Rż(u)du =

∫ b

a
ω̇T (u)Rω̇(u)du− 1

b−a (ω(b)− ω(a))T R(ω(b)− ω(a))

=
∫ b

a
ω̇T (u)Rω̇(u)du− 1

b−aΩT (a, b)WT
1 RW1Ω(a, b).

(8)

Consider now the right-hand side of the inequality (3). Applying the Jensen’s inequality, it yields

π2

(b− a)2

∫ b

a

zT (u)Rz(u)du ≥ π2

(b− a)3

(∫ b

a

z(u)du

)T

R

(∫ b

a

z(u)du

)
. (9)

The last step of the proof consists in the computation of the integral
∫ b

a
z(u)du, which is obtained as follows

∫ b

a
z(u)du = −

(∫ b

a
(u−a)
(b−a) du

)
ω(b)−

(∫ b

a
(b−u)
(b−a)du

)
ω(a) +

∫ b

a
ω(u)du

= −(b− a)
[

1
2 (ω(b) + ω(a))− 1

b−a

∫ b

a
ω(u)du

]

= −(b− a)W2Ω(a, b).

(10)

Then applying Lemma 3, we obtain

∫ b

a

ω̇T (u)Rω̇(u)du− 1
b− a

ΩT (a, b)WT
1 RW1Ω(a, b) ≥ π2

b− a
ΩT (a, b)WT

2 RW2Ω(a, b),

which concludes the proof of Corollary 6. ♦

Remark 3 The previous corollary has been already presented in [29]. However its proof has been remarkably shorten.

Remark 4 The inequality proposed (7) encompasses the Jensen’s inequality since the matrix π2WT
2 RW2 is positive

definite and the term 1
b−aΩT (a, b)WT

1 RW1Ω(a, b) is exactly the right-hand of the Jensen’s inequality. It is also worth

noting that this improvement is allowed by using an extra signal
∫ b

a
ω(u)du and not only the signals ω(b) and ω(a).

Therefore, it suggests that in order to be useful, this inequality should be combined with a Lyapunov functional where
the signal

∫ b

a
ω(u)du appears explicitly.

The following corollary is based on Lemma 4 where only one constraint is imposed.
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Corollary 7 For a given symmetric positive definite matrix R > 0, any differentiable function ω in [a, b] → Rn,
then the following inequality holds:

∫ b

a

ω̇T (u)Rω̇(u)du ≥ π2

4(b− a)
ΩT (a, b)WT

3 RW3,Ω(a, b) (11)

where W3 =
[

0 −I I
]
.

Proof : As proposed in [22], consider the signal z(u) = ω(u)−ω(a). This function satisfies the condition of Lemma 4.
Then, we have ∫ b

a

ω̇T (u)Rω̇(u)du ≥ π2

4(b− a)2

∫ b

a

(ω(u)− ω(a))T R(ω(u)− ω(a))du.

Applying the Jensen’s inequality yields the results. ♦

Remark 5 It is relevant to try a comparison between Jensen’s inequality and the previous one. But, since the matrix
π2

4 WT
3 RW3 −WT

1 RW1 is not definite positive, the quantity

ΩT (a, b)
(

π2

4
WT

3 RW3 −WT
1 RW1

)
ΩT (a, b),

may be positive or negative, depending on the components of Ω(a, b). In that case, we cannot state that we improve
Jensen’s inequality.

4 Appropriate inequalities for robust stability analysis

In all the three inequalities (6),(7),(11), the resulting lower bound is rational with respect to (b − a), which is ill-
posed when this quantity tends to zero. At a price of an increasing computational burden, an equivalent formulation
depending linearly on b − a can be drawn as follows. Noting that, for all matrices Yi, i ∈ {1, 2, 3} in Rn×3n, the
matrix 1

b−a (RWi − (b− a)Yi)T R−1(RWi − (b− a)Yi) is positive for all i ∈ {1, 2, 3}, it yields

− 1
(b−a)W

T
i RWi ≤ −Y T

i Wi −WT
i Yi + (b− a)Y T

i R−1Yi, i ∈ {1, 2, 3}.

This inequality turns out to be relevant in the context of time-delay systems or sampled-data systems as it will be
explained in the next sections 5 and 6. Applying the same inequality to the second term of the inequalities (6),(7),
(11) , one modifies the previous corollaries as follows.

