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ON L2 SOLVABILITY OF BVPS FOR ELLIPTIC SYSTEMS

PASCAL AUSCHER, ALAN MCINTOSH, AND MIHALIS MOURGOGLOU

Abstract. In this article we prove solvability results for L2 boundary value prob-
lems of some elliptic systems Lu = 0 on the upper half-space R

n+1
+ , n ≥ 1, with

transversally independent coefficients. We use the first order formalism introduced
by Auscher-Axelsson-McIntosh and further developed with a better understanding
of the classes of solutions in the subsequent work of Auscher-Axelsson. The inter-
esting fact is that we prove only half of the Rellich boundary inequality without
knowing the other half.

1. Introduction

The goal of this paper is to study Rellich type estimates for some elliptic systems
by using the first order formalism introduced in [3].
We begin by recalling the classical Lax-Milgram existence theorems of variational

(or energy) solutions for divergence form second order partial differential equations
and make clear how we understand them in unbounded domains. It is well-known
that both Neumann and regularity problems have unique solutions in the energy
class. We reformulate this using the DB formalism in order to represent these solu-
tions via a semi-group. We then obtain factorisations of the Dirichlet to Neumann
map and of its inverse in Ḣ−1/2 topologies which are related to (abstract) bound-
ary layer potentials. This part is completely general and true for any such elliptic
system.
In the last part, we assume that the coefficients are block triangular (see below

for definition). Although such an assumption is rather restrictive, it brings up a
phenomenon which we think interesting on its own. Using these factorisations, we
prove that, in the triangular situation which corresponds to making the conormal
derivative proportional to the transversal derivative, the Neumann to Dirichlet map
is bounded in the L2 topology, that is, solutions (we shall make clear the meaning
of solutions) satisfy half of the boundary Rellich estimate

‖∇tanu‖2 ≤ C‖∂Au‖2

which implies that the Neumann problem with L2 data is solvable. For the adjoint
situation, it is the Dirichlet to Neumann map that is bounded on L2, hence the
opposite Rellich inequality for solutions

‖∂Au‖2 ≤ C‖∇tanu‖2

holds so that the regularity problem with L2 data is solvable. In each case, we do
not know about boundedness of the inverse, that is, we do not know the other half
of the Rellich estimate (and we do not expect it by any means) which is the alluded
to phenomenon: usually Rellich estimates are proved both ways. We also show that
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the Dirichlet problem with L2 data is solvable in the same block triangular situation
as for the Neumann problem.
We remark that the conjunction of the two situations is the block-diagonal case

for which
‖∇tanu‖2 ≈ ‖∂Au‖2

is known to be equivalent to the Kato square root estimate [4].
As the reader might notice, a feature of our proof is the use of one equivalent

formulation of the Kato square root estimate (for an auxiliary operator) which shows
a tight connection between Rellich estimates and Tb technology.
In a subsequent paper of two of us (the first and third named author) with S.

Hofmann, Neumann solvability results for Hardy space data are obtained in the
triangular situations of this paper in the case of systems of such pde’s satisfying the
De Giorgi regularity condition.

Acknowledgments. Auscher thanks the Mathematical Science Institute of the
Australian National University for hospitality and support where this work started.
McIntosh acknowledges support from the Australian Government through the Aus-
tralian Research Council. Mourgoglou was supported by the Fondation Mathémati-
que Jacques Hadamard and thanks the University Paris-Sud for hospitality. We also
thank Steve Hofmann and Andreas Rosén for discussions pertaining to this work.

