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Abstract

The relation between a straight line and its digitization as a digital
straight line is often expressed using a notion of proximity. In this con-
tribution, we consider the covering of the straight line by a set of balls
centered on the digital straight line pixels. We prove that the optimal
radius of the balls is strictly less than one, and can be expressed as a
function of the slope of the straight line. This property is used to define
discrete convexity in concordance with previous works on convexity.

1 Introduction

From the seminal work of Sklansky [12], discrete convexity has been the subject
of many studies with a common objective: transcribe the Euclidean definition
in the digital space.

In the eighties, a previous work introduced ε-convexity using covering of
connected sets by balls [1]. In the case of convex shapes, it was shown in [1]
that the value ε can be written as p

p+1 (lower than 1) where p is a parameter
computed from the edges of the convex hull of the shape. However, the value of
this parameter p was given algorithmically but not analytically. In this paper,
using the arithmetical definition of a digital straight line [9, 3], we prove that
ε can be expressed exactly as a function of the characteristics of the digital
straight line supporting the edges of the convex hull of the shape.

After classical definitions of digital straight line and its characteristics, we
establish the property of covering a straight line by balls centered exclusively
on digital straight line pixels. The following section applies that property to the
case of discrete convexity and we present the algorithm for discrete convex hull
computation working only on digital space.
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Figure 1: A straight line L of equation 3x−8y+µ = 0 and its OBQ digitization
analytically given by the digital straight line of equation 0 ≤ 3x− 8y + µ < 8.

2 Preliminary definitions

Let L be an Euclidian straight line in R2 given by the equation ax− by+µ = 0,
with a, b, µ in Z, and gcd(a, b) = 1. In the following, we also assume without loss
of generality that 0 ≤ a ≤ b. All other cases are symmetrical. Such a straight
line may be considered as supporting a linear contour of a shape, such that all
the points of the shape are on the same side of the straight line.

Let us now consider the Object Boundary Quantization of L on the isothetic
regular grid. It is given by the set of pixels (x, y) such that x ∈ Z and y =
b−ax−µb c (see Figure 1).

It is well known that this set of digital points denoted by L is a simple 8-
connected digital straight line (DSL) that can be defined by the diophantine
equation [9, 3] 0 ≤ ax− by + µ < max (|a|, |b|) = b.

The slope of L is a
b , µ is the shift at origin. The remainder of L for a given

digital point (x, y) is the value ax− by + µ.
Two particular straight lines are associated to this DSL L:

• the upper leaning line given by equation ax− by + µ = 0 and,

• the lower leaning line given by equation ax− by + µ = b− 1.

The digital points lying on these lines are similarly called leaning points (see
Figure 2). Upper leaning points have remainder value 0 while lower leaning
points have remainder value b− 1 (see [2] for more details).

Since a, b, µ are integers and L is digitized with OBQ, L is identified as the
upper leaning line of L.

3 Optimal covering of a straight line

3.1 Setting the problem

The objective is to cover the straight line L with closed balls centered on the
points of the DSL L. Moreover, the union of these balls shall not contain any
other digital point. These balls are defined according to the L∞ metric such that
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Figure 2: Digital straight line of equation 0 ≤ 3x − 8y + µ < 8 with upper
(lower) leaning points Ui (Li).

the ball of radius ε is defined by B(P, ε) = {q|d∞(P, q) ≤ ε}. In our framework,
we assume that the radius ε is the same for all the points of L (see Figure 3).

In the general case, setting ε to 1
2 is not sufficient to cover the straight line

L except for the special cases of horizontal, vertical and diagonal lines. We can
notice the following elementary property:

Property 1. The band delimitated by the 2 leaning lines (upper and lower) has
a vertical thickness of b−1

b .

The proof is straightforward from the equations of the leaning lines. Figure
3 illustrates the covering of a straight line of slope a

b by balls of radius b−1
b . We

remark that this radius is not sufficient since parts of the straight line remain
uncovered.

To analyze this covering, we proceed by successive couples of adjacent pixels.
It is easy to verify that the vertical distance between a pixel of remainder r of
the DSL and the line L is equal to r/b, with r varying from 0 to b − 1. The
value b−1

b is obtained for a lower leaning point. Let us consider two successive
pixels of L such that the first one is a lower leaning point. Then we notice that
the union of the balls of radius b−1

b centered on these points leaves a part of
L uncovered (see Figure 3). So the minimum ε for the line L to be covered is
greater than b−1

b .
In the following, we denote by P0, P1, . . . , Pn the ordered sequence (increas-

ing abscissae) of pixels of the DSL L. For each pixel Pi we can define as
proj(Pi) the vertical projection of Pi on the straight line L. Consequently,
the Euclidean straight line L may be partitionned as the union of subsegments
[proj(Pi), proj(Pi+1)].

Property 2. If for every pair of successive pixels Pi and Pi+1, B(Pi, ε) ∪
B(Pi+1, ε) covers the straight segment [proj(Pi), proj(Pi+1)] then the straight
line L is covered by the union of the balls B(Pi, ε) .

