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Introduction

The topological derivative measures the sensitivity of a given shape functional with respect to infinitesimal singular domain perturbations, such as the insertion of holes, inclusions, source-terms or even cracks [START_REF] Céa | The shape and topological optimizations connection[END_REF][START_REF] Eschenauer | Bubble method for topology and shape optmization of structures[END_REF][START_REF] Garreau | The topological asymptotic for PDE systems: the elasticity case[END_REF][START_REF] Soko | On the topological derivative in shape optimization[END_REF]. Specifically, if the shape functional is denoted by J (Ω) and the domain obtained after a perturbation of size ε localized around a point z is denoted by Ω ε , it is defined by

D T J (Ω) = lim ε→0 J (Ω ε ) -J (Ω) ϕ(ε) ,
for some appropriate scaling function ϕ(ε). This notion has proved to be a powerful tool for the treatment of different problems such as topology optimization, inverse analysis and image processing (see e.g. [START_REF] Amstutz | Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints[END_REF][START_REF] Auroux | Image processing by topological asymptotic analysis[END_REF][START_REF] Guzina | Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics[END_REF][START_REF] Hintermüller | Multiphase image segmentation and modulation recovery based on shape and topological sensitivity[END_REF][START_REF] Hintermüller | Second-order topological expansion for electrical impedance tomography[END_REF]), and has become a subject of intensive research. There are also some applications in the multi-scale constitutive modeling context [START_REF] Amstutz | Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures[END_REF], fracture mechanics sensitivity analysis [START_REF] Van Goethem | Crack nucleation sensitivity analysis[END_REF] and damage evolution modeling [START_REF] Allaire | Damage and fracture evolution in brittle materials by shape optimization methods[END_REF]. All these problems share in common to be governed by partial differential equations (PDE's), and the type of PDE obviously impacts drastically on the mathematical analysis involved. Concerning the theoretical development of the topological asymptotic analysis, the reader may refer to the papers [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF][START_REF] De Faria | On the second order topologial asymptotic expansion[END_REF][START_REF] Nazarov | Asymptotic analysis of shape functionals[END_REF], among others. According to the literature, the topological derivative concept has been fully developed for a wide range of second order equations, while a forth order equation is addressed in [START_REF] Amstutz | Topological asymptotic analysis of the Kirchhoff plate bending problem[END_REF]. In this paper, the topological asymptotic expansion of a class of shape functionals associated with an elliptic differential operator of order 2m, with m ≥ 1, is derived. The topologically perturbed domain is obtained when an arbitrary shaped hole is introduced inside the initial domain. Then, the resulting void is filled with a phase whose material properties present a contrast with the original ones. The main ingredient arising in the asymptotic formula is the so-called Pólya-Szegö polarization tensor [START_REF] Pólya | Isoperimetric inequalities in mathematical physics[END_REF] (see also [START_REF] Ammari | Polarization and moment tensors with applications to inverse problems and effective medium theory[END_REF]), of which we derive the general structure for the operators under consideration. We also introduce the concept of degenerate polarization tensor, in the sense that it is independent of the shape of the topological perturbation and, at the same time, its entries do not remain bounded when the contrast on the material properties goes to zero. In this particular case it is remarkable that the polarization tensor can be easily obtained in its closed form. We show that this phenomenon of degeneracy occurs when the operator satisfies a particular algebraic property which is easy to check, a typical example being the bi-Laplacian. Finally, we provide full mathematical justifications for the derived formulas with precise estimates for the remainders of the topological asymptotic expansion.

The paper is organized as follows. Some notation and preliminary statements are introduced in Section 2. Basic properties of the boundary value problems under consideration are collected in Section 3. The topological asymptotic expansion for a class of shape functionals is derived in its general form in Section 4, and the concept of degenerate polarization tensor is introduced in Section 5. The appropriate estimates of remainders are provided in Section 6. Some particular cases of differential operators, including degenerate cases, are presented in Section 7 together with a set of examples with analytical solution. The extension of the obtained results to elliptic systems is discussed in Section 8. Some concluding remarks and perspectives are given in Section 9. In Appendix A, the notion of collectively compact operators used throughout the analysis is recalled. Finally, the weighted and quotient Sobolev spaces needed for the formulation of appropriate exterior problems, appearing in particular in the construction of the polarization tensor, are described in Appendix B.

Preliminaries and notation

Let Ω be an open and bounded subset of R n (n ∈ N * ) and x ∈ Ω be fixed. Given an open, bounded and smooth subset ω of R n containing the origin, we define for every ε > 0 the set

ω ε (x) = x + εω.
Let ρ 0 ∈ L ∞ (Ω) be a given function which takes a constant value ρ0 in a neighborhood of x and such that essinf Ω ρ 0 > 0. Moreover, given a constant ρ1 > 0, we set for all ε ≥ 0

ρ ε (x) = ρ 0 (x) if x ∈ Ω \ ω ε , ρ1 if x ∈ Ω ∩ ω ε . (2.1)
For all multi-index α = (α 1 , ..., α n ) ∈ N n and any ξ = (ξ 1 , ..., ξ n ) ∈ R n , we denote by

|α| = n i=1 α i , |ξ| = n i=1 ξ 2 i 1/2 , ξ α = n i=1 ξ αi i ,
the length of α, the norm of ξ and the α-power of ξ, respectively. To avoid any ambiguity, all multiindices will be denoted by the letters α, β or γ. The derivative of order α of a distribution u is defined by

D α u = ∂ α1 1 • • • ∂ αn n u. Let m ∈ N * .
We consider a family of real constant coefficients (a αβ ) |α|=|β|=m satisfying the following properties.

• Symmetry : it holds for every α, β a αβ = a βα .

(2.2)

• Positivity : for any family of real numbers (y α ) |α|=m it holds |α|=|β|=m a αβ y α y β ≥ 0.

(2.3)

• Uniform ellipticity : there exists κ > 0 such that

|α|=|β|=m a αβ ξ α+β ≥ κ|ξ| 2m ∀ξ ∈ R n . (2.4)
We define the homogeneous operator A ε :

H m 0 (Ω) → H -m (Ω) by A ε u, v H -m (Ω),H m 0 (Ω) = |α|=|β|=m Ω ρ ε a αβ D α uD β v dx ∀u, v ∈ H m 0 (Ω). (2.5)
We will later argue that A ε is invertible (see Corollary 3.2). We further consider coefficients (b αβ,ε ) defined for all ε ≥ 0 and α, β such that |α| ≤ m and |β| ≤ m -1. We assume that, for ε small enough, b αβ,εb αβ,0 = q αβ χ ωε for some coefficients q αβ , and with χ ωε the characteristic function of ω ε . We define the operator

B ε : H m 0 (Ω) → H -m (Ω) by B ε u, v H -m (Ω),H m 0 (Ω) = |α|≤m |β|≤m-1 Ω b αβ,ε D α uD β v dx ∀u, v ∈ H m 0 (Ω).
We assume that, for all ε sufficiently small, the operator A ε + B ε and its adjoint A ε + B * ε are injective. We will infer (see Proposition 3.3) that A ε + B ε is invertible, as well as its adjoint (the proof is the same). Henceforth ε will always be implicitly assumed to be small enough.

Given a source f ∈ H -m (Ω) we denote for every ε > 0 by u ε ∈ H m 0 (Ω) the unique solution of

(A ε + B ε )u ε = f. (2.6)
The goal of this paper is to analyze the asymptotic behavior of a shape functional of the form j(ε) = J ε (u ε ) when ε → 0.

Well-posedness

The space H m (Ω) is endowed with the standard norm . H m (Ω) and the associated seminorm

|.| H m (Ω) defined by u 2 H m (Ω) = |α|≤m D α u 2 L 2 (Ω) , |u| 2 H m (Ω) = |α|=m D α u 2 L 2 (Ω) .
The expression (2.5) defines a symmetric and continuous bilinear form on H m 0 (Ω). The coercivity is based on the Lemma below. We will use the standard notation u for the Fourier-Plancherel transform of u ∈ L 2 (R n ), z for the complex conjugate of z and |z| for the modulus of z. Lemma 3.1. There exists c > 0 independent of ε such that

A ε u, u H -m (Ω),H m 0 (Ω) ≥ c|u| 2 H m (Ω)
∀u ∈ H m 0 (Ω). Proof. By density, we can assume that u belongs to D(Ω), the set of compactly supported and infinitely differentiable functions defined in Ω. Next we extend u by zero outside Ω. Due to the positivity assumption, the function |α|=|β|=m a αβ D α uD β u is nonnegative. Thus, with ρ = min(essinf Ω ρ 0 , ρ1 ), we have

A ε u, u H -m (Ω),H m 0 (Ω) ≥ ρ |α|=|β|=m a αβ Ω D α uD β u dx.
Passing to the Fourier transform, we have by the Parseval equality

A ε u, u H -m (Ω),H m 0 (Ω) ≥ ρ |α|=|β|=m a αβ R n D α u D β udξ = ρ |α|=|β|=m a αβ R n ξ α+β | u| 2 dξ.
The uniform ellipticity assumption yields

A ε u, u H -m (Ω),H m 0 (Ω) ≥ ρκ R n |ξ| 2m | u| 2 dξ.

