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Abstract

Identification of real-world systems is often applied in closed loop due to stability, performance or safety constraints. However,
in case of Linear Parameter-Varying (LPV) systems, closed-loop identification is not well-established despite the recent
advances in prediction error approaches. Building on the available results, the paper proposes the closed-loop generalization
of a recently introduced instrumental variable scheme for the identification of LPV-IO models with Box-Jenkins type of noise
model structures. Estimation under closed-loop conditions with the proposed approach is analyzed from the stochastic point
of view and the performance of the method is demonstrated through a representative simulation example.
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1 Introduction

Identification of physical or chemical systems is often re-
stricted to data gathered during closed-loop operation
due to stability, performance/economical or safety con-
straints. As the control loop itself introduces correlation
between the disturbances and the control signal, the sta-
tistically optimal (unbiased with minimal variance) es-
timation of the parameters of a chosen model structure
w.r.t. the data-generating system is an essentially dif-
ferent problem than in the open-loop setting. Hence in
the identification literature, especially in the linear time-
invariant (LTI) case, many approaches have been pro-
posed to provide well-applicable solutions in this prob-
lem setting. An overview of the recent developments in
the LTI case can be found in [16] and [6].

Identification of linear parameter-varying (LPV) mod-
els for systems operated in open loop has recently seen
significant improvements. The case of closed-loop LPV
model identification has however remained sparsely
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studied (see [5, 14]). The main difficulty in this system
class in terms of identification is that even if the signal
relations between the inputs u and outputs y of the
system are linear, these relations are allowed to change
over time as a function of a so-called scheduling variable
p : Z → P with P ⊆ R

np . This allows to describe a large
class of nonlinear/time-varying systems in an attractive
structure on which the well-established LPV control-
synthesis approaches, e.g. [11, 12], can be applied. On
the other hand, this varying-relation prevents the use of
crucial system theoretical relations, like transfer func-
tions and commutativity of operators, on which most
LTI closed-loop identification approaches are based. As
a consequence, only preliminary closed-loop methods
have been proposed in the literature without being able
to exploit the existing tools and knowledge available in
the LTI case. In [17], an approximation based LPV ex-
tension of a predictor subspace approach (PSBID) has
been introduced which is also applicable in a closed-
loop setting. In [3], also an approximation based LPV
extension of the CLOE algorithm (see [8]) has been in-
vestigated w.r.t. LPV output-error (OE) type of models.
In [1] and [4], a basic instrumental variable method has
been introduced. It is a clear indicator of the immature
state of this research direction that the stochastic prop-
erties of the estimation has only been analyzed in [4].
Unfortunately in [9], it has been shown recently that
the formulation of the one-step IV approach, proposed
in [4], does not allow to reach statistically optimal esti-
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mates due to the non-commutativity of certain filtering
operations. This highlights that up to now, no method
has been established which allows statistically optimal
estimation under a closed-loop setting especially with
general noise models like Box-Jenkins (BJ).

Based upon the available results of [1, 4] and using the
theoretical advancements of the LPV prediction error-
framework introduced in [14], we propose in this paper
a closed-loop extension of a recently developed IV ap-
proach for LPV-BJ models [9]. In this setting, the noise
vo affecting the sampled output measurement y(tk) is
assumed to have a rational spectral density which is al-
lowed to be unrelated to the actual process dynamics of
the data-generating system (general noise structure). As
a first step towards the case of a p-dependent noise, it
is also assumed that this rational spectral density does
not depend on p. A stochastic analysis of the proposed
closed-loop approach is provided, exploring the limita-
tions and the benefits of this estimation strategy. The
performance of the algorithm is also demonstrated on a
representative simulation example.