2. notation

The system of equations is

(1) (Lu)α(t, x) =
n∑

i,j=0

m∑

β=1

∂i

(
Aα,βi,j (x)∂ju

β(t, x)
)
= 0, α = 1, . . . , m

in R
1+n
+ = (0,∞)× Rn, where ∂0 =

∂
∂t

and ∂i =
∂
∂xi

, if i = 1, . . . , n. We assume

(2) A = (Aα,βi,j (x))
α,β=1,...,m
i,j=0,...,n ∈ L∞(Rn;L(C2m)),

and that A is strictly accretive on the subspace H0 of L2(R
n;C(1+n)m) defined by

(fαj )j=1,...,n is curl free in Rn for all α, that is there exists λ > 0 such that for all

f ∈ H0

(3)
n∑

i,j=0

m∑

α,β=1

∫

Rn

Re(Aα,βi,j (x)f
β
j (x)f

α
i (x))dx ≥ λ

n∑

i=0

m∑

α=1

∫

Rn

|fαi (x)|
2dx.

The system (1) is always considered in the sense of distributions with weak solu-
tions, that is, H1

loc solutions in the particular domain under consideration.
We stress that our results are valid for any m but set for notational simplicity

m = 1 from now on. In this case, the accretivity condition above is equivalent to
the usual pointwise accretivity condition

Re

n∑

i,j=0

Ai,j(x)ξjξi ≥ λ

n∑

i=0

|ξi|
2.

It is convenient to write A in the block form

A(x) =

[
a(x) b(x)
c(x) d(x)

]
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where a is scalar-valued, b, c vector-valued and d n × n matrix-valued. Call A the
set of 2× 2 block matrices A with these properties.
All our estimates in this article depend only on ellipticity constants Λ = ‖A‖∞

and the largest λ in the accretivity inequality (3). For non negative quantities a, b,
the notation a . b means a ≤ Cb where C is a constant depending on the parameters
at hand. The notation a ≈ b means both a . b and b . a.

3. Energy solutions

In this section we recall the usual construction of variational or energy solutions.
Although this is fairly classical and mostly follows [3], we need to stress a few points
and set up some notation. This uses the homogeneous Sobolev space Ḣ1(R1+n

+ ) of
u ∈ L2

loc(R
1+n
+ ) such that ∇t,xu ∈ L2(R1+n

+ ), equipped with the semi-norm ‖u‖2
Ḣ1

:=∫∫
R
1+n

+

|∇t,xu|
2 dtdx (note that we could have supposed u ∈ D′(R1+n

+ ) as it is not

hard to check that u can be identified with a L2
loc(R

1+n
+ ) function when ∇u ∈ L2).

This is a Banach space modulo constants.

Lemma 3.1. C∞
0 (R1+n

+ ) is dense in Ḣ1(R1+n
+ ). The trace on Rn is bounded from

Ḣ1(R1+n
+ ) onto the homogoneous Sobolev space Ḣ1/2(Rn), which we define as the

closure of C∞
0 (Rn) for the semi-norm

(∫
Rn |ξ||f̂(ξ)|

2 dξ
)1/2

(with f̂ designating the

Fourier transform).

Proof. Once the density is shown, the trace result is classical. Let u ∈ Ḣ1(R1+n
+ ).

As for any compact subset K of Rn and 0 < t0 < t1 <∞,
∫

K

|u(t1, x)− u(t0, x)|
2 dx ≤ (t1 − t0)

∫∫

R
1+n

+

|∂tu(t, x)|
2 dtdx,

u extends to an element u ∈ L2
loc(R

1+n
+ ). By the reflection principle, we can extend

u to an element in Ḣ1(R1+n) which we still call u. We claim we can find a sequence
uk of L2(R1+n) functions with compact support that converges to u in Ḣ1(R1+n

+ ).
Indeed, by Mazur’s lemma, it suffices to have a sequence with weak convergence,
that is such that ∇uk → ∇u weakly in L2. It is easy to see using Poincaré inequality,
and this is where we need to know a priori that u ∈ L2

loc, that uk = (u− ck)ϕk has
this property when ck is the mean of u on the ball B(0, 2k+1) and ϕk(x) = ϕ(2−kx)
with ϕ is a smooth function that vanishes outside B(0, 2) and that is 1 on B(0, 1).
Finally, it suffices to mollify this sequence to conclude. �

Theorem 3.2. Given ℓ ∈ Ḣ−1/2(Rn), there exists u ∈ Ḣ1(R1+n
+ ), unique up to a

constant, such that
∫∫

R
1+n

+

A∇u · ∇φ dtdx = 〈ℓ, ϕ〉, for any φ ∈ Ḣ1(R1+n
+ ) with trace

ϕ. This function u is a weak solution of Lu = 0 in R
1+n
+ . We define the conormal

derivative of u at the boundary to be ∂νAu|t=0 = −ℓ (we use the inward unit normal
convention).