Corollary 8 For a given symmetric positive definite matrix R > 0, any differentiable signal ω in [a, b] → Rn and
for any matrices Y1 in Rn×3n, the following inequality holds:

∫ b

a
ω̇(u)Rω̇(u)du ≥ ΩT (a, b)

[−He{Y T
1 W1}+ (b− a)

(
Y T

1 R−1Y1

)]
Ω(a, b). (12)

Corollary 9 For a given symmetric positive definite matrix R > 0, any differentiable signal ω in [a, b] → Rn and
for any matrices Y1 and Y2 in Rn×3n, the following inequality holds:

∫ b

a
ω̇(u)Rω̇(u)du ≥ ΩT (a, b)

[−He{Y T
1 W1 − π2Y T

2 W20}+ (b− a)
(
Y T

1 R−1Y1 + π2Y T
2 R−1Y2

)]
Ω(a, b). (13)

Corollary 10 For a given symmetric positive definite matrix R > 0, any differentiable signal ω in [a, b] → Rn and
for any matrices Y3 in Rn×3n, the following inequality holds:

∫ b

a
ω̇(u)Rω̇(u)du ≥ π2

4 ΩT (a, b)
[−He{Y T

3 W3}+ (b− a)
(
Y T

3 R−1Y3

)]
Ω(a, b). (14)
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Remark 6 In the literature, several by-products of the Jensen’s inequality have been proposed and employed (see
for example [27, 19] and references therein). Obviously, the same by-products could be derived from the Corollaries
proposed in Section 3 and therefore will not be presented in the present article.

In the following, we will show how these inequalities can be applied to the stability analysis of time-delays systems
and sampled-data systems. As expected, we will show that the use of these new inequalities reduces the conservatism
of the stability conditions. It has to be noticed that, in theses new inequalities, the functions to be considered are
ω(b), ω(a) and 1

b−a

∫ b

a
ω(u)du. The two first signals appear naturally in the context of discrete time-delay or sampled-

data systems but not the last one. It only appears in the context of distributed time-delay systems. At first sight,
an expected consequence is that these new inequalities only help in the context of distributed time-delay systems.
However we will present two solutions dealing with the context of discrete-time delay or sampled-data systems,
respectively. The objective will be to show how this third signal is in relation with these classes of systems.

5 Application to the stability analysis of time-delay systems

Before entering into the details of this section, it is important to stress that the present paper does not focus on
the development of new Lyapunov-Krasovskii functionals. The present section on the stability analysis of time-delay
systems is provided to emphasize the potential gains of using the inequalities provided in the previous section. In this
section, we will show how the previous inequalities can be straightforwardly applied to the following basic problems:

- Stability analysis of systems with discrete and distributed constant delays,
- Robust stability analysis of systems with unknown delays,
- Stability analysis of systems with time-varying delays.

5.1 Systems with constant and known delay

We present in this sub-section a first stability result for time delay systems, which is based on the use of the Wirtinger
inequalities developed in section 3. This approach is based on a slightly modified Lyapunov-Krasovskii functional
and allows us to establish the main theorem for the robust delay range stability analysis. Consider a linear time-delay
system of the form: {

ẋ(t) = Ax(t) + Adx(t− h) + AD

∫ t

t−h
x(s)ds, ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h, 0],
(15)

where x(t) ∈ Rn is the state vector, φ is the initial condition and A, Ad, AD ∈ Rn×n are constant matrices. The delay
is assumed to be known and constant. Based on the previous inequality and classical results on Lyapunov-Krasovskii
functionals, two stability theorems are provided.

Theorem 11 For a given constant delay h, assume that there exist n × n matrices P = PT > 0, S = ST > 0,
R = RT > 0, Q and Z = ZT such that the following LMIs are satisfied

Π1(h) =

[
P Q

∗ Z + S/h

]
> 0, (16)

Π1
2(h) = Π0

2(h)− 1
h

[
WT

1 RW1 + π2WT
2 RW2

]
< 0, (17)

where

Π0
2(h) =




∆0
2 PAd −Q h(PAD + AT Q + Z)

∗ −S h(AT
d Q− Z)

∗ ∗ h2(ADQ + QT AT
D)


 + h




AT

AT
d

hAD


 R




AT

AT
d

hAT
D




T

,

and ∆0
2 = PA + AT P + S + Q + QT . Then the system (22) is asymptotically stable for the constant delay h.
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Theorem 12 For a given constant delay h, assume that there exist n × n matrices P = PT > 0, S = ST > 0,
R = RT > 0, Q and Z = ZT such that the following LMIs are satisfied

Π1(h) > 0, Π2
2(h) = Π0

2(h)− π2

4h
WT

3 RW3 < 0 (18)

where Π1(h) and Π0
2(h) are given in Theorem (11), and where the matrix W2 is given in Corollary 6. Then the

system (15) is asymptotically stable for the constant delay h.