As said before, ε must be greater than b−1
b , and it is easy to see that it must

also be strictly lower than 1, otherwise new digital points are included in the
union of balls.

3



U2 L2

L1b−1
b

Figure 3: Balls of radius ε = b−1
b centered on the DSL points do not cover L:

uncovered regions are indicated by arrows.

3.2 Optimal covering

The following theorem defines the optimal value of ε as a function of the straight
line parameters a and b.

Theorem 1. Let L a straight line of equation ax − by + µ = 0 and L its
digitization with the OBQ scheme. In the context of the previous definitions,
the union of balls B(Pi, ε) centered on pixels of the DSL L with radius ε =

max ( 1
2 ,
|a|+|b|−1
|a|+|b| ) covers the straight line L. This set doesn’t contain any other

digital pixels excepted those of the DSL.

Proof. We suppose that 0 ≤ a ≤ b. First of all, if the parameters of L are (0, 1, µ)
(horizontal straight line) or (1, 1, µ) (diagonal straight line), the optimal value
of ε is trivially equal to 1

2 . Otherwise, b is greater than or equal to 2.
The distance between a point Pi and its projection proj(Pi) (see above) is

equal to r
b if the remainder of Pi is equal to r.

In the case “Pi and Pi+1 4-connected”, if r is the remainder of Pi then
r+a is the remainder of Pi+1. Consequently, the distance between Pi+1 and its
projection proj(Pi+1) is equal to r+a

b . We have the following inequalities:

• b−1
b > r

b (Pi belongs to L),

• b−1
b ≥ r+a

b (Pi+1 belongs to L),

• 2 b−1b ≥ 1 (since b ≥ 2).

With the first two inequalities, we deduce that proj(Pi) and proj(Pi+1)
are covered by B(Pi,

b−1
b ) ∪ B(Pi+1,

b−1
b ). The third inequality ensures that

B(Pi,
b−1
b ) and B(Pi+1,

b−1
b ) overlap. We can conclude that the union of the

two balls B(Pi,
b−1
b ) ∪ B(Pi+1,

b−1
b ) covers the segment [proj(Pi), proj(Pi+1)]

(see Figure 4).
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Figure 4: When Pi and Pi+1 are 4-connected, B(Pi,
b−1
b )∪B(Pi+1,

b−1
b ) covers

the segment [proj(Pi), proj(Pi+1)].

In the case “Pi and Pi+1 8-connected”, according to the Figure 5(b), we
introduce the point Q belonging to the straight line L situed at equal distance
(L∞ norm) from Pi and Pi+1. The point Q is on L and shall belong to the two
balls B(Pi, ε) and B(Pi+1, ε). If r is the remainder of Pi, we denote by ε(r)
the minimum radius such that B(Pi, ε(r)) ∪ B(Pi+1, ε(r)) covers the segment
[proj(Pi), proj(Pi+1)]. We can write ε(r) as the sum r

b + ρ(r), with ρ(r) ≥ 0
(see Figure 5). Using Thalès theorem, we have

ρ(r)
a(b−r)
b2

=
b−r
b − ρ(r)
b−r
b

We obtain

ρ(r) =
a(b− r)
b(a+ b)

Then ε(r) = ρ(r) + r
b = a+r

a+b .

ε(r) is increasing and is maximum for r = b−1, corresponding to ε = a+b−1
a+b .

This proof was developed in the case 0 ≤ a ≤ b. It can be easily extended

in the general case to obtain ε = max( 1
2 ,
|a|+|b|−1
|a|+|b| ). Since ε < 1, Pi is the only

digital point in the ball B(Pi, ε) for all i, which ends the proof.

4 Discrete Convexity

4.1 Definitions

An important literature has been developed for digital convexity [12, 7, 5, 6, 1].
A large number of these definitions are considered to be equivalent in case of
simply connected sets [10, 4].The following definition is issued from the tran-
scription of convexity definition in Euclidean space to discrete space. In Eu-
clidean geometry, a region R is convex if and only if for every pair of points p, q
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Figure 5: Illustration of the proof when Pi and Pi+1 are 8-connected. r is the
remainder of Pi. (b) is a close up of the region circled in (a).

belonging to R, the straight line segment [p, q] is included in R. The following
definition of discrete convexity replaces inclusion by covering with balls [1].

Definition 1 (ε-convexity). A connected component S is ε-convex, with ε be-
longing to interval [ 12 , 1[ if:

• for every pair of pixels P and Q of S,

• for every real value α belonging to ]0, 1[,

there exists a pixel R belonging to S such that the point (αP + (1 − α)Q) of
the straight line supported by the two points PQ belongs to the balls B(R, ε),
centered on R with radius ε.

Definition 2 (Discrete convexity). A connected component S is discrete convex
if there exists a real ε ∈ [ 12 , 1[ such that S is ε-convex.