The expansion of |ξ|

2m = n i=1 ξ 2 i m
results in an expression of the form

|ξ| 2m = |α|=m c α ξ 2α
for some coefficients c α ≥ c > 0. This entails

A ε u, u H -m (Ω),H m 0 (Ω) ≥ ρκ |α|=m c α R n |ξ α u| 2 dξ ≥ ρκc |α|=m R n |ξ α u| 2 dξ.
Using again the Parseval equality leads to

A ε u, u H -m (Ω),H m 0 (Ω) ≥ ρκc |α|=m Ω |D α u| 2 dx = ρκc|u| 2 H m (Ω) .
By the Lax-Milgram theorem and the Poincaré inequality in H m 0 (Ω) we infer the following.

Corollary 3.2. For all f ∈ H -m (Ω) and all ε there exists a unique u ∈ H m 0 (Ω) such that

A ε u, η H -m (Ω),H m 0 (Ω) = f, η ∀η ∈ H m 0 (Ω).
Moreover, there exists a constant c independent of ε such that u H m (Ω) ≤ c f Hm (Ω) . Proposition 3.3. For all f ∈ H -m (Ω) and all ε there exists a unique u ∈ H m 0 (Ω) such that

(A ε + B ε )u, η H -m (Ω),H m 0 (Ω) = f, η ∀η ∈ H m 0 (Ω). Moreover, there exists a constant c independent of ε such that u H m (Ω) ≤ c f H m (Ω) . Proof. Since A ε is invertible, we have (A ε + B ε )u = f ⇐⇒ (I + B ε A -1 ε )A ε u = f
, where I stands for the identity operator of H -m (Ω). By Corollary 3. 2, A -1 ε : H -m (Ω) → H m 0 (Ω) is uniformly bounded. Next, the operator B ε can be decomposed as B ε = J Bε , with J the canonical embedding of H 1-m (Ω) into H -m (Ω) and Bε the operator defined algebraically like B ε , but acting from H m (Ω) into H 1-m (Ω). By construction, Bε is uniformly bounded and, by combination of the Rellich and Schauder theorems, J is compact. It follows that the family of operators

{B ε A -1 ε : H -m (Ω) → H -m (Ω), ε ≥ 0} is collectively compact (see Appendix A).
In order apply Theorem A.1, let us prove that it is also pointwise sequentially compact. Let (ε k ) be a bounded sequence of nonnegative numbers. By the Bolzano-Weierstrass theorem there exists ε ∞ ≥ 0 such that, for a non-relabeled subsequence, ε k → ε ∞ . Let now ϕ ∈ H -m (Ω) be arbitrary and define

ψ k = A -1 ε k ϕ ∈ H m 0 (Ω).
Then we have ρ ε k → ρ ε∞ almost everywhere, which implies by a standard argument (see e.g. Theorem 16.4.1 of [START_REF] Attouch | Variational analysis in Sobolev and BV spaces[END_REF]) that ψ k ⇀ ψ ∞ := A -1 ε∞ ϕ weakly in H m 0 (Ω). We now write for any η ∈ H m 0 (Ω):

B ε k A -1 ε k ϕ, η H -m (Ω),H m 0 (Ω) = B * ε k η, A -1 ε k ϕ H -m (Ω),H m 0 (Ω) . Lebesgue's dominated convergence theorem yields that B * ε k η → B * ε∞ η strongly in H -m (Ω).
As a product of weakly and strongly convergent sequences we infer:

B ε k A -1 ε k ϕ, η H -m (Ω),H m 0 (Ω) → B * ε∞ η, A -1 ε∞ ϕ H -m (Ω),H m 0 (Ω) = B ε∞ A -1 ε∞ ϕ, η H -m (Ω),H m 0 (Ω) . This means that B ε k A -1 ε k ϕ ⇀ B ε∞ A -1
ε∞ ϕ weakly in H -m (Ω), but the convergence is actually strong by compactness of the sequence. We have thus proved that B ε k A -1 ε k → B ε∞ A -1 ε∞ pointwise. By the Fredholm alternative, the operator I + B ε A -1 ε is invertible for each ε ≥ 0, since it is injective by assumption. Therefore, by virtue of Theorem A.1, the operators (I + B ε A -1 ε ) -1 are uniformly bounded. Writing that u = A -1 ε (I + B ε A -1 ε ) -1 f and using again Corollary 3.2 provides the desired uniform bound.

We will later need the following variant of Lemma 3.1. The proof, which is very similar, is left to the reader. Lemma 3.4. Let ρ be a positive constant. There exists c > 0 such that, whenever ρ ∈ L ∞ (R n ) is essentially bounded from below by ρ and

D α u ∈ L 2 (R n ) for every α with |α| = m, we have |α|=|β|=m R n ρε a αβ D α uD β u dx ≥ c|u| 2 H m (R n ) .
As opposed to the previous case where the domain Ω was bounded, in Lemma 3.4 the seminorm |u| 2 H m (R n ) is not a norm and the Poincaré inequality does not hold. Hence, in order to prove the existence and uniqueness of a solution in R n , the Lax-Milgram Lemma cannot be applied directly. To address this issue, we introduce in Appendix B a weighted space W m (R n ) (cf. Eq. (B.1)) and its quotient space W m (R n )/P m-1 where P m-1 is the space of polynomials of degree not greater than m -1. We have the following extension of the Poincaré inequality (cf. Corollary B.5). Lemma 3.5. There exists c > 0 such that, for all u ∈ W m (R n ),

u W m (R n )/Pm-1 ≤ c|u| H m (R n ) .
The combination of Lemmas 3.4 and 3.5 will lead to useful existence and uniqueness results for problems defined in R n . We recall that the approach with quotient spaces is due to Deny and Lions as reported by Ciarlet in [START_REF]Handbook of numerical analysis[END_REF] (see e.g., Theorem 14.1 as applied to the Finite Element Method).

4. Derivation of the general formula 4.1. A preliminary abstract theorem: asymptotic expansion of a cost function. The following theorem provides a general framework for the sensitivity analysis of a cost function associated with a constraint in variational form. It has been introduced in [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF], however we give here a short proof for completeness. Theorem 4.1. Let V be a vector space and I be a real interval containing 0. For all ε ∈ I consider a vector u ε ∈ V such that:

a ε (u ε , η) = f ε , η ∀η ∈ V , (4.1 
) where a ε and f ε are a bilinear form on V × V and a linear functional on V, respectively. Consider also a functional J ε : V → R and a linear functional g ε ∈ V ′ . Suppose that the following hypotheses hold.

(1) For all ε, there exists v ε ∈ V such that

a ε (η, v ε ) = -g ε , η ∀η ∈ V . (4.2) 
(2) There exist real numbers δa, δf and a function ε → ϕ(ε) ∈ R such that, when ε → 0,

(a ε -a 0 )(u 0 , v ε ) = ϕ(ε)δa + o(ϕ(ε)) , (4.3) f ε -f 0 , v ε = ϕ(ε)δf + o(ϕ(ε)) . (4.4) 
(3) There exist real numbers δJ 1 , δJ 2 such that

J ε (u ε ) = J ε (u 0 ) + g ε , u ε -u 0 + ϕ(ε)δJ 1 + o(ϕ(ε)) , (4.5) J ε (u 0 ) = J 0 (u 0 ) + ϕ(ε)δJ 2 + o(ϕ(ε)) . (4.6) 
Then we have

J ε (u ε ) -J 0 (u 0 ) = ϕ(ε)(δa -δf + δJ 1 + δJ 2 ) + o(ϕ(ε)) . (4.7) 
Proof. From (4.5) and (4.6), we obtain

J ε (u ε ) -J 0 (u 0 ) = g ε , u ε -u 0 + ϕ(ε)(δJ 1 + δJ 2 ) + o(ϕ(ε)) .
Taking into account (4.2) and the fact that u εu 0 ∈ V, we get

J ε (u ε ) -J 0 (u 0 ) = -a ε (u ε -u 0 , v ε ) + ϕ(ε)(δJ 1 + δJ 2 ) + o(ϕ(ε)) = -a ε (u ε , v ε ) + (a ε -a 0 )(u 0 , v ε ) + a 0 (u 0 , v ε ) + ϕ(ε)(δJ 1 + δJ 2 ) + o(ϕ(ε)) .
Then (4.1) yields

J ε (u ε ) -J 0 (u 0 ) = (a ε -a 0 )(u 0 , v ε ) + f ε -f 0 , v ε + ϕ(ε)(δJ 1 + δJ 2 ) + o(ϕ(ε)) .
Finally, using the hypotheses (4.3) and (4.4), we arrive at

J ε (u ε ) -J 0 (u 0 ) = ϕ(ε)(δa + δf ) + ϕ(ε)(δJ 1 + δJ 2 ) + o(ϕ(ε)) ,
which leads to the result.