Proof : The proof of Theorems 11 and 12 are presented here in a compact form. Consider a Lyapunov-Krasovskii
functional of the form

V (xt, ẋt) =

[
x(t)∫ t

t−h
x(s)ds

]T [
P Q

∗ Z

][
x(t)∫ t

t−h
x(s)ds

]
+

∫ t

t−h
xT (s)Sx(s)ds +

∫ t

t−h
(h− t + s)ẋT (s)Rẋ(s)ds (19)

The previous functional refers to a classical type of functionals to derive delay-dependent stability conditions (see
for instance [13]). It is interesting to note that this class of functionals employed a signal of the form

∫ t

t−h
x(s)ds

which is related to the third signal introduced in the previous section. If the matrices Q and Z are set to zero, one
recovers the usual functional employed in the literature. First of all, following [13] and using Jensen inequality, a
lower-bound for V can be easily found:

V (xt, ẋt) ≥
[

x(t)∫ t

t−h
x(s)ds

]T

Π1(h)

[
x(t)∫ t

t−h
x(s)ds

]
+

∫ t

t−h
(h− t + s)ẋT (s)Rẋ(s)ds, (20)

and it is clear that the positive definiteness of the matrices P , S, R and Π1(h) implies the positive definiteness of the
functional V . Classical computations show that the derivative of the functional along the trajectories of the system
(15) satisfies

V̇ (xt, ẋt) = ξT (t)Π0
2(h)ξ(t)− ∫ 0

−h
ẋT (t + s)Rẋ(t + s)ds.

where Π0
2 is defined in Theorem 11 and ξ(t) = col{x(t), x(t−h), 1

h

∫ t

t−h
x(s)ds}. Applying Corollary 6 or Corollary 7,

respectively, the following upper-bounds of the derivative of the functional is then obtained:

V̇ (xt, ẋt) ≤ ξT (t)Π1
2(h)ξ(t), or V̇ (xt, ẋt) ≤ ξT (t)Π2

2(h)ξ(t), (21)

where Π1
2(h) and Π2

2(h) are defined in (17) and in (18), respectively. Then if the stability conditions from Theorem 11
or 12 are satisfied, the system (15) is asymptotically stable. ♦
As it will be shown in the example section, the first Theorem 11 proposes less conservative conditions than Theo-
rem 12. Thus in the sequel, only Corollary 6 and 9 will be used.

5.2 Systems with constant and unknown delay: Delay Range stability

Consider the case of a system with a single discrete delay (i.e. AD = 0). Then we have

{
ẋ(t) = Ax(t) + Adx(t− h) ∀t ≥ 0,

x(t) = φ(t) ∀t ∈ [−hmax, 0],
(22)

The delay h is a positive constant scalar which satisfies, from now on, the constraint h ∈ [hmin, hmax] where hmin,
hmax are given positive constants. In the following, we aim at assessing stability of system (22) with the delay
constraints described above via the an appropriate Lyapunov-Krasovskii functional. The following result holds.
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Theorem 13 For an uncertain constant delay h ∈ [hmin, hmax], assume that there exist n×n-matrices P = PT > 0,
S = ST > 0, R = RT > 0 Q and Z = ZT and two 3n× n-matrices Y1 and Y2, such that Π1(hmax) > 0 and

Π3(h) =




Π0
3(h)−He{Y1W1 + π2Y2W20} hY1 π2hY2

∗ −hR 0

∗ ∗ −π2hR


 < 0, (23)

for all h ∈ {hmin, hmax} where Π1 is given in (16) where Π0
3 = Π0

2 with AD = 0. Then, the system (22) is
asymptotically stable for all constant delay h ∈ [hmin, hmax].