We say that u is the energy solution of the Neumann problem for Lu = 0 with
Neumann data −ℓ.

Proof. This is just the Lax-Milgram theorem in the Hilbert space Ḣ1(R1+n
+ )/C using

that Ḣ−1/2(Rn) is the dual space of Ḣ1/2(Rn). �
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Theorem 3.3. Given f ∈ Ḣ1/2(Rn), there exists v ∈ Ḣ1(R1+n
+ ), unique up to

a constant, such that Lv = 0 in R
1+n
+ and v|t=0 = f with equality in Ḣ1/2(Rn).

Furthermore, there exists ℓ ∈ Ḣ−1/2(Rn) such that
∫∫

R
1+n

+

A∇u ·∇φ dtdx = 〈ℓ, ϕ〉 for

any ϕ ∈ Ḣ1/2(Rn) and any extension φ ∈ Ḣ1(R1+n
+ ) of ϕ.

We say that v is the energy solution for the regularity problem Lv = 0 with data
∇xf and we have ∂νAv|t=0 = −ℓ.

Proof. Pick an extension w ∈ Ḣ1(R1+n
+ ) of f . Let Ḣ1

0 (R
1+n
+ ) be the subspace of

Ḣ1(R1+n
+ ) consisting of all u with constant trace on Rn (alternately this is the closure

of C∞
0 (R1+n

+ ) in Ḣ1(R1+n
+ )). By the Lax-Milgram theorem, there exists a unique

u ∈ Ḣ1
0 (R

1+n
+ ) solving

∫∫

R
1+n

+

A∇u · ∇φ dtdx = −

∫∫

R
1+n

+

A∇w · ∇φ dtdx

for all φ ∈ Ḣ1
0 (R

1+n
+ ). Then v = u+ w is the solution.

Next, the integral
∫∫

R
1+n

+

A∇u · ∇φ dtdx depends only on the trace modulo con-

stants of φ ∈ Ḣ1(R1+n
+ ). Thus, the map ϕ 7→

∫∫
R
1+n

+

A∇u · ∇φdtdx is bounded from

Ḣ1/2(Rn) to C and this defines ℓ. �

Observe that ∇x is injective with closed range from Ḣ1/2(Rn) into Ḣ−1/2(Rn;Cn).

We set Ḣ
−1/2
‖ the range of this map and for a reason that will become clear later also

set Ḣ
−1/2
⊥ = Ḣ−1/2(Rn). By a Fourier transform argument, one sees that Ḣ

−1/2
‖ =

R(Ḣ
−1/2
⊥ ), whereR = ∇(−∆)−1/2 is the array of Riesz transforms on Rn (the Hilbert

transform if n = 1) and ∆ is the ordinary self-adjoint Laplace operator on L2(Rn).
With this notation, one defines the Neumann to Dirichlet map

(4) ΓANDℓ = ∇xu|t=0, ℓ ∈ Ḣ
−1/2
⊥

where u is the energy solution of the Neumann problem for Lu = 0 with Neumann
data −ℓ and the Dirichlet to Neumann map

(5) ΓADNg = ∂νAv|t=0, g ∈ Ḣ
−1/2
‖ ,

where v is the energy solution of Lv = 0 of the regularity problem with data g.

Theorem 3.4. ΓAND is a bounded and invertible map from Ḣ
−1/2
⊥ onto Ḣ

−1/2
‖ with

inverse ΓADN .