2 Problem description

Consider the data-generating LPV system So given in
the closed-loop setting of Fig. 1, where So is defined as:

Ao(pk, q
−1)χo(tk) =Bo(pk, q

−1)u(tk−d), (1a)

y(tk) = χo(tk) + vo(tk). (1b)

Here u(tk) is the input of the plant, pk is the value of
the scheduling variable p at sample time tk, χo is the
noise-free output, vo is the additive noise with bounded
spectral density, y is the noisy output of the system, d is
the delay, and q is the time-shift operator, i.e. q−iu(tk) =
u(tk−i). Ao(pk, q

−1) and Bo(pk, q
−1) are polynomials in

q−1 of degree na and nb respectively:

Ao(pk, q
−1) = 1 +

na∑

i=1

aoi (pk)q
−i, (2a)

Bo(pk, q
−1) =

nb∑

j=0

boj(pk)q
−j , (2b)

where the coefficients aoi and boj are real meromorphic

functions 2 with static dependence on p, i.e. dependence
only on the instantaneous value of p at time tk. It is
assumed that each aoi and boj is non-singular on P, thus
the solutions of So are well-defined and the process part
Go, defined by (1a), is completely characterized by the
coefficient functions {aoi }

na

i=1 and {boj}
nb
j=0. The noise vo is

assumed to be independent from p. Latter we will return
to the more general case of p-dependent noise models,
showing that in case of an IV-based estimation, violation
of this assumption does not lead to a biased estimate.

2 f : Rn → R is a real meromorphic function if f = g/h
with g, h analytic and h 6= 0.

r2(tk)
GoCo

r1(tk)

u(tk)

pk

eo(tk)

vo(tk)

χo(tk) y(tk)

Ho(q
−1)

Fig. 1. Closed-loop LPV system.

If vo has a rational spectral density, then the noise pro-
cess can be represented by an autoregressive moving av-
erage (ARMA) model:

vo(tk) = Ho(q)eo(tk) =
Co(q

−1)

Do(q−1)
eo(tk), (3)

where Co(q
−1) and Do(q

−1) 6= 0 are monic polynomi-
als with constant coefficients and with respective degree
nc and nd. The corresponding proper transfer function
Ho(q) is assumed to be stable and to have a stable in-
verse. In case Co(q

−1) = Do(q
−1) = 1, (3) defines an

OE noise model, however with Co(q
−1) 6= Do(q

−1), (3)
is general enough to represent BJ-type of noise models.
In terms of the closed-loop setting of Fig. 1, u(tk) =
r1(tk)+Co(r2(tk)−y(tk)), where Co is the operator form
of the controller and r1, r2 are reference signals. Note
that, as in many digital control systems, u is known (the
error introduced by the actuators can be modeled as an
output additive (p-dependent) noise due to the linearity
of the system). The controller can be any LTI, nonlinear
or LPV controller, under the assumptions that

• Co is a priori known;
• Co ensures BIBO stability of the closed-loop system
So for any p ∈ P

Z.

Next we introduce a model structure and parametriza-
tion for the identification of So, where, according to (1a-
b) and (3), the noise model and the process model are
parameterized separately. The proposed LPV-BJmodel,
denoted in the sequel as Mθ, is defined as:

A(pk, q
−1, ρ)χ(tk) =B(pk, q

−1, ρ)u(tk−d), (4a)

D(q−1, η)v(tk) =C(q−1, η)e(tk), (4b)

y(tk) = χ(tk) + v(tk), (4c)

with parameters θ = [ ρ⊤ η⊤ ] and with u(tk) = r1(tk)+

Co(r2(tk) − y(tk)). The process model part of Mθ, de-
noted by Gρ, is defined in terms of the LPV-IO represen-
tation (4a) where A and B are polynomials with order
na and nb respectively and with p-dependent coefficients
ai and bj parameterized as

ai(pk) = ai,0 +

nα∑

l=1

ai,lfl(pk), i = 1, . . . , na, (5a)

bj(pk) = bj,0 +

nβ∑

l=1

bj,lgl(pk), j = 0, . . . , nb. (5b)
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In this parametrization, {fl}
nα

l=1 and {gl}
nβ

l=1 are a pri-
ori chosen meromorphic functions of p bounded on P,
with static dependence, allowing the identifiability of
the model (e.g. linearly independent functions on P).
The associated model parameters ρ are stacked column-
wise: ρ = [ a1 . . . ana b0 . . . bnb

]⊤ ∈ R
nρ where

ai = [ ai,0 ai,1 . . . ai,nα
], bj = [ bj,0 bj,1 . . . bj,nβ

]
and nρ = na(nα + 1) + (nb + 1)(nβ + 1).