Proof : The proof uses the same Lyapunov-Krasovskii functional as in Theorem 11. Similar calculations lead to

V̇ (xt, ẋt) = ξT (t)Π0
3(h)ξ(t)− ∫ 0

−h
ẋT (t + s)Rẋ(t + s)ds.

Applying Corollary 9 and the Schur complement ensure that the derivative of the Lyapunov-Krasovskii functional
along the trajectories of (22) is negative definite if Π3(h) is negative definite for this h. Since the matrix Π3 is affine
with respect to h. The conditions Π3(hmin) < 0 and Π3(hmax) < 0 ensures that Π3(h) < 0 for all h ∈ [hmin, hmax]. ♦

5.3 Systems with a time-varying delay

In this section we consider the situation where the delay is time varying. The assumptions on the delay function are
classical and are given by:

∀t ≥ 0, h(t) ∈ [hmin, hmax], dmin ≤ ḣ(t) ≤ dmax. (24)

In this situation, the following theorem holds.

Theorem 14 For a given time varying delay h(t), assume that there exist n×n matrices P = PT > 0, S = ST > 0,
R = RT > 0, Q,Y1, Y2 of appropriate dimensions and Z = ZT such that Π1(hmax) > 0 and

Π1
4(h, ḣ) =




Π0
4(h, ḣ)−He{Y1W1 + π2Y2W20} hY1 π2hY2

∗ −hR 0

∗ ∗ −π2hR


 < 0, (25)

holds for h ∈ {hmin, hmax} and ḣ ∈ {dmin, dmax}, where

Π0
4(h, ḣ) =




∆0
2 PAd − (1− ḣ)Q h(AT Q + Z)

∗ −(1− ḣ)S h(AT
d Q− (1− ḣ)Z)

∗ ∗ 0


 + h




AT

AT
d

0


 R




AT

AT
d

0




T

,

and ∆0
2 is given in Theorem 11. Then, the system (22) is asymptotically stable for any time-varying delay h(t) which

satisfies (24).

Proof : Consider a Lyapunov-Krasovskii functional of the form

V (xt, ẋt) =


 x(t)∫ t

t−h(t)
x(s)ds




T [
P Q

∗ Z

] 
 x(t)∫ t

t−h(t)
x(s)ds




+
∫ t

t−h(t)
xT (s)Sx(s)ds +

∫ t

t−hmax
(hmax − t + s)ẋT (s)Rẋ(s)ds.

(26)
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Following the proof of Theorem 11, the condition Π1(hmax) > 0 ensures the positive definiteness of the functional.
The derivative of the functional along the trajectories of (22) leads to

V̇ (xt) = ζT (t)Π0
4(h, ḣ)ζ(t)−

∫ t

t−hmax

ẋT (s)Rẋ(s)ds ≤ ζT (t)Π0
4(h, ḣ)ζ(t)−

∫ t

t−h(t)

ẋT (s)Rẋ(s)ds.

The conditions (25) are then obtained by applying Corollary 9 and the Schur Complement and by noting that the
final condition is affine in h(t) (for a fixed ḣ(t)) and similary affine in ḣ(t) (for a fixed h(t)). ♦

It is important to stress that the previous calculations are very classical for the stability analysis of time-delay
systems. The idea is to prove that the use of the inequalities given in Corollary 6 or 9 fits perfectly with this
stability analysis. Of course, there are many possibilities to reduce the conservatism of the previous theorems. One
can consider, for instance, more involved Lyapunov-Krasovskii functionals, a discretized version of the functional
(see for instance [4],[13]), among many others. They will not be presented in the present paper and are left for future
works.

5.4 Examples

The purpose of the following section is to show how the inequalities given in Section 3 leads to a relevant reduction
of conservatism in the stability condition. In it is important to stress that, our goal is not to find the best result on
several examples. Our goal is to show the gap between existing results based on the Jensen’s inequality and the ones
proposed in the article.