Preliminary definitions.

In the present context the function spaces are V = H m 0 (Ω) and V ′ = H -m (Ω), and the bilinear form a ε is defined by

a ε (u, v) = (A ε + B ε )u, v H -m (Ω),H m 0 (Ω) .
We consider a family of functionals J ε : H m 0 (Ω) → R satisfying Eqs. (4.5) and (4.6) for some g ε = g ∈ H -m (Ω), independent of ε, and ϕ(ε) = ε n . A class of such functionals will be given in Section 4.5. Moreover we assume for simplicity that f ε = f ∈ H -m (Ω) is also independent of ε, from which Eq. (4.4) is straightforwardly satisfied with δf = 0.

Under the above assumptions, it is clear that Eqs. (4.1)-(4.6) are all satisfied provided that Eq. (4.3) holds true. Therefore, it suffices to prove Eq. (4.3) to obtain the general expression of the topological asymptotic expansion of J ε (u ε ). This is the purpose of the subsequent derivations.

We recall that the background state u 0 ∈ H m 0 (Ω) and the background adjoint state v 0 ∈ H m 0 (Ω) are respectively defined as the solutions of

(A 0 + B 0 )u 0 = f and (A 0 + B * 0 )v 0 = -g, (4.8) 
with B * 0 the adjoint operator of B 0 . Moreover, Eq. (4.2) can be rewritten as

(A ε + B * ε )v ε = -g.
To begin with we introduce the variation

ṽε := v ε -v 0 , (4.9) 
and, in order to prove Eq. ( 4.3), we define the quantity

V a (ε) := (a ε -a 0 )(u 0 , v ε ). (4.10)
To proceed with the analysis of the asymptotic behavior of V a (ε) we shall use the spaces

W m (R n ) and W m (R n )/P m-1 defined in Appendix B.
In the course of the analysis we will need some auxiliary functions. They are defined thereafter. First, we define

h ε ∈ W m (R n )/P m-1 as the solution of |α|=|β|=m R n ρε a αβ D α h ε D β η dx = -(ρ 1 -ρ0 ) |α|=|β|=m ωε a αβ D α v 0 D β η dx (4.11) for all η ∈ W m (R n )/P m-1 , with ρε (x) = ρ0 if x ∈ R n \ ω ε , ρ1 if x ∈ ω ε . (4.12)
We next set

H ε (y) = ε -m h ε (x + εy). (4.13) 
Then, we define for each γ with |γ| = m the function

Ψ γ ∈ W m (R n )/P m-1 solution of |α|=|β|=m R n ρa αβ D α Ψ γ (y)D β Φ(y) dy = -(ρ 1 -ρ0 ) |β|=m ω a γβ D β Φ(y) dy (4.14) for all Φ ∈ W m (R n )/P m-1 , with ρ(y) = ρ0 if y ∈ R n \ ω, ρ1 if y ∈ ω. (4.15) 
Note that the existence and uniqueness of the solutions of (4.11) and (4.14) is a consequence of Lemma 3.4 and Lemma 3.5. We set

H = |γ|=m D γ v 0 (x)Ψ γ . (4.16)
Finally we define the polarization tensor (p αβ ) by its entries

p αβ = |ω|(r -1)a αβ + k αβ , (4.17) 
with r = ρ1 ρ0 the contrast and

k αγ = ( ρ1 ρ0 -1) |β|=m a αβ ω D β Ψ γ (y) dy. (4.18)
4.3. Asymptotic expansion of the bilinear form.

Lemma 4.2. For ε sufficiently small, the following expression of (4.10) holds true:

V a (ε) = ε n ρ0 |α|=|β|=m p αβ D α u 0 (x)D β v 0 (x) + ε n |ω| |α|≤m |β|≤m-1 q αβ D α u 0 (x)D β v 0 (x) + 5 i=1 E i (ε), (4.19)
with the remainders

E 1 (ε) = (ρ 1 -ρ0 ) |α|=|β|=m ωε a αβ D α u 0 D β v 0 -D α u 0 (x)D β v 0 (x) dx + |α|≤m |β|≤m-1 ωε q αβ D α u 0 D β v 0 -D α u 0 (x)D β v 0 (x) dx, E 2 (ε) = (ρ 1 -ρ0 ) |α|=|β|=m ωε a αβ (D α u 0 -D α u 0 (x)) D β ṽε dx, E 3 (ε) = |α|≤m |β|≤m-1 ωε q αβ D α u 0 D β ṽε dx, E 4 (ε) = (ρ 1 -ρ0 ) |α|=|β|=m ωε a αβ D α u 0 (x)D β (ṽ ε -h ε )(y) dy, E 5 (ε) = ε n (ρ 1 -ρ0 ) |α|=|β|=m ω a αβ D α u 0 (x).D β (H ε -H)(y) dy.
Proof. We have by definition

V a (ε) = |α|=|β|=m Ω (ρ ε -ρ 0 )a αβ D α u 0 D β v ε dx + |α|≤m |β|≤m-1 Ω (a αβ,ε -a αβ,0 )D α u 0 D β v ε dx, hence, for ε small enough, V a (ε) = |α|=|β|=m ωε (ρ 1 -ρ0 )a αβ D α u 0 D β v ε dx + |α|≤m |β|≤m-1 ωε q αβ D α u 0 D β v ε dx. We make the splitting V a (ε) = V 1 a (ε) + V 2 a (ε) with V 1 a (ε) = (ρ 1 -ρ0 ) |α|=|β|=m ωε a αβ D α u 0 D β v 0 dx + |α|≤m |β|≤m-1 ωε q αβ D α u 0 D β v 0 dx, V 2 a (ε) = (ρ 1 -ρ0 ) |α|=|β|=m ωε a αβ D α u 0 D β ṽε dx + |α|≤m |β|≤m-1 ωε q αβ D α u 0 D β ṽε dx.
• First approximation. With the help of the splitting

D α u 0 D β v 0 = D α u 0 (x)D β v 0 (x) + [D α u 0 D β v 0 - D α u 0 (x)D β v 0 (x)] we obviously get V 1 a (ε) = |ω ε |(ρ 1 -ρ0 ) |α|=|β|=m a αβ D α u 0 (x)D β v 0 (x)+|ω ε | |α|≤m |β|≤m-1 q αβ D α u 0 (x)D β v 0 (x)+E 1 (ε). (4.20)
• Second and third approximation. Similarly we have

V 2 a (ε) = |α|=|β|=m ωε (ρ 1 -ρ0 )a αβ D α u 0 (x)D β ṽε dx + E 2 (ε) + E 3 (ε). (4.21)
• Fourth approximation. We now approximate ṽε . We have for any η ∈ H m 0 (Ω):

a ε (η, ṽε ) = a ε (η, v ε ) -a ε (η, v 0 ) = -g, η -(a ε -a 0 )(η, v 0 ) -a 0 (η, v 0 ) = -(a ε -a 0 )(η, v 0 ). (4.22)
For ε small enough, we therefore have

|α|=|β|=m Ω ρ ε a αβ D α ηD β ṽε dx + |α|≤m |β|≤m-1 Ω b αβ,ε D α ηD β ṽε dx = -(ρ 1 -ρ0 ) |α|=|β|=m ωε a αβ D α ηD β v 0 dx - |α|≤m |β|≤m-1 ωε q αβ D α ηD β v 0 dx, (4.23)
which suggests to approximate ṽε in (4.21) by h ε , solution of (4.11). We arrive at

V 2 a (ε) = (ρ 1 -ρ0 ) |α|=|β|=m ωε a αβ D α u 0 (x)D β h ε dx + E 2 (ε) + E 3 (ε) + E 4 (ε).
By the change of variable x = x + εy this can be rewritten

V 2 a (ε) = ε n (ρ 1 -ρ0 ) |α|=|β|=m ω a αβ D α u 0 (x)D β H ε (y) dy + E 2 (ε) + E 3 (ε) + E 4 (ε). (4.24)
• Fifth approximation. On one hand, plugging

h ε (x) = ε m H ε (ε -1 (x-x)) and η(x) = ε m φ ε (ε -1 (x-x))
in (4.11) yields after the change of variable x = x + εy in both integrals of (4.11 

) |α|=|β|=m R n ρ(y)a αβ D α H ε (y)D β φ ε (y) dy = -(ρ 1 -ρ0 ) |α|=|β|=m ω a αβ D α v 0 (x + εy)D β φ ε (y) dy (4.25) for every φ ε ∈ W m (R n )/P m-
|α|=|β|=m R n ρ(y)a αβ D α H(y)D β Φ(y) dy = -(ρ 1 -ρ0 ) |α|=|β|=m ω a αβ D α v 0 (x)D β Φ(y) dy (4.26) for every Φ ∈ W m (R n )/P m-1 . On replacing H ε by H + (H ε -H) in (4.24) we obtain V 2 a (ε) = ε n (ρ 1 -ρ0 ) |α|=|β|=m ω a αβ D α u 0 (x)D β H(y) dy + 5 i=2 E i (ε). (4.27)
Plugging (4.16) into the above yields

V 2 a (ε) = ε n (ρ 1 -ρ0 ) |α|=|β|=|γ|=m ω a αβ D α u 0 (x)D γ v 0 (x)D β Ψ γ (y) dy + 5 i=2 E i (ε).
After rearrangement we obtain

V 2 a (ε) = ε n ρ0 |α|=|γ|=m k αγ D α u 0 (x)D γ v 0 (x) + 5 i=2 E i (ε), (4.28) 
with k αβ defined by (4.18). Altogether we arrive at

V a (ε) = ε n |α|=|β|=m (|ω|(ρ 1 -ρ0 )a αβ + ρ0 k αβ ) D α u 0 (x)D β v 0 (x) + 5 i=1 E i (ε).
The expression (4.17) of the polarization tensor leads to (4.19).