The noise-model part of Mθ, denoted by Hη, is de-
fined in terms of (4b) where C and D are monic
polynomials with order nc and nd respectively and
with constant coefficients ci and dj collected as
η = [ c1 . . . cnc d1 . . . dnd

]⊤ ∈ R
nη , where nη =

nc + nd. As (4b) is LTI, it can be represented by a
transfer function H(q, η) = C(q−1, η)/D(q−1, η). It is
further assumed that η ∈ Θη ⊂ R

nη such that H(z, η)
is stable (analytic in the exterior of the unit circle) and
has a stable inverse.

Introduce also G = {Gρ | ρ ∈ R
nρ} and H = {Hη | η ∈

R
nη}, as the collection of all process and noise models in

the form of (4a) and (4b). Then the model set, denoted
as M, takes the form

M =
{
(Gρ,Hη) | col(ρ, η) = θ ∈ R

nρ+nη
}
, (6)

corresponding to the set of candidate models in which
we seek the model that explains data gathered from So

the best under a given identification criterion.

Denote DN = {y(tk), u(tk), p(tk)}Nk=1 a data sequence
of So. In [9], it has been shown, that a one-step-ahead
output predictor ŷθ(tk|tk−1) can be formulatedw.r.t. the
considered model structure (4a-c) under the commonly
used assumption that noise-free observation of the se-
quence {pk, pk−1, . . .} is available. Recently it has been
proven that using estimated moments, such a predictor
can be formulated if p is observed up to an additive white
noise independent from vo [15]. However for the sake of
simplicity, we will only consider the previous case. These
results allow to formulate (in either case) the estima-
tion of θ, as the minimization of the one-step ahead pre-
diction error : εθ = y(tk) − ŷθ(tk|tk−1). This minimiza-
tion is formulated in terms of an identification criterion
W (DN , θ), like the least squares criterion

W (DN , θ) =
1

N

N∑

k=1

ε2θ(tk) =
1

N
‖εθ‖

2
ℓ2
, (7)

such that the parameter estimate is

θ̂N = arg min
θ∈R

nρ+nη

W (DN , θ). (8)

Based on the previous considerations, the identification
problem addressed in the sequel is defined as follows:

Problem 1 Given a discrete-time LPV data-generating
system So in the closed-loop setting of Fig. 1 with a priori

known stabilizing controller Co. Based on the LPV-BJ
model structureMθ defined by (4a-c) and a data set DN

collected from So, estimate the parameter vector θ as the
minimization of (7) under the following assumptions:

A1 So ∈ M.
A2 In the parametrization (5a-b) of A and B, {fl}

nα

l=1

and {gl}
nβ

l=1 are chosen such that Mθ is identifiable.
A3 DN is informative w.r.t. Mθ: if θ1 6= θ2 then Mθ1

andMθ2 lead to different prediction errors given DN .
A4 So is BIBO stable, i.e. for any bounded p ∈ P

Z and
u ∈ R

Z, the output of So is bounded [14].
A5 The closed-loop system with Co is BIBO stable.

In [9], a refined instrumental variable (RIV) based ap-
proach has been introduced to solve the estimation prob-
lem ofMθ in an open-loop setting. However, a major dif-
ference between the open-loop setting considered in [9]
and the closed-loop setting of Prob. 1 is the correlation
of u with eo due to the feedback loop. Therefore in the
following, we aim to solve the problem of determining a
suitable instrument that allows to developing the LPV-
RIV approach in the closed-loop case.