5.4.1 Constant delay case

In this section, we will consider the two following examples. On the first hand, the linear time-delay systems (22)
with the matrices with the matrices

A =

[
−2 0

0 −0.9

]
, Ad =

[
−1 0

−1 −1

]
, AD =

[
0 0

0 0

]
. (27)

is under consideration. This system is a well-known delay dependent stable system, that is the delay free system is
stable and the maximum allowable delay hmax = 6.1721 can be easily computed by delay sweeping techniques. To
demonstrate the effectiveness of our approach, results are compared to the literature and are reported in Table 1.
All papers except [18] use Lyapunov theory in order to derive stability criteria. Many recent papers give the same
result since they are intrinsically based on the same Lyapunov functional and use the same bounding cross terms
technique i.e. Jensen inequality. Some papers [3],[32], which use an augmented Lyapunov can go further but with a
numerically increasing burden, compared to our proposal. The robust approach [18] gives a very good upper-bound
with a similar computational complexity than our result. The discretized Lyapunov functional proposed by [13] gives
a delay upperbound very closed to the maximum allowable delay with an increasing numerical complexity.

Theorem 13 addresses also the stability of systems with interval delays, which may be unstable for small delays (or
without delays) as it is illustrated with the second example.

A =

[
0 1

−2 0.1

]
, Ad =

[
0 0

1 0

]
, AD =

[
0 0

0 0

]
. (28)

As Re(eig(A + Ad)) = 0.05 > 0, the delay free system is unstable and in this case, the results to assess stability of
this system are much more scarce. They are often related to robust analysis [3] or discretized Lyapunov-Krasovskii
functionals [13]. The results are reported in Table 2. In this example, our result gives better result than [13] and [3]
with a fewer numbers of variables to be optimized. Notice that with the discretization technique from [13], increasing
N yields to a better result approaching the analytical bound.
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Theorems hmax number of variables

[11] 4.472 1.5n2 + 1.5n

[15] 4.472 3n2 + 3n

[30] 4.472 2.5n2 + 1.5n

[32] 4.472 3n2 + 3n

[18] 6.1107 1.5n2 + 9n + 9

[3] 5.120 7n2 + 4n

[32] 5.02 18n2 + 18n

[19] 4.97 69n2 + 5n

[13] (N=1) 6.059 5.5n2 + 2.5n

[1] 5.120 6.5n2 + 3.5n

Th.11 5.901 3n2 + 2n

Th.11 with Q = Z = 0 4.472 1.5n2 + 1.5n

Th.12 4.484 3n2 + 2n

Th.12 with Q = Z = 0 ∅ 1.5n2 + 1.5n

Table 1
Results for Example (27) for constant delay h.

Theorems hmin hmax number of variables

[15] ∅ ∅ 3n2 + 3n

[3] 0.102 1.424 7n2 + 4n

[13] (N=1) 0.1006 1.4272 5.5n2 + 2.5n

Th.12 0.1006 1.473 3n2 + 2n

Th.12 with Q = Z = 0 ∅ ∅ 1.5n2 + 1.5n

Table 2
Results for Example (29) for constant delay h.

5.4.2 Constant distributed delay case

Consider the linear time-delay systems (15) with the matrices taken from [5]

A =

[
0.2 0

0.2 0.1

]
, Ad =

[
0 0

0 0

]
, AD =

[
−1 0

−1 −1

]
(29)

For this example, the conditions from [34] and [20] are not able to characterize stability of this system. In [35],
stability is guaranteed for delays over the interval [0.2090, 1.1942]. The stability conditions proposed in [5] ensures
stability for any constant delay h ∈ [0.2001, 1.6339]. Using our new inequality, Theorem 11 ensures stability for
all constant delay which belongs to the interval [0.200, 1.877] which is much larger than the interval found in the
literature. Note that an eigenvalue analysis provides that the system remains stable for all constant delays in the
interval [0.200, 2.04]. This shows the potential of the new inequality.

5.4.3 Time-varying delay case

Consider the linear time-delay systems (22) with the matrices given in equation (27). A comparison between existing
results and the ones given in the present paper are shown in Table 3. Once more, one can see that with a few number
of decision variables, Theorem 14 proposes a relevant alternative to the existing results form the literature.