The following lemma provides the appropriate estimates for the remainders E i (ε). This is the core of the analysis. The proof is deferred to Section 6. Lemma 4.3. Suppose that f, g are of regularity H s in a neighborhood of x with s > max(0, n 2 +1-m). Then the remainders

E i (ε) in Lemma 4.2 satisfy |E i (ε)| = o(ε n ) for each i = 1, 2, 3, 4, 5.

Asymptotic expansion of the cost function.

Theorem 4.4. For every ε sufficiently small let u ε be the solution of (2.6). Suppose that the cost function J ε is such that (4.5) and (4.6) hold true for ϕ(ε) = ε n and g ε = g independent of ε, and that f, g are of regularity H s in a neighborhood of x with s > max(0, n 2 + 1m). Then we have

J ε (u ε ) -J 0 (u 0 ) = ε n     ρ0 |α|=|β|=m p αβ D α u 0 (x)D β v 0 (x) + |ω| |α|≤m |β|≤m-1 q αβ D α u 0 (x)D β v 0 (x) + δJ 1 + δJ 2     + o(ε n ), (4.29)
with the entries of the polarization tensor (p αβ ) |α|=|β|=m given by (4.17), and u 0 , v 0 solutions of (4.8).

Proof. By Lemmas 4.2 and 4.3 and Definition 5.3, Eq. (4.3) is satisfied with ϕ(ε) = ε n and

δa := ρ0 |α|=|β|=m p αβ D α u 0 (x)D β v 0 (x) + |ω| |α|≤m |β|≤m-1 q αβ D α u 0 (x)D β v 0 (x).
The claim follows from Theorem 4.1.

Remark 4.5. If the source term f = f ε depends on ε then (4.29) is simply modified by the addition of the extra term ε n δf , which stems from (4.4). If the function g ε which satisfies (4.5) depends on ε, then (4.22) changes, which results in the additional term g εg 0 , η at the right hand side of (4.23).

If g ε -g 0 H -m (Ω) = o(ε n/2 ), then we still have |ṽ ε -h ε | H m (Ω) = o(ε n/2 ) in Lemma 6.1, therefore Formula (4.29) remains unchanged. But if g ε -g 0 H -m (Ω) is of order ε n/2
, then an extra term appears in (4.29). For an example we refer to [START_REF] Amstutz | Topological asymptotic analysis of the Kirchhoff plate bending problem[END_REF] where such a term has been computed for the Kirchhoff plate problem. Note that the regularity conditions f, g ∈ H s apply to f 0 and g 0 .

Remark 4.6. Although the condition ρ1 > 0 has been used in several places, the topological asymptotic expansion for Neumann holes can be rigorously obtained by taking the value ρ1 = 0 in the computation of the polarization tensor, provided that (4.14) still admits a solution (necessarily non unique) for this value. The proof of this claim is rather technical, and has been done for the Laplace operator and the Kirchhoff plate problem in [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF] and [START_REF] Amstutz | Topological asymptotic analysis of the Kirchhoff plate bending problem[END_REF], respectively. The same idea applies here, therefore we do not reproduce the proof.

4.5.

A particular class of cost functions. We focus here on a particular class of cost functions, which notably includes least square type functionals.

Theorem 4.7. Suppose that the cost function satisfies

J ε (u + h) -J ε (u) = g, h H -m (Ω),H m (Ω) + O( h 2 ) (4.30)
for all u, h ∈ H m (Ω), where either h = h H m (Ω\N ) , with N an arbitrary neighborhood of x, or h = h H m-1 (Ω) . Then (4.5) and (4.6) hold true for ϕ(ε) = ε n and δJ 1 = δJ 2 = 0.

Proof. We already have (4.6) with δJ 2 = 0, since J ε is independent of ε. Then (4.30) yields

J ε (u ε ) -J ε (u 0 ) -g, u ε -u 0 = O( u ε -u 0 2 ). (4.31) Lemma 6.1 implies that v ε -v 0 = o(ε n/2
). Obviously, a similar estimate holds for the direct state, i.e., u εu 0 = o(ε n/2 ). Together with (4.31), we derive (4.5) with δJ 1 = 0.

A class of degenerate problems

5.1. Degenerate expression of the polarization tensor.

Definition 5.1 (Degenerate polarization tensor). We say that the polarization tensor (4.17) is degenerate when its entries do not remain bounded when the contrast r tends to zero.

In particular, when the polarization tensor is degenerate, the topological sensitivity for Neumann holes is not defined, see Remark 4.6. This situation occurs when the cost functional is discontinuous with respect to the nucleation of a Neumann hole, and it is observed for instance in dimension n = 1 for the Laplacian (see Section 7.2). We will see that it can also occur in higher dimension, but for higher order operators.

The goal of this section is to give a sufficient condition of degeneracy, as well as to provide an explicit expression of the polarization tensor in this case. To this aim we introduce the family of piecewise constant functions ζ αγ : R n → R defined by

ζ αγ (x) =    - ρ1 -ρ0 ρ1 δ αγ if x ∈ ω, 0 if x ∈ R n \ ω, (5.1) 
with

δ αγ = 1 if α = γ, δ αγ = 0 otherwise. We have for all Φ ∈ W m (R n )/P m-1 : |α|=|β|=m R n ρa αβ ζ αγ D β Φ(y) dy = -(ρ 1 -ρ0 ) |β|=m ω a γβ D β Φ(y) dy. (5.2)
In the definition of the polarization tensor Eq. (4.14) appeared as a critical step. Therefore the following assumption is made. 

k αγ = ( ρ1 ρ0 -1) ω |β|=m a αβ D β Ψ γ (y) dy = ( ρ1 ρ0 -1) ω |β|=m a αβ ζ βγ = -( ρ1 ρ0 -1) |β|=m a αβ ρ1 -ρ0 ρ1 |ω|δ βγ = -a αγ (ρ 1 -ρ0 ) 2 ρ1 ρ0 |ω|, (5.4) 
with |ω| the n-dimensional Lebesgue measure of ω. Moreover, plugging (5.4) into (4.17) provides the following closed formula for the polarization tensor.

Proposition 5.3 (Degenerate polarization tensor). If Assumption 5.2 is fulfilled, then we have

p αγ = |ω|(1 - 1 r )a αγ . (5.5) 
We also note that, in addition to be degenerate in the sense of Definition 5.1, the polarization tensor (5.5) is independent of the shape of ω.

Characterization of a degenerate problem.

We shall now give sufficient conditions for Assumption 5.2 to be satisfied. To do so, set q = ♯{α ∈ N n , |α| = m} and define the linear map

Λ : R q → R q (U α ) |α|=m → (V β ) |β|=m such that V β = |α|=m a αβ U α .
We recall the following general result from [START_REF] Hörmander | The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis[END_REF], Theorem 7.1.20.

Theorem 5.4. If P is a homogeneous elliptic (i.e. P (ξ) = 0 ⇒ ξ = 0) polynomial of degree p in R n , then the differential operator P (D) has a fundamental solution of the form

E = E 0 -Q(x) log |x|, (5.6) 
where E 0 is homogeneous of degree pn, C ∞ and analytic in R n \ {0} and Q is a polynomial which is identically 0 when n > p and is homogeneous of order pn when n ≤ p. (cf. [START_REF] Hörmander | The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis[END_REF] for its explicit expression).