3 RIV approach for closed-loop LPV systems

In [9] it has been shown that reformulation of (4a-c)
as a multiple-input single-output (MISO) LTI model al-
lows an elegant solution of the filtering problem asso-
ciated with LPV-IV approaches. This reformulation is
necessary to avoid the problem of non-commutativity
of parameter-varying filters and hence required to solve
Prob. 1. Consequently, (4a) is rewritten as

χ(tk) +

na∑

i=1

ai,0χ(tk−i)

︸ ︷︷ ︸

F (q−1)χ(tk)

+

na∑

i=1

nα∑

l=1

ai,lfl(pk)χ(tk−i)
︸ ︷︷ ︸

χi,l(tk)

=

nb∑

j=0

nβ∑

l=0

bj,lgl(pk)u(tk−d−j
︸ ︷︷ ︸

)

uj,l(tk)

, (9)

where F (q−1) = 1 +
∑na

i=1 ai,0q
−i and g0(�) ≡ 1. Note

that in this way, the LPV-BJ model is rewritten as
a MISO system with (nb + 1)(nβ + 1) + nanα inputs
{χi,l}

na,nα

i=1,l=1 and {uj,l}
nb,nβ

j=0,l=0. F (q−1) does not depend

on pk, thus (9) and (4b-c) have the following LTI form:

y(tk) = −
na∑

i=1

nα∑

l=1

ai,l
F (q−1)

χi,l(tk)

+

nb∑

j=0

nβ∑

l=0

bj,l
F (q−1)

uk,j(tk) +H(q)e(tk). (10)

Note that (10) is equivalent with (4a-c), but it is not
a representation of the associated LPV system as it in-
cludes the lumped output variables in {χi,l}

na,nα

i=1,l=1 . Us-

ing (10), the estimation problem of the parameters can

3



be formulated as a linear regression which allows opti-
mal solution of (7) w.r.t. LPV-BJ models. To achieve
this solution, one possible way is to develop an extension
of the closed-loop refined instrumental variable (RIV)
approach of the LTI framework. Next we derive this ex-
tension, which, as we will see, provides an easily imple-
mentable iterative estimation scheme.

Rewrite (10) to the linear regression form:

y(tk) = ϕ⊤(tk)ρ+ ṽ(tk), (11)

where ṽ(tk) = F (q−1, ρ)v(tk) and

ϕ(tk) = [−y(tk−1) . . . −y(tk−na) −χ1,1(tk) . . .

−χna,nα
(tk) u0,0(tk) . . . unb,nβ

(tk) ]
⊤,

ρ= [ a1,0 . . . ana,0 a1,1 . . . ana,nα
b0,0 . . . bnb,nβ

]⊤.

Two difficulties still remain to obtain the minimum of
(7) based on (11): the regressor ϕ(tk) contains the un-
known terms {χi,l(tk)}

na,nα

i=1,l=0 and all of its elements are

corrupted with the colored noise v(tk). To resolve this
problem, an appropriate instrument ζ(tk) can be intro-
duced such that the estimate of ρ can be given as [13]:

ρ̂XIV(N) = arg min
ρ∈R

nρ

∥
∥
∥
∥
∥

[

1

N

N∑

k=1

L(q)ζ(tk)L(q)ϕ
⊤(tk)

]

ρ

−

[

1

N

N∑

k=1

L(q)ζ(tk)L(q)y(tk)

]∥
∥
∥
∥
∥

2

W

(12)

where ‖x‖2W = xTWx, with W a positive definite
weighting matrix and L(q) is a stable pre-filter. If
Go ∈ G, the estimate (12) is consistent under the fol-
lowing well-known conditions 3 :

C1 Ē{L(q)ζ(tk)L(q)ϕ⊤(tk)} is full column rank.
C2 Ē{L(q)ζ(tk)L(q)ṽ(tk)} = 0.

Moreover, the minimum variance estimator can be
achieved if [7, 13, 18]:

C3 W = I and ζ(tk) is chosen as the noise-free version
of (11) and is therefore defined in the LPV case as:

ζ(tk) =
[

−χ̊(tk−1) . . . −χ̊(tk−na ) −χ̊1,1(tk) . . .