As it was mentioned above, Theorem 14 only represents a first step. Our objective is to show the potential gain

11

CONFIDENTIAL. Limited circulation. For review only

Preprint submitted to Automatica
Received July 17, 2012 07:46:54 PST



d 0.1 0.2 0.5 0.8 1

[8] 3.604 3.033 2.008 1.364 0.999

[33] 3.604 3.033 2.008 1.364 -

[18] 3.604 3.033 2.008 1.364 0.999

[9] 1.632 1.632 1.632 1.632 1.632

[18] 4.714 3.807 2.280 1.608 1.360

[14] 3.605 3.039 2.043 1.492 1.345

[15] 3.605 3.039 2.043 1.492 1.345

[2] 4.794 3.995 2.682 1.957 1.602

[32] 3.611 3.047 2.072 1.590 1.529

[1] 4.081 3.448 2.528 2.152 1.991

Th.14 4.525 3.626 2.095 1.524 1.258

Table 3
The maximal allowable delays hmax for system described in Example (27).

of using the inequality proposed in the paper in hand. Further improvements of the stability conditions could be
derived easily but will not be presented here.

6 Application to sampled-data systems

In this section, the aim is to show how the previous lemmas reduce the conservatism of the stability conditions for
sampled-data systems. Let {tk}k∈N be an increasing sequence of positive scalars such that

⋃
k∈N[tk, tk+1) = [0, +∞),

for which there exist two positive scalars Tmin ≤ Tmax such that

∀k ∈ N, Tk = tk+1 − tk ∈ [Tmin, Tmax]. (30)

Consider the following sampled-data system

∀t ∈ [tk, tk+1), ẋ(t) = A0x(t) + Bu(tk), (31)

where x ∈ Rn and u ∈ Rm represent the state and the input vectors respectively. The sequence {tk}k∈N represents
the sampling instants of the controller. The matrices A0 and B are constant, known and of appropriate dimensions.
The control law is a linear state feedback, u = Kx with a given gain K ∈ Rm×n. The system is therefore governed
by

∀τ ∈ [0, Tk), ẋ(tk + τ) = A0x(tk + τ) + BKx(tk). (32)

An interesting difference between time-delay and sampled-data systems comes from the fact that the vector x(tk)
is constant over [tk tk+1). In order to take into account this additional information into the stability analysis, we
integrate the dynamics of the system (32) over the interval [0 τ ] for any τ ∈ [0 Tk]. Since the vector x(tk) is constant
over this interval, the following equation is derived

∫ τ

0

ẋ(tk + s)ds = x(tk + τ)− x(tk) = A0

∫ τ

0

x(tk + s)ds + τBKx(tk) (33)

This expression shows that there exists a relation between the vectors x(tk + τ), x(tk) and 1
τ

∫ τ

0
ẋ(tk + s)ds. This

linear relation is a particular characteristic of sampled-data systems. In the following we will show how this relation
can be included in the stability analysis of sampled-data system and how it help reducing the conservatism of the
resulting conditions.

Adopting the method proposed in [28], the following results is proposed

Theorem 15 Let 0 < Tmin ≤ Tmax be two positive scalars. Assume that there exist n × n-matrices P = PT > 0,
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R = RT > 0, S = ST , Q = QT and X = XT and 3n× n-matrices Y1 Y2 and Y3 that satisfy

Ψ1(T ) = Π1 + T (Π2 + Π3) < 0, Ψ2(T ) =




Π1 − T (Π3 + Π4) TY1 π2TY2

∗ −TR 0

∗ ∗ −π2TR


 < 0, (34)

for T ∈ {Tmin, Tmax} and where

Π1 = Π0
1 −He{Y1W1 − π2Y2W20},

Π0
1 = He{MT

1 PM0 −WT
1 QM2 − Y3W1} −WT

1 SW1,

Π2 = MT
0 RM0 + He{MT

0 SW1 + MT
0 QM2},

Π3 = MT
2 XM2, Π4 = Y3(BKM2 + AM3),

(35)

with M0 = [A0 BK 0], M1 = [I 0 0], M2 = [0 I 0], and M3 = [0 0 I] and where W1 and W20 are given in Corollary 9.
Then the system (32) is asymptotically stable for any asynchronous sampling satisfying (30).