Corollary 5.5. Let E be the fundamental solution introduced in Theorem 5.4 and α ∈ N n be such that |α| = k. For all R > 1 there exists c > 0 such that, for all x ∈ R n with |x| > R,

if n > p, |D α E(x)| ≤ c|x| p-n-k , if n ≤ p, |D α E(x)| ≤ c|x| p-n-k log |x|.
Proof. We first concentrate on the term E 0 of the decomposition (5.6). For all (r, υ) ∈ R + × R n we have E 0 (rυ) = r p-n E 0 (υ). Differentiating k times with respect to υ in the direction (δυ 1 , ..., δυ k ) gives

d k E 0 (rυ)(rδυ 1 , ..., rδυ k ) = r p-n d k E 0 (υ)(δυ 1 , ..., δυ k ), whereby d k E 0 (rυ) = r p-n-k d k E 0 (υ) . Choosing now x = rυ, with |υ| = 1 yields d k E 0 (x) = |x| p-n-k d k E 0 (υ) ≤ c|x| p-n-k , which in turn implies |D α E 0 (x)| ≤ c|x| p-n-k ∀|α| = k.
This provides the result for n > p. We now assume that n ≤ p. Similarly to the previous calculation we obtain

|D α Q(x)| ≤ c|x| p-n-k ∀|α| = k. (5.7)
Denoting by Ẽ(x) = Q(x) log |x|, we have, for some coefficients c αβ ≥ 0,

D γ Ẽ(x) = D γ Q(x) log |x| + |α|+|β|=|γ| |β|≥1 c αβ D α Q(x)D β (log |x|).
Using (5.7) we get whenever |γ| = k and |x| > R:

|D γ Ẽ(x)| ≤ c|x| p-n-k log |x| + c |α|+|β|=k |β|≥1 |x| p-n-|α| |x| -|β| ≤ c|x| p-n-k log |x|.
Thus we get the results.

We now state and prove one of the main results of our work, which allows to easily determine whether the polarization tensor associated to an elliptic problem of order 2m is degenerate in the sense of Definition 5.1.

Theorem 5.6. Suppose that rank(Λ) = 1. Then Assumption 5.2 is fulfilled. In consequence the polarization tensor admits the expression (5.5), hence it is degenerate.

Proof. Let V = (V β ) |β|=m ∈ im(Λ) be such that V β = 0 for some β. Since dim(im Λ) = 1 we have im Λ = span(V ) and Λ((D α Ψ) |α|=m ) = V ⇐⇒ |α|=m a α β D α Ψ = V β . (5.8) 
For V defined by V β = |α|=m a αβ ζ αγ , γ fixed, a solution to the rightmost equality of (5.8) is given by

Ψ γ = E * V β ,
where E is the fundamental solution of the operator |α|=m a α β D α . Let us show that the polynomial P (ξ) = |α|=m a α β ξ α associated to this operator is elliptic. Thus, assume that P (ξ) = 0. For |α| = m we set U α = ξ α , and we define U = (U α ) |α|=m . We have [Λ(U )] β = P (ξ) = 0, and since Λ(U ) ∈ span(V ) (i.e., Λ(U ) = λV for some λ) with V β = 0, we infer Λ(U ) = 0. Therefore, |α|=m a αβ ξ α = 0 for every β with |β| = m. Multiplying by ξ β and summing over = m, this implies |α|=|β|=m a αβ ξ α+β = 0. By the uniform ellipticity assumption (2.4) we derive ξ = 0. Therefore, the fundamental solution of the operator P (D) = |α|=m a α β D α satisfies Theorem 5.4. Using Corollary 5.5 with p = m, it is easily checked that E ∈ W m (R n ) (defined in Appendix B). Hence Ψ γ ∈ W m (R n ) as well, and the proof is achieved.

Estimation of the remainders

This section is devoted to the proof of Lemma 4.3. We will use the letter c to denote a generic positive constant independent of ε. 

= v ε -v 0 ∈ H m 0 (Ω). We introduce the difference e ε = ṽε -h ε ∈ H m (Ω)/P m-1 ,
where h ε ∈ W m (R n )/P m-1 solves (4.11). Moreover, we set

ρε (x) = ρ ε (x) if x ∈ Ω, ρ0 if x ∈ R n \ Ω.
Lemma 6.1. Let a > 0 be such that the open ball of centre x and radius a, denoted by B a , is contained in Ω, and choose an arbitrary δ ′ ∈ (0, 1/2). For ε small enough we have that

|h ε | H m (R n \Ba) ≤ cε n-δ ′ , |e ε | H m (Ω) ≤ cε n/2+δ ′′ , (6.1) ṽε H m (Ω) ≤ cε n/2 , ṽε H m (Ω\Ba) ≤ cε n/2+δ ′′ , ṽε H m-1 (Ω) ≤ cε n/2+δ ′′ (6.
2) for some δ ′′ > 0.

Proof. The proof is divided into five steps.

• First step: estimation of |h ε | H m (R n ) . By elliptic regularity applied to (4.25) (see Lemmas 3.4 and 3.5) we get

H ε W m (R n )/Pm-1 ≤ c, hence in particular |H ε | H m (R n ) ≤ c. (6.3) A change of variable results in |h ε | H m (R n ) ≤ cε n/2 . (6.4) • Second step: estimation of |h ε | H m (R n \Ba) . We derive from (4.25) that, for all φ ε ∈ W m (R n )/P m-1 , |α|=|β|=m R n ρ0 a αβ D α H ε (y)D β φ ε (y) dy (6.5) = |α|=|β|=m R n ρa αβ D α H ε (y)D β φ ε (y) dy + |α|=|β|=m ω (ρ 0 -ρ1 )a αβ D α H ε (y)D β φ ε (y) dy = (ρ 0 -ρ1 ) |α|=|β|=m ω a αβ D α v 0 (x + εy)D β φ ε (y) dy + (ρ 0 -ρ1 ) |α|=|β|=m ω a αβ D α H ε (y)D β φ ε (y) dy = (ρ 0 -ρ1 ) |α|=|β|=m ω a αβ (D α v 0 (x + εy) + D α H ε (y)) D β φ ε (y) dy. (6.6) 
We define the distribution

T ε ∈ D ′ (R n ) by T ε , η = (ρ 0 -ρ1 ) |α|=|β|=m ω a αβ (D α v 0 (x + εy) + D α H ε (y)) D β η(y) dy.
We therefore have, in the sense of distributions,

(-1) m |α|=|β|=m ρ0 a αβ D α+β H ε = T ε . (6.7)
We call E the fundamental solution of the differential operator (-1) m |α|=|β|=m ρ0 a αβ D α+β , whereby a solution of (6.7) is given by H

• ε = T ε * E. By elliptic regularity, since clearly T ε ∈ H -m (R n ), we have H • ε ∈ H m loc (R n ).
In addition, if dist(x, ω) > 0 we have the expressions

H • ε (x) = (ρ 0 -ρ1 ) |α|=|β|=m ω a αβ (D α v 0 (x + εy) + D α H ε (y)) D β E(x -y)dy.
and

D γ H • ε (x) = (ρ 0 -ρ1 ) |α|=|β|=m ω a αβ (D α v 0 (x + εy) + D α H ε (y)) D γ+β E(x -y)dy. (6.8)
The Cauchy-Schwarz inequality applied to (6.8) implies

|D γ H • ε (x)| ≤ c |β|=m ω |D γ+β E(x -y)| 2 dy 1/2
. By Corollary 5.5 with p = 2m we infer that, for any R > 2, δ ′ ∈ (0, 1/2) and

|γ| = m -k such that ω ⊂ B(0, R/2), |D γ H • ε (x)| ≤ c|x| k-n+δ ′ ∀|x| > R. (6.9) This implies in particular that H • ε ∈ W m (R n ),

and by uniqueness that

H • ε is a representative for H ε . Recalling that h ε (x) = ε m H ε (ε -1 (x -x)), we select the representative h • ε (x) = ε m H • ε (ε -1 (x -x)), hence D γ h • ε (x) = ε k D γ H • ε (ε -1 (x -x)), |γ| = m -k. (6.10)
From (6.9) we derive

|D γ h ε (x)| ≤ cε k |ε -1 (x -x)| k-n+δ ′ = cε n-δ ′ |x -x| k-n+δ ′ , ∀|x| > εR, |γ| = m -k. (6.11)
Therefore, choosing an arbitrary a > 0, we obtain

h • ε W m (R n \Ba) ≤ cε n-δ ′ (6.12)
for any ε small enough. In particular this yields

|h ε | H m (R n \Ba) ≤ cε n-δ ′ .
• Third step: estimation of h ε H m-1 (Ω) . From (6.9) we obtain, for |γ| = mk,

D γ H • ε L 2 (C(R,ε -1 R0)) ≤ cε n 2 -k-δ ′ + c (6.13)
and where C(a,b) stands for the ring of radii a and b. The above inequality together with (6.3) yields, thanks to the Poincaré inequality, that

D γ H • ε L 2 (C(R,2R)) ≤ c,
H • ε H m (BR) ≤ c. (6.14)
Combining (6.13) and (6.14) we arrive at