−χ̊na,nα
(tk) ů0,0(tk) . . . ůnb,nβ

(tk)
]⊤

where ů and χ̊ are the signals from the auxiliary model
as presented in Fig. 2.

C4 Go ∈ G and nρ is equal to the minimal number of pa-
rameters required to represent Go with the considered
model structure.

3 The notation Ē{.} = limN→∞

1

N

∑
N

t=1
E{.} is adopted

from the prediction error framework of [10].

r2(tk)
Co

r1(tk)

ů(tk)

pk

χ̊(tk)
Go

Fig. 2. Auxiliary model

C5 L(q) is chosen as [9]:

L(q) =
D(q−1)

F (q−1)C(q−1)
. (13)

Full column rank of Ē{L(q)ζ(tk)L(q)ϕ⊤(tk)} is ensured
by the informativity of the data set (A3). Note that con-
ditions about informativity w.r.t. LPV-BJ model struc-
tures is in the focus of current research (see [2, 4, 14] for
results in the ARX case). To fulfill C1 under A3, the dis-
cussion can be found in [13]. It is also important to note
that in a practical situation none of F (q−1, ρ), C(q−1, η),
D(q−1, η) or {ai,l(ρ)}

na,nα

i=1,l=0, {bj,l(ρ)}
nb,nβ

j=0,l=0 is known a
priori. Therefore, the RIV estimation normally involves
an iterative (or relaxation) algorithm in which, at each
iteration, an ‘auxiliary model’ is used to generate the in-
strumental variables (which guarantees C2), as well as
the associated pre-filters. Convergence of such an iter-
ative RIV algorithm has not been proven so far and is
only empirically assumed [19].

Based on the previous considerations, the iterative
scheme of the RIV algorithm can be extended to the
closed-loop LPV case as described by Algorithm 1.

Based on a similar concept, the so-called simplified LPV-
CLRIV (LPV-CLSRIV) method, can also be developed
for the estimation of LPV-OE models. This method is
based on a model structure (4a-c) with C(q−1, η) =
D(q−1, η) = 1 and consequently, Step 7 of Algorithm 1
can be skipped.

Remark 1 During the formulation of the approach it
has been assumed that vo is independent from p (see (3)).
However, to have a general noise model in the LPV set-
ting it is necessary to consider p-dependence of the noise
as has been pointed out in [14]. However the RIV setting,
even using an OE type of noise model (like in the SRIV
case), leads to unbiased estimates also in the case when
the assumed noise model is incorrect (or correlated with
p). The role of a more accurate noise model in this set-
ting is to lower the variance of the resulting estimates.
This explains why using a general BJ structure is impor-
tant to increase the accuracy of the RIV method. How-
ever in the LPV case, allowing the noise model to be also
p-dependent not only makes the estimation problem more
difficult from the filtering point of view, but also increases
significantly the number of parameters to be estimated.
This results in a trade-off problem, where the simple es-
timation scheme proposed in this paper provides an at-
tractive and practically applicable approach. Finding an

4



Algorithm 1 LPV-CLRIV

1: set τ = 0 and let θ̂(0) = [ (ρ̂(0))⊤ (η̂(0))⊤ ]⊤ be an

initial parameter estimate given by the least square
(LS) approach (ARX estimate of Mθ).