4.2 Algorithmic approach

The computation of the convex hull Conv(S) is done in two steps :

1. first, the x− y convex shape issued from S is computed;

2. then the convex hull is computed from the x− y convex shape.

The x− y convex shape of a connected component is defined as the convex
shape along horizontal and vertical directions: for any points P and Q of the
x − y convex shape, if P and Q are on the same line or column of the grid,
then all the points between P and Q (on this line or column) also belong to the

6



x− y convex shape. It is evident that the x− y convex shape is included in the
convex hull.

Algorithm 1 describes how to compute the x−y convex shape. Suppose that
the shape S is included in a binary image of size m× n. The initialization step
consists in:

1. compute the indices if and il of the upper and lower lines containing
points of S respectively;

2. for each line i between if and il, compute min(i) and max(i) as the
minimum and maximmum indices of points of S on line i.

This initilization step is done in O(nm). Afterwards, the three loops of
Algorithm 1 are performed to compute the maximal and minimal abscissas for
each line of the x− y convex shape of S.

Algorithm 1: x−y convex shape computation of a set S of discrete points

for i from if to il do1

min↓(i) = min(min(i),min↓(i− 1)) ; // min↓(i) is initially set

to m
max↓(i) = max(max(i),max↓(i− 1)) ; // max↓(i) is initially

set to 0

end
for i from il to if do2

min↑(i) = min(min(i),min↑(i+ 1)) ; // min↑(i) is initially set

to m
max↑(i) = max(max(i),max↑(i+ 1)) ; // max↑(i) is initially

set to 0

end
for i from if to il do3

min(i) = max(min↓(i),min↑(i))
max(i) = min(max↓(i),max↑(i))
jf = min(jf ,min(i)) ; // jf is initially set to n
jl = max(jl,max(i)) ; // jl is initially set to 0

end

Figure 6(b) illustrates the first two loops of the algorithm (lines 1 and 2).
Figure 6(c) illustrates the third loop (line 3).

At the end of Algorithm 1, the variables min(i) and max(i) contain the
indices of the minimum and maximum points of the x− y convex shape for the
line i. This algorithm also computes the coordinates if , il, jf , jl of the bounding
rectangle of S.

Finally, the convex hull of S is computed as follows. To do so, we define the
extremal point of the bounding rectangle as the points of S belonging to this
rectangle and such that at least one of its two neighbours on the rectangle does
not belong to S. These eight points are depicted on Figure 6(d).
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Finally, the convex hull is computed from these extremal points using a
technique similar to the algorithm of Sklansky [13][8](Chap. 13) on the polygon
defined by the variables min(.) and max(.). Note that this polygon is simple and
completely visible from the outside, such that the algorithm works in this case.
This algorithm works in O(max(m,n)) time, which leads to a global complexity
of O(nm) to compute the convex hull of S. The result on the example of Figure
6 is given in Figure 7.

(a)

min↓min↑ max↓max↑

(b)

(c)

UL UR

LU

LD

RU

RD

DRDL

(d)

Figure 6: (a) A discrete shape S. (b) Illustration of the variables min↓,
min↑,max↓, max↑ used in Algorithm 1. (c) Illustration of the variables min(.)
and max(.) at the end of Algorithm 1. (d) Extremal points of S.

4.3 Optimal convering and discrete convexity

Let us denote by {Pi, i = 0..n} the ordered set of vertices of the convex hull
Conv(S). To each edge [Pi, Pi + 1] we associate the slope parameters (ai, bi)
such that gcd(ai, bi) = 1. From Property 1, this edge is covered by balls cen-

tered on the pixels of its OBQ digitization with radius max( 1
2 ,
|ai|+|bi|−1
|ai|+|bi| ).

It is easy to prove that the connected set Conv(S) of discrete points included

in Conv(S) is ε-convex with ε = maxi∈0...n max( 1
2 ,
|ai|+|bi|−1
|ai|+|bi| ). S is discrete

convex if and only if it is equal to Conv(S).
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(a)

Figure 7: Convex hull of the discrete shape S: the point marked by a square
is added during the application of Sklansky’s algorithm. The discrete points
belonging to the polygonal line are the vertices of Conv(S). Conv(S) is defined
as the discrete points inside Conv(S).

Moreover such definition is fully compatible with the continuous one as it is
proved by the theorem [1]:

Theorem 2. Let S be a connected component in space R2.
If, for every sampling step, the discrete connected component S attached to S is
discrete convex, then S is convex in space R2.

Using S and Conv(S) a lot of features can be extracted to estimate a measure
of convexity of S (number of missing pixels, distribution of concavities)[11].
These features are used to measure the degree of convexity of a shape in presence
of many concavities.

5 Conclusion

The transcription of continuous concept like convexity into digital space needs
specific attention for its definition as well as for its properties. In case of con-
vexity we use the definition of digital straight line and we replace the notion of
inclusion by the notion of covering. The main result obtained in this paper is
issued from parametric representation of digital straight line to characterize the
optimal radius for covering balls centered on digital straight line pixels.
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