D γ H • ε L 2 (B ε -1 R 0 ) ≤ c + cε n 2 -k-δ ′ .
A change of variables provides

D γ h • ε L 2 (Ω) ≤ cε k+ n 2 + cε n-δ ′ .
For k ≥ 1, as δ ′ ∈ (0, n/2), the right hand side of the above inequality is of order O(ε

n 2 +δ ′′ ) for some δ ′′ > 0. It follows that h • ε H m-1 (Ω) ≤ cε n 2 +δ ′′ . (6.15) • Fourth step: estimation of |e ε | H m (Ω) . We set Âε u, v H -m (Ω),H m 0 (Ω) =
|α|=|β|=m Ω ρε a αβ D α uD β v dx so that, in view of (4.11) applied to the selected representative h • ε and for a test function η ∈ H m 0 (Ω) extended by 0, we have Âε h

• ε = -( Âε -Â0 )v 0 . Recalling that (A ε + B * ε )v ε = (A 0 + B * 0 )v 0 = -g, we find (A ε + B * ε )ṽ ε = -(A ε -A 0 + B * ε -B * 0 )v 0 . This entails, for e • ε = ṽε -h • ε , (A ε + B * ε )e • ε = S ε := -(A ε -Âε )h • ε -B * ε h • ε -(A ε -A 0 -Âε + Â0 + B * ε -B * 0 )v 0 . (6.16)
In addition it holds e • ε = -h • ε on ∂Ω. By Proposition 3.3 and classical arguments of elliptic regularity and trace theory we infer that

e ε H m (Ω) ≤ c( S ε H -m (Ω) + h • ε W m (R n \Ba)
). Yet for every η ∈ H m 0 (Ω) we have

S ε , η H -m (Ω),H m 0 (Ω) = - |α|=|β|=m Ω (ρ ε -ρε )a αβ D α h • ε D β η dx - |α|≤m |β|≤m-1 Ω b αβ,ε D α ηD β h • ε dx - |α|=|β|=m Ω (ρ ε -ρ 0 -ρε + ρ0 )a αβ D α v 0 D β η dx - |α|≤m |β|≤m-1 ωε q αβ D α ηD β h • ε dx.
Using (6.12), (6.15), and the fact that ρ ερ 0 = ρε -ρ0 for every ε small enough, we get

S ε , η H -m (Ω),H m 0 (Ω) ≤ cε n 2 +δ ′′ η H m (Ω) .
Using once more (6.12) we arrive at

e • ε H m (Ω) ≤ cε n 2 +δ ′′ , (6.17) 
• Fifth step: estimates on ṽε . From (6.1) and ṽε = h (6.4) yields ṽε H m (Ω) ≤ cε n 2 . We also derive from (6.15) and (6.17)

• ε + e • ε we derive |ṽ ε | H m (Ω\Ba) ≤ cε n 2 +δ ′′ . The Poincaré inequality entails ṽε H m (Ω\Ba) ≤ cε n 2 +δ ′′ . Likewise,
ṽε H m-1 (Ω) ≤ cε n 2 +δ ′′ . (6.18)
All the estimates are now proven.

We are now in position to estimate the remainders E i (ε), i = 1, 2, 3, 4, 5 of Lemma 4.2.

6.2. First remainder. Due to the assumed regularity of f and g, it follows that D α u 0 and D α v 0 are C 1 in a neighborhood of x. By the mean value inequality we arrive at

|E 1 (ε)| ≤ cε n+1 .
6.3. Second remainder. The Cauchy-Schwarz inequality entails

E 2 (ε) ≤ cε |ω ε ||ṽ ε | H m (Ω) .
Using Lemma we straightforwardly get

|E 2 (ε)| ≤ cε n+1 .
6.4. Third remainder. The Cauchy-Schwarz inequality yields

|E 3 (ε)| ≤ c 1 L 2 (ωε) |ṽ ε | H m-1 (Ω) .
From Lemma 6.1 we infer |E 3 (ε)| ≤ cε n+δ ′′ .

6.5. Fourth remainder. The Cauchy-Schwarz inequality yields

|E 4 (ε)| ≤ c 1 L 2 (ωε) |e ε | H m (Ω) .
Then Lemma 6.1 entails

|E 4 (ε)| ≤ cε n+δ ′′ .
6.6. Fifth remainder. We begin by observing that, subtracting (4.26) from (4.25), one gets for any

φ ∈ W m (R n ) |α|=|β|=m R n ρ(y)a αβ D α (H ε -H) (y)D β φ dy = - |α|=|β|=m ω (ρ 1 -ρ0 )a αβ (D α v 0 (x + εy) -D α v 0 (x)) D β φ(y) dy.
Applying the Cauchy-Schwarz inequality to the right hand side and using the C 1 regularity of v 0 we get

|α|=|β|=m R n ρ(y)a αβ D α (H ε -H) (y)D β φ dy ≤ cε|φ| H m (R n ) .
By elliptic regularity (see Lemma 3.4) we infer that

|H ε -H| H m (R n ) ≤ cε.
This implies by the Cauchy-Schwarz inequality that

|E 5 (ε)| ≤ cε n+1 .
7. Selected applications 7.1. Examples of operators. In this section we review some classical elliptic operators. As the polarization tensor only depends on the principal symbol, we restrict our presentation to homogeneous operators, i.e., we assume that b αβ,ε ≡ 0. In order to check the uniform ellipticity condition, we set

P (ξ) = |α|=|β|=m a αβ ξ α+β .
7.1.1. In dimension n = 1. We have |α| = m ⇒ α = (m), hence q = 1 and rank(Λ) = 1 for every m ≥ 1. This case is always degenerate and the topological asymptotic expansion for ω being the interval (-1, 1) is given by

J ε (u ε ) -J 0 (u 0 ) = ε 2 ρ0 (1 - 1 r ) d m u 0 dx m (x) d m v 0 dx m (x) + δJ 1 + δJ 2 + o(ε). 7.1.2. Laplacian in dimension n ≥ 2.
We have m = 1, hence q = n. Let (e i ) i=1,...,n be the canonical basis of R n . The bilinear form is

a ε (u, v) = Ω ρ ε ∇u.∇vdx = n i=1 Ω ρ ε D ei uD ei vdx, hence P (ξ) = |ξ| 2 .
In the basis formed by the vectors (e i ) i=1,...,n the matrix of Λ is the identity matrix of order n, hence rank(Λ) = n. This case is not degenerate. The polarization tensor is explicitly known for ellipses and ellipsoids, see e.g. [START_REF] Ammari | Polarization and moment tensors with applications to inverse problems and effective medium theory[END_REF][START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF].

7.1.3. Bi-Laplacian. For this operator we have m = 2 and the bilinear form is

a ε (u, v) = Ω ρ ε ∆u∆vdx.
This yields P (ξ) = |ξ| 4 . Let us first focus for simplicity on the dimension n = 2. Ordering the family α ∈ N 2 , |α| = 2 as ((2, 0), (0, 2), (1, 1)) the matrix of Λ in the canonical basis of R 3 is

A =   1 1 0 1 1 0 0 0 0   .
It is immediately checked that A ≥ 0 and rank(Λ) = rank(A) = 1. This case is thus degenerate. The same thing occurs in any dimension n, with, using a similar ordering, a matrix having as only nonzero coefficients an n × n upper left block of ones. Therefore we have in any dimension the topological asymptotic expansion:

J ε (u ε ) -J 0 (u 0 ) = ε n ρ0 |ω|(1 - 1 r )∆u 0 (x)∆v 0 (x) + δJ 1 + δJ 2 + o(ε n ).
7.1.4. Kirchhoff plate model. For this fourth order operator (m = 2) in dimension n = 2, the bilinear form is

a ε (u, v) = k Ω ρ ε λ∆u∆v + 2µ∇∇u : ∇∇v dx,
where k = τ 3 /12, τ > 0 is the thickness of the plate, λ, µ ≥ 0 are the Lamé coefficients. This entails P (ξ) = k(λ + 2µ)|ξ| 4 , which is uniformly elliptic provided that either λ > 0 or µ > 0. In the same basis as in the previous case, the matrix of Λ is

A = k   λ + 2µ λ 0 λ λ + 2µ 0 0 0 4µ   ≥ 0.
We find det A = 16k 3 µ 2 (λ + µ), hence rank(A) = 3 provided that µ > 0. The problem is thus non-degenerate. The polarization tensor for a circular inclusion has been obtained in [START_REF] Amstutz | Topological asymptotic analysis of the Kirchhoff plate bending problem[END_REF].