2: repeat
3: compute an estimate of χ(tk) via

A(pk, q
−1, ρ̂(τ))χ̂(tk) = B(pk, q

−1, ρ̂(τ))u(tk−d),

where Gρ̂(τ) is assumed to be stable (A5) and com-

pute {χ̂i,l(tk)}
na,nα

i=1,l=0 according to (9).
4: compute the estimated filter:

L̂(q−1, θ̂(τ)) =
D(q−1, η̂(τ))

C(q−1, η̂(τ))F (q−1, ρ̂(τ))

and the filtered signals {uf
j,l(tk)}

nb,nβ

j=0,l=0, yf(tk)

and {χ̂f
i,l(tk)}

na,nα

i=1,l=0.
5: build the estimated filtered regressor as:

ϕ̂f(tk) = [−yf(tk−1) . . . −yf(tk−na ) −χ̂f
1,1(tk)

. . .−χ̂f
na,nα

(tk) uf
0,0(tk) . . . uf

nb,nβ
(tk) ]

⊤

and compute the filtered instrument ζ̂f(tk) by sim-
ulating Gρ̂(τ) according to Fig. 2:

ζ̂f(tk) = [− ˆ̊χf(tk−1) . . . − ˆ̊χf(tk−na ) − ˆ̊χf
1,1(tk)

. . .− ˆ̊χf
na,nα

(tk) ˆ̊uf
0,0(tk) . . . ˆ̊uf

nb,nβ
(tk) ]

⊤

6: With W = I and L̂(q−1, θ̂(τ)) (according to C3-
C5), compute the solution of (12) via

ρ̂(τ+1)=

[

1

N

N∑

k=1

ζ̂f(tk)ϕ̂
⊤
f (tk)

]−1
N∑

k=1

1

N
ζ̂f(tk)yf(tk).

7: compute the estimate of the noise signal v as

v̂(tk) = y(tk)− χ̂(tk, ρ̂
(τ)).

Based on v̂, estimation of η̂(τ+1) follows using e.g.
the ARMA estimation algorithm of the MATLAB iden-
tification toolbox (an IV approach can also be used
for this purpose, see [19]).

8: increase τ by 1
9: until θ(τ) has converged

IV-based estimation scheme for p-dependent BJ models,
which preserves the simplicity of the proposed approach,
could lead to further decrease of the variance of the esti-
mates and hence it is in the focus of future research.

4 Simulation Example

In the following example we aim to demonstrating the
performance of proposed closed-loop RIV scheme on
a relevant simulation example. In this demonstration,

we will focus on estimation under different noise condi-
tions/models, hence the model structure of the process
part is assumed to be known.

Consider the example of a mass connected to a spring
and a varying damper depicted in Fig. 3. This problem
is one of the typical phenomena occurring in the motion
control of many mechatronic systems like in active sus-
pension. Denote x the position (in [m]) of the mass m
(in [kg]), ks > 0 the stiffness of the spring and cd > 0
the varying damping. Introduce F as the force (in [N])
acting on the mass m. Then in continuous time (CT),
the behavior of the system is defined by:

d

dt

(

m
d

dt
x(t)

)

= F (t)− ksx(t) − cd(t)
d

dt
x(t). (14)

By considering F (t) as the input u(t), x(t) as the output
y(t) and p(t) : R → [0, 1] as the scheduling variable such

that cd(t) = c
(0)
d +c

(1)
d p(t), (14) can be rewritten as a CT-

LPV system. By using a simple backward Euler type of
discretization in a zero-order-hold setting with sampling
period Td > 0, this LPV system can be formulated as a
discrete-time (DT) LPV system:

y(tk) =
Tdc

(1)

d
pk+Tdc

(0)

d
+2m

L(pk)
y(tk−1)−

m
L(pk)

y(tk−2)

+
T 2
d

L(pk)
u(tk) (15)

where u(tk), y(tk), pk denote the sampled signals
of F (t), x(t), and p(t) respectively and L(pk) =

Tdc
(1)
d pk + Tdc

(0)
d +m+ ksT

2
d . To simplify the problem,

approximate 1
L

by its 1st-order Taylor approximation
at the mid-point of P, i.e. at pk = 0.5:

1

L(p)