Proof : Consider a given integer k ≥ 0 and the associated Tk ∈ [Tmin Tmax]. The stability analysis can be performed
using the quadratic function V (x) = xT Px where P is a symmetric positive definite matrix and a functional V0 of
the form

V0(τ, x[tk tk+1)) = (Tk − τ)(x(tk + τ)− x(tk))T (S(x(tk + τ)− x(tk)) + 2Qx(tk))

+(Tk − τ)τxT (tk)Xx(tk) + (Tk − τ)
∫ τ

0
ẋT (tk + s)Rẋ(tk + s)ds,

where x[tk tk+1) represents the solution of the system over the interval [tk tk+1), and where R = RT > 0 S = ST , X =
XT and Q are n× n-matrices. This functional satisfies the boundary conditions as suggested in Theorem 1 in [28],
i.e. V0(0, x[tk tk+1)) = V0(Tk, x[tk tk+1)) = 0. Define the functional W(τ, x[tk tk+1)) = V (x(tk + τ)) + V0(τ, x[tk tk+1)).
According to Theorem 1 from [28], if the derivative of this functional W is strictly negative over the sampling interval
[tk tk+1), then the sampled-data system (32) is asymptotically stable. In the sequel, we will show how Corollary 9
improves the existing results. Introduce the vectors νk(τ) = 1

τ

∫ τ

0
x(tk+s)ds and ξk(τ) =

[
xT (tk + τ) xT (tk) νT

k (τ)
]
.

According to equation (33), there exists a linking conditions between the components of ξk(τ) which can be stated
as follows. For any matrix Y3 ∈ R3n×n the following equality holds

2ξT
k (τ)Y3 [−W1 + τ(BKM2 + A0M3)] ξk(τ) = 0 (36)

Hence, following the proof of Theorem 2 in [28], the computation of the derivative of W together with the linking
relation (36)

Ẇ(τ, x[tk tk+1)) = ξT
k (τ)

[
Π0

1 + (Tk − τ)Π2 + (Tk − 2τ)Π3 + τΠ4

]
ξk(τ)−

∫ τ

0

ẋT (tk + s)Rẋ(tk + s)ds.

Applying Lemma 9 yields

Ẇ(τ, x[tk tk+1)) = ξT
k (τ)

[
Π1 + (Tk − τ)Π2 + (Tk − 2τ)Π3 + τ Π̄4

]
ξk(τ).

where Π̄4 = Π4 + Y1R
−1Y T

1 + π2Y2R
−1Y T

2 Since the previous inequality is affine with respect to τ ∈ [0, Tk], the
right-hand side of the previous inequality is strictly if and only if it is negative when τ = {0, Tk}. By use of the
Schur complement, this is then equivalent to the conditions Ψ1(Tk) < 0 and Ψ2(Tk) < 0. Using the same argument
on the variable Tk ∈ [Tmin Tmax] yields the result. ♦

6.1 Examples

Consider again the two linear systems (22) provided in the examples (27) and (29) given in the section on the
stability analysis of time-delay systems with A = A0 and Ad = BK. Additionally, we will also consider the following
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Theorems Ex. (27) Ex. (29) Ex. (37)

Theoretical bounds 1 (0, 3.269] [0.2007; 2.020] (0, 1.729]

[7] (0, 0.999] ∅ (0, 0.869]

[25] (0, 1.99] ∅ (0, 1.113]

[6] (0, 2.53] ∅ (0, 1.695]

[23] (0, 2.53] ∅ (0, 1.695]

[28] (0, 2.62] [0.4, 1.25] (0, 1.721]

Theorem 15 (0, 2.74] [0.4, 1.33] (0, 1.729]

Theorem 15 with Y3 = 0 (0, 2.62] [0.4, 1.25] (0, 1.721]

Table 4
Interval of allowable asynchronous samplings.

example taken from [7],[25].

ẋ(t) =

[
0 1

0 −0.1

]
x(t) +

[
0

−0.1

][
3.75

11.5

]
x(tk) (37)

For this example, when the sampling period is chosen constant (i.e. T1 = T2 = Tk, for all k ≥ 0), an eigenvalues
analysis of the transition matrix ensures that the system is stable for all constant sampling period in (0, 1.729].
Applying Theorem 15, we prove that system (37) is asymptotically stable for all asynchronous sampling over the
intervall [0, 1.724], encompassing many results of the literature as it can be seen in the table 4.

7 Conclusions

In this paper, we have provided new useful inequalities which encompass the Jensen’s inequality. In combination
with a simple Lyapunov-Krasovskii functional, this inequality leads to new stability criteria for linear time delay
system and sampled-data systems. This new result has been expressed in terms of LMIs and has shown on numerical
examples a large improvement of existing results using only a limited number of matrix variables. More generally,
this new inequality could be copled to more elaborated Lyapunov functional.
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