7.2. Numerical illustrations. 7.2.1. One-dimensional problem. We consider the compliance functional associated to a second order one-dimensional equation, where, for 0 < a < 1/2, the source term f has the form:

f (x) = 2, 0 < x < a, 0, a ≤ x < 1.
The cost functional associated to the unperturbed problem reads

J 0 (u 0 ) = 1 0 f u 0 = 2 a 0 u 0 , with u 0 solution to    -u ′′ 0 (x) = 2, 0 < x < a, -u ′′ 0 (x) = 0, a ≤ x < 1, u 0 (0) = u 0 (1) = 0.
The expression of u 0 can be easily shown to be

u 0 (x) = -x 2 -a 2 x + 2ax, 0 < x < a, -a 2 (x -1), a ≤ x < 1.
The compliance associated to the perturbed problem reads

J ε (u ε ) = 1 0 f u ε = 2 a 0 u ε , with u ε solution to            -u ′′ ε (x) = 2, 0 < x < a, -u ′′ ε (x) = 0, a ≤ x < 1 2 -ε, -u ′′ ε (x) = 0, 1 2 + ε < x < 1, u ′ ε ( 1 2 -ε) = u ′ ε ( 1 2 + ε) = 0, u ε (0) = u ε (1) = 0.
This means that the domain is topologically perturbed by the introduction of a hole of size 2ε, with homogeneous Neumann boundary condition. The explicit solution is given by

u ε (x) =    -x 2 + 2ax, 0 < x < a, a 2 , a ≤ x < 1 2 -ε, 0, 1 2 + ε < x < 1.
The solutions u 0 and u ε are represented in Fig. 7.2.1 for a = 1/4. As we have already mentioned, this is a degenerate case. In fact, in this simple example the difference between J ε (u ε ) and J 0 (u 0 ) is explicitly given by a jump independent of ε, namely

J ε (u ε ) -J 0 (u 0 ) = a 4 .
This means that the cost functional J ε (u ε ) is not continuous with respect ε. Hence, the topological derivative for a Neumann hole is not defined. 7.2.2. Bi-Laplacian operator. Let us consider three balls B 1 , B a , B ε ∈ R 2 with centers at the origin and radii 1, a and ε, respectively, such that ε < a < 1. We consider the compliance functional associated to the bi-Laplacian operator with source term

f (x) = 8 if x ∈ B 1 \ B a , 0 if x ∈ B a .
The cost functional associated to the unperturbed problem reads

J 0 (u 0 ) = B1 f u 0 = 8 B1\Ba u 0 , with u 0 solution to        ∆ 2 u 0 = 8 in B 1 \ B a , ∆ 2 u 0 = 0 in B a , u 0 ∂ n u 0 = = 0 0 on ∂B 1 .
For the perturbed problem with an homogeneous Neumann condition on the boundary of a hole B ε the cost functional is

J ε (u ε ) = B1 f u ε = 8 B1\Ba u ε , with u ε solution to                ∆ 2 u ε = 8 in B 1 \ B a , ∆ 2 u ε = 0 in B a \ B ε , u ε ∂ n u ε = = 0 0 on ∂B 1 , ∆u ε ∂ n ∆u ε = = 0 0 on ∂B ε .
Using a polar coordinate system (r, θ), we find analytical expressions for both u 0 and u ε by separation of variables, as plotted in Fig. 2. Due to the axis-symmetry of the problems, their solutions can be written in terms of r only, as shown in Fig. 3. In this example the difference between J ε (u ε ) and J 0 (u 0 ) is again given by a jump independent of ε, namely

J ε (u ε ) -J 0 (u 0 ) = π a 4 -4a 2 log a -1 2 .
The cost functional J ε (u ε ) is not continuous with respect to ε at ε = 0, which confirms that this case is degenerate.

Generalization to elliptic systems

We explain here how the previous results can be generalized to differential systems. We restrict ourselves to homogeneous differential operators merely for notational simplicity. We concentrate on the main changes, that is, the expression of the polarization tensor. 8.1. General case. We consider now a vector field

u ε = (u 1 ε , ..., u N ε ) ∈ H m 0 (Ω) N solution of ij α,β Ω ρ ε a ij αβ D α u i ε D β η j dx = i f i , η i ∀η ∈ H m 0 (Ω) N .
By convention Latin indices, written as set {1, ..., }, whereas Greek n. The system coefficients (a ) are supposed to satisfy the following properties.

• Symmetry : it holds for every α, β, i, j 

a ij αβ = a ji βα . ( 8 
a ij αβ ξ α+β z i zj ≥ κ|ξ| 2m i |z i | 2 ∀(ξ, z) ∈ R n × C N . (8.3) 
Based on these assumptions the asymptotic analysis can be easily generalized, which is left to the reader. This leads to define the function H = (H 1 , ..., H N ), instead of (4.26), as the solution of

ij αβ R n ρ(y)a ij αβ D α H i (y)D β Φ j (y) dy = -(ρ 1 -ρ0 ) ij αβ ω a ij αβ D α v i 0 (x)D β Φ j (y) dy (8.4)
for every family of functions Φ 1 , ..., Φ N ∈ W m (R n )/P m-1 . By linearity, we have

H i = l γ D γ v l 0 (x)Ψ il γ , (8.5) 
with Ψ il γ ∈ W m (R n )/P m-1 solving, for each γ, l,

ij αβ R n ρa ij αβ D α Ψ il γ (y)D β Φ j (y) dy = -(ρ 1 -ρ0 ) j β ω a lj γβ D β Φ j (y) dy (8.6) for all Φ 1 , ..., Φ N ∈ W m (R n )/P m-1 . The polarization tensor (p ij αβ ) is defined by p ij αβ = |ω|(r -1)a ij αβ + k ij αβ , (8.7) 
with

k il αγ = ( ρ1 ρ0 -1) j β a ij αβ ω D β Ψ jl γ (y) dy. (8.8) 
Theorem 8.1. Suppose that the cost function J ε is such that (4.5) and (4.6) hold true for ϕ(ε) = ε n and g ε = g independent of ε, and that f, g are of regularity H s in a neighborhood of x, s > max(0, n 2 + 1m). Then we have

J ε (u ε ) -J 0 (u 0 ) = ε n   ρ0 ij αβ p ij αβ D α u i 0 (x)D β v j 0 (x) + δJ 1 + δJ 2   + o(ε n ).
8.2. Degenerate case. We introduce the family of piecewise constant functions ζ il αγ : R n → R defined by

ζ il αγ (x) =    - ρ1 -ρ0 ρ1 δ il αγ if x ∈ ω, 0 if x ∈ R n \ ω, (8.9) 
with δ il αγ = 1 if α = γ and i = l, δ il αγ = 0 otherwise. Assumption 5.2 is modified as follows.

Assumption 8.2. For any γ, l, there exist functions

Ψ il γ ∈ W m (R n )/P m-1 satisfying i α a ij αβ D α Ψ il γ = i ij αβ ζ il αγ ∀β, j. (8.10) 
We arrive at the following expression of the polarization tensor. 

Conclusion

In this work we have derived the general form of the topological asymptotic expansion for a wide range of linear elliptic operators of order 2m. We have also identified a class of degenerate problems, for which the closed formulation of the polarization tensor has been obtained. We have given a simple algebraic criterion to recognize the degenerate cases, and we have shown that a typical example of degenerate operator is the bi-Laplacian. As a consequence, the physical models whose state equations obey a PDE involving the bi-Laplacian will exhibit peculiar nucleation properties. By nucleation it is here meant changes of the physical properties of the body by removing and adding infinitesimal quantities of different materials with a view to the minimization of a cost function, usually taken as the energy of the model. As an example, heterogeneities in an elastic continuum can be modeled as small strain gradient perturbations, which in the scalar setting would mean an energy comprising a term of the form ǫ|∆u| 2 , with u stands for the displacement and ǫ a small parameter, and a state equation thereby involving ∆ 2 (see [START_REF] Francfort | Combined effects of homogenization and singular perturbations in elasticity[END_REF] where such a problem is treated in the framework of homogenization). Another example is provided by time-dependent phase-change models involving Cahn-Hilliard type equations; a recent application in geology which could also fit our setting has been numerically studied in [START_REF] Kuhl | Computational modeling of mineral unmixing and growth. An application of the Cahn-Hilliard equations[END_REF]. Finally we mention that the dislocation problem [START_REF] Van Goethem | Variation de forme pour une équation instationnaire du 4ème ordre dans un modèle de dislocations[END_REF] which involves the bi-Laplacian (as a simplified model for the incompatibility operator appearing in elasticity of dislocated elastic bodies) will be further analyzed with a view to the results developed in the present paper. |2q + n| r q+1 ∇u L 2 (B ′ a ) . Proof. Let υ ∈ S n , the unit sphere of R n . Integrating by parts yields

∞ a r 2q+n-1 u(rυ) 2 dr = - 2 2q + n ∞ a r 2q+n u(rυ)∇u(rυ).υdr ≤ 2 2q + n ∞ a r 2q+n |u(rυ)||∇u(rυ)|dr.
We obtain by the Cauchy-Schwarz inequality

∞ a r 2q+n-1 u(rυ) 2 dr ≤ 2 2q + n ∞ a r 2q+n-1 |u(rυ)| 2 dr 1/2 ∞ a r 2q+n+1 |∇u(rυ)| 2 dr 1/2 . This implies ∞ a r 2q+n-1 u(rυ) 2 dr ≤ 2 2q + n 2 ∞ a r 2q+n+1 |∇u(rυ)| 2 dr.
Next, we have

r q u 2 L 2 (B ′ a ) = Sn ∞ a r 2q+n-1 u(rυ) 2 drdυ ≤ 2 2q + n 2 Sn ∞ a r 2q+n+1 |∇u(rυ)| 2 drdυ = 2 2q + n 2 r q+1 ∇u 2 L 2 (B ′ a )
, which leads to the desired result.