∣
∣
∣
∣
p=0.5

≈
1

τ1
2 + τ0

−
τ1

( τ12 + τ0)2
(p− 0.5), (16)

where τ0 = Tdc
(0)
d +m+ksT

2
d and τ1 = Tdc

(1)
d . Then the

resulting DT-LPV representation reads as

y(tk) = −
(
a10 + a11pk + a12p

2
k

)
y(tk−1)−

(
a20 + a21pk

)
y(tk−2) +

(
b00 + b01pk

)
u(tk), (17)

where a11 = −τ ′Tdc
(1)
d + τ ′′(Tdc

(0)
d + 2m), a10 =

−τ ′(Tdc
(0)
d + 2m), a12 = τ ′′Tdc

(1)
d , a20 = τ ′m,

a21 = −τ ′′m, b00 = τ ′T 2
d , b01 = −τ ′′T 2

d with
τ ′ = 2

τ1+2τ0
+ 2τ1

(τ1+2τ0)2
and τ ′′ = 4τ1

(τ1+2τ0)2
.

Consider (15) as Go in the closed loop setting of Fig.
1 with parameters Td = 0.05s, m = 0.01, ks = 0.85,

c
(1)
d = 0.5, c

(0)
d = 0.5. To control the motion of this

system an LPV-PI controller Co has been designed:

u(tk) = u(tk−1) +KC(pk)
(
w(tk)− w(tk−1)

)

+
KC(pk)Td

TI(pk)
w(tk), (18)

5
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Fig. 3. Mass-spring-damper system with varying damping.

where w(tk) = r(tk)− y(tk), KC(pk) = 3.33 + 0.99pk +
2.06p2k and TI(pk) = 0.225+0.215pk−0.09p2k. Addition-
ally, a BJ type of noise v is added to the output. Conse-
quently the data generating system can be expressed:

So







Ao(q, pk) = 1 + ao1(pk)q
−1 + ao2(pk)q

−2

Bo(q, pk) = bo0(pk)

Ho(q) =
1

1− 0.5q−1 − 0.2q−2

(19)

where v(tk) = Ho(q)eo(tk), eo(tk) ∈ N (0, σ2
e ) and

ao1(pk) =−1.135− 0.1738pk + 0.2538p2k, (20a)

ao2(pk) = 0.2523− 0.1015pk, (20b)

bo0(pk) = 0.0631− 0.0254pk. (20c)

In the sequel, both the scheduling signal p and the in-
put r(tk) are considered as white noises with uniform
distributions U(0.05, 0.95) and U(−0.5, 0.5) respectively.
Realizations of these signals with length N = 2000 are
used to generate data sets DN of So. To demonstrate
the efficiency of the presented method, the proposed
approach is compared to the conventional least-squares
(LPV-LS) method (see [2]) and also to the direct non-
linear minimization of the least-squares criteria (7) (NL-
PEM) w.r.t. the LPV-BJ model. The latter approach
is computed via the LSQNONLIN algorithm of the opti-
mization toolbox in MATLAB. Note that the NL-PEM ap-
proach provides statistically optimal results in case the
model structure is optimally chosen and the nonlinear
optimization succeeds to find the global minimum of (7)
(depending on the initialization). Therefore to use the
NL-PEM as a base-line result for assessing the perfor-
mance of the IV approach, it is initialized with the true
parameters and hence the provided estimates can be con-
sidered optimal.

The LPV-LS method assumes an LPV-ARX type of
structure defined in this case as:

MLPV−ARX

θ







A(pk, q
−1, ρ) = 1 + a1(pk)q

−1 + a2(pk)q
−2

B(pk, q
−1, ρ) = b0(pk)

H(pk, q, ρ) = A†(pk, q
−1, ρ)

where A† is the adjoint of A and

a1(pk) = a1,0 + a1,1pk + a1,2p
2
k, (21a)

a2(pk) = a2,0 + a2,1pk, (21b)

b0(pk) = b0,0 + b0,1pk. (21c)

The proposed closed-loop LPV Refined Instrumen-
tal Variable method (LPV-CLRIV) and the NL-PEM
method are based on the LPV-BJ model structure:

MLPV−BJ

θ







A(pk, q
−1, ρ) = 1 + a1(pk)q

−1 + a2(pk)q
−2

B(pk, q
−1, ρ) = b0(pk)

H(pk, q, η) =
1

1 + d1q−1 + d2q−2

with a1(pk), a2(pk), b0(pk), b1(pk) as given in (21a-c),
and hence represent the situation So ∈ M.

The robustness of the proposed and existing algorithms
are investigated with respect to different signal-to-noise

ratios : SNR = 10 log
Pχ̊o

Pvo
, where Pχo and Pvo are the av-

erage power of the signals χo and vo respectively. To pro-
vide representative results, a Monte Carlo simulation of
NMC = 200 runs with new noise realizations is accom-
plished at SNR levels: 18dB, 13dB and 8dB.

Table 1 shows the norm of the bias (BN) ||ρo − Ē(ρ̂)||ℓ2
and variance norm (VN) ||Ē(ρ̂− Ē(ρ̂))||ℓ2 of the esti-
mated parameter vector w.r.t. the process part, where
Ē is the mean operator over the Monte Carlo simula-
tion. The table also displays the mean number of itera-
tions (Nit) the algorithms needed to converge to the esti-
mated parameter vector. Table 1 demonstrates that the
LPV-CLRIVmethod is unbiased according to the theoret-
ical results, while the LPV-LS method exhibits a con-
siderable bias. For SNR down to 8dB, the LPV-CLRIV
achieves a lower variance for ρ̂ than the LPV-LSmethod.
Moreover, the achieved variance is close to result of the
statistically optimal NL-PEM estimates.

Table 1
Bias and variance results using the full model structure
MLPV−BJ

θ
.

Method 18dB 13dB 8dB
LPV-LS BN 0.0849 0.2158 0.4134

VN 0.0752 0.1232 0.1876

NL-PEM BN 40e-04 71e-04 0.0138
VN 0.0464 0.0819 0.1393

LPV BN 39e-04 62e-04 0.0103
CLRIV VN 0.0505 0.0922 0.1638

Nit 9 12 12

To show the advantage of the proposed IV method w.r.t.
NL-PEM approach, consider a more realistic scenario
when the model structure of the noise is unknown. Thus,
identification of So is consideredwith the following LPV-
OEmodel structure (corresponding to Go ∈ G,Ho /∈ H):

MLPV−OE

θ







A(pk, q
−1, ρ) = 1 + a1(pk)q

−1 + a2(pk)q
−2

B(pk, q
−1, ρ) = b0(pk)q

−1 + b1(pk)q
−2

H(pk, q, η) = 1

6



This model is identified using the proposed simplified
closed-loop RIV approach (LPV-CLSRIV) and the NL-
PEM method. The results are presented in Table 2. It
appears that the NL-PEM is affected by the incorrect
structure of the noise model both in terms of bias and
variance, while the proposed LPV-CLSRIVmethod only
suffers from a mild variance increase (remaining close
to the LPV-LS variance) but remains unbiased. Conse-
quently, this representative example suggests that the
proposed method is robust to the modeling error on the
noise and displays a better bias/variance trade-off.

Table 2
Bias and variance results using the inaccurate model struc-
ture MLPV−OE

θ
.

Method 18dB 13dB 8dB
LPV-LS BN 0.0849 0.2158 0.4134

VN 0.0752 0.1232 0.1876

NL-PEM BN 0.010 0.027 0.072
VN 0.0621 0.1069 0.1742

LPV BN 34e-04 59e-04 0.0134
CLSRIV VN 0.0612 0.1085 0.2124

Nit 13 15 18

5 Conclusion

In this paper, a closed-loop LPV-RIV approach is intro-
duced to provide an efficient solution for the closed-loop
identification of LPV systems with Box-Jenkins type of
noise models. The approach is formulated with the as-
sumption of prior knowledge of the controller but with-
out any restriction on its structure. It is shown that un-
der given conditions the proposed method provides con-
sistent estimates. The performance of the approach is
demonstrated on a representative example pointing out
that its particular advantage is being robust to noise and
modeling errors.
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