Let δ ∈ (0, 1/2) be fixed. For every k ∈ N we introduce the weight functions as follows:

w k (x) = (1 + |x| 2 ) p k 2 (B.1) with p k =      0 if k = 0, -k -δ if k ≥ 1 and n = 1, 1 - n 2 -k -δ if k ≥ 1 and n ≥ 2. Lemma B.2. Let a > 0, B ′ a = R n \ B a , m ∈ N. For all k = 0, ..., m and every u ∈ D(B ′ a ), we have sup |α|=m-k w k D α u L 2 (B ′ a ) ≤ c k sup |α|=m D α u L 2 (B ′ a ) ,
where c k is a positive constant.

Proof. The result is obvious for k = 0, thus we assume that k ≥ 1. We treat first the case n ≥ . This norm is associated with an inner product ., . W m (A) , for which it is easily shown that W m (A) is a Hilbert space. We define W m 0 (A) as the closure of D(A) in W m (A). Let u ∈ W m (B ′ a ) and η be a smooth function such that η = 1 in B 2a and η = 0 in B ′ 3a . Then ηu ∈ H m (B ′ a ) and (1η)u ∈ W m (R n ). This allows us to define the normal trace of u on ∂B a of order j, j ≤ m -1, denoted by ∂ j n u. Also, one may prove by standard arguments (see e.g. [START_REF] Adams | Sobolev Spaces[END_REF]) that D(R n ) is dense in W m (R n ). This implies the following result. 

c 1 |u| H m (R n ) ≤ u H ≤ c 2 u W m (R n ) ∀u ∈ H.
Then, on the space H, the norms . H and . W m (R n ) are equivalent.

Proof. We must show that there exists a constant c 3 such that

u W m (R n ) ≤ c 3 u H .
By contradiction, we assume that there exists a sequence (u p ) ∈ H such that, for every p, The embedding of H m (B 3a ) into H m-1 (B 3a ) is compact and the sequence (u p ) is bounded in H m (B 3a ). We still denote by (u p ) a subsequence such that u p → w in H m-1 (B 3a ). Using Lemma B.2, (B.5) and the assumptions we get (1η)(u pu q ) W m (B ′ 2a ) ≤ c u pu q H + c u pu q H m-1 (B3a) . Moreover, the Poincaré inequality in H m 0 (B 3a ) together with (B.4) and the assumptions yield η(u pu q ) H m (B3a) ≤ c u pu q H + c u pu q H m-1 (B3a) .

Therefore, (ηu p ) and ((1η)u p ) are Cauchy sequences in H m (B 3a ) and W m (B ′ 2a ), respectively. Thus, there exist (v 1 , v 2 ) ∈ H m (B 3a ) × W m (B ′ 2a ) such that ηu p → v 1 in H m (B 3a ) and (1η)u p → v 2 in W m (B ′ 2a ). After summation, we infer u p → v := v 1 + v 2 in W m (R n ). By assumption, this limit holds also in H. From (B.3) we obtain a contradiction.

Let P m-1 be the space of polynomials of degree not greater than m -1. It is easily checked that P m-1 is a subspace of W m (R n ). The quotient space W m (R n )/P m-1 is endowed with the norm

u → u W m (R n )/Pm-1 = inf p∈Pm-1 u + p W m (R n ) , (B.6)
where u is an arbitrary representative of its class. Proposition B.4 implies that the seminorm H m (R n ) is an equivalent norm to u W m (R n ) on W m (R n )/P m-1 . This will be made clear in the following corollary, which is a restatement of Lemma 3.5, and whose proof is now given.

Corollary B.5. There exists c > 0 such that, for all u ∈ W m (R n ), 

u W m (R n )/Pm-1 ≤ c|u| H m (R n ) .

Assumption 5 . 2 .

 52 For any multi-index γ with |γ| = m, there exists a function Ψ γ ∈ W m (R n )/P m-1 satisfying |α|=m a αβ D α Ψ γ = |α|=m a αβ ζ αγ ∀β, |β| = m. (5.3) It immediately stems from Assumption 5.2, using (5.2), that Ψ γ solves (4.14). Hence (4.18) results in:

6. 1 .

 1 Preliminary estimates. As in the proof of Lemma 4.2, we set ṽε

Figure 1 .

 1 Figure 1. One-dimensional case: Solutions u 0 (x) and u ε (x) for a = 1/4.

Figure 3 .

 3 Figure 3. Bi-Laplacian case: profile of the solutions u 0 (r) and u ε (r ≥ 0.1) for a = 1/2.

w k D α u 2 L 2

 22 2. By induction from Lemma B.1, we infer for |β|= mk, r 1-n 2 -k-δ D β u L 2 (B ′ a ) ≤ c sup |α|=m r 1-n 2 -δ D α u L 2 (B ′ a ) ≤ ca 1-n 2 -δ sup |α|=m D α u L 2 (B ′ a ) .The desired estimate follows straightforwardly. Suppose now that n = 1. Again by induction from Lemma B.1, we obtain for|β| = mk r -k-δ D β u L 2 (B ′ a ) ≤ c sup |α|=m r -δ D α u L 2 (B ′ a ) ≤ ca -δ sup |α|=m D α u L 2 (B ′ a ) ,leading to the result.For any open subset A of R n we define the spaceW m (A) = u ∈ D ′ (A) | ∀k = 0, ..., m, |α| = mk ⇒ w k D α u ∈ L 2 (A) , (B.2)where the weights are given by (B.1). It is endowed with the norm u W m (A)

Lemma B. 3 .

 3 We haveW m 0 (B ′ a ) = u ∈ W m (B ′ a ) | ∂ j n u = 0 ∀j = 0, ..., m -1 . Proposition B.[START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF]. Let H be a closed subspace of W m (R n ) and . H be a norm on H such that, for some constants c 1 , c 2 >, it holds

u 3 )

 3 p W m (R n )Let η be defined as above. The Leibniz formula provides, for allv ∈ W m (B ′ a ), |ηv| H m (B3a) ≤ c|v| H m (B3a) + c v H m-1 (B3a) , (B.4) |(1η)v| H m (B ′ 2a ) ≤ c|v| H m (B ′ 2a ) + c v H m-1 (B3a) . (B.5)

Proof.

  By standard arguments of the calculus of variations the infimum in (B.[START_REF] Amstutz | Topological asymptotic analysis of the Kirchhoff plate bending problem[END_REF]) is attained at a unique point. The Euler-Lagrange equation applied to the problem with squared norm reads for the minimizerv := u + p v, p W m (R n ) = 0 ∀p ∈ P m-1 , which is equivalent to v, x α W m (R n ) = 0 ∀|α| ≤ m -1.(B.7) Therefore, W m (R n )/P m-1 can be identified with the subspace of the functions v ∈ W m (R n ) satisfying (B.7). In addition, the seminorm |.| H m (R n ) is a norm on this space. We then apply Proposition B.4 with H = W m (R n )/P m-1 and u H := |u| H m (R n ) . Remark B.6. It appears from inspection of the proof that Corollary B.5 remains true if R n is replaced by any open set containing the origin.

  1 , with ρ defined by (4.15). On the other hand, combining (4.14) and (4.16) results in

  Proposition 8.3 (Degenerate polarization tensor). If Assumption 8.2 is fulfilled, then we have

	p il αγ = |ω|(1 -	1 r	)a il αγ .	(8.11)
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Appendix A. Collectively compact operators

Let X be a Banach space and K be a subset of L(X), where L(X) is the set of bounded linear operators from X into itself. We say that K is collectively compact if the set {Kx, x ∈ X, x ≤ 1, K ∈ K} is relatively compact. The following result is a corollary of Theorem 1.6 of [START_REF] Anselone | Collectively compact operator approximation theory and applications to integral equations[END_REF]. A proof can be found in [START_REF] Amstutz | A semismooth Newton method for topology optimization[END_REF].

Theorem A.1. Let K be a collectively compact set of bounded linear operators of X. Assume further that K is pointwise sequentially compact, i.e., for every sequence (K n ) of K there exists a subsequence

Appendix B. Weighted and quotient Sobolev spaces

In this appendix we define the functional spaces which provide existence theorems in R n . The main result is found in Corollary B.5 which is the restatement of Lemma 3.5. Before arriving at this result several preliminary lemmas must be proved.

Let B a be the open ball centered at the origin and of radius a. We will denote by r = |x| the radial coordinate.

Lemma B.1. Let a > 0, B ′ a = R n \ B a and q ∈ (-∞, 1]. If 2q + n = 0, then it holds for all u ∈ D(B ′ a )