The proof is an obvious consequence of the above results with our definitions. We
have ΓAND(∂νAu|t=0) = ∇xu|t=0 and ΓADN(∇xu|t=0) = ∂νAu|t=0 for any energy solution
u in the upper half-space of Lu = 0.
We finish this section with a standard result.

Lemma 3.5. Let u ∈ Ḣ1(R1+n) be a solution of Lu = 0 in R1+n. Then u = 0
(modulo constants).

Proof. By definition, we have
∫∫

R1+n

A∇u · ∇φ dtdx = 0
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for all φ ∈ C∞
0 (R1+n), hence for all φ ∈ Ḣ1(R1+n) by density as in Lemma 3.1. We

conclude taking φ = u and using the accretivity of A. �

4. The first order formalism

Following [3] and [1], we can characterize weak solutions u to the divergence form
equation (1), by replacing u by its conormal gradient ∇Au as the unknown function.
More precisely (1) for u is replaced by (7) for

F (t, x) = ∇Au(t, x) =

[
∂νAu(t, x)
∇xu(t, x)

]
,

where ∂νAu := (A∇t,xu)⊥, that is the first component of A∇t,xu. This is the inward
conormal derivative of u for the upper half-space and the outward conormal deriva-

tive for the lower half-space. Here we use the notation v =

[
v⊥

v‖

]
for vectors in C1+n,

where v⊥ ∈ C is called the scalar part and v‖ ∈ Cn the tangential part of v. For
example, ∂tu = (∇t,xu)⊥ and ∇xu = (∇t,xu)‖.

Proposition 4.1. The pointwise transformation

(6) A 7→ Â :=

[
1 0
c d

] [
a b
0 1

]−1

=

[
a−1 −a−1b
ca−1 d− ca−1b

]

is a self-inverse bijective transformation of the set of matrices in A.
For a pair of coefficient matrices A = B̂ and B = Â, the pointwise map ∇t,xu 7→

F = ∇Au gives a one-one correspondence, with inverse F 7→ ∇t,xu =

[
(BF )⊥
F‖

]
, be-

tween gradients of weak solutions u ∈ H1
loc(R

1+n
+ ) to (1) and solutions F ∈ L2

loc(R
1+n
+ ;C1+n)

of the generalized Cauchy–Riemann equations

(7) ∂tF +

[
0 divx

−∇x 0

]
BF = 0, curlxF‖ = 0,

where the derivatives are taken in the R
1+n
+ distributional sense.

This transformation was introduced in [3] and the proposition is proved in this
generality in [1]. We shortly review the L2 theory in [1]. Denote byD the self-adjoint
operator on H = L2(Rn;C1+n) defined by

D :=

[
0 divx

−∇x 0

]
, D(D) =

[
D(∇)
D(div)

]
.

The closure of the range of D is the set of F ∈ H such that curlxF‖ = 0, that

is R(D) = H0. It is shown in [7] that the operators DB and BD with respective
domains B−1

D(D) and D(D) and ranges R(D) and BR(D) are bi-sectorial operators
with bounded holomorphic functional calculi on the closure of their range H0 and
B−1H0. Observe the similarity relation

(8) B(DB) = (BD)B on D(DB)

that allows to transfer functional properties between DB and BD. In particular, if
sgn(z) = 1 for Re z > 0 and −1 for Re z < 0, the operators sgn(DB) and sgn(BD)
are well-defined bounded involutions on H0 and B−1H0 respectively. One defines
the spectral spaces H0,±

DB = N(sgn(DB) ∓ I) and H0,±
BD

= N(sgn(BD) ∓ I). They
topologically splitH0 andB−1H0 respectively. The restriction ofDB to the invariant
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space H0,+
DB is sectorial of type less than π/2, hence it generates an analytic semi-

group e−tDB, t ≥ 0, on it. Similarly, the restriction of BD to the invariant space
H0,+
BD

is sectorial of type less than π/2, hence it generates an analytic semi-group

e−tBD, t ≥ 0, on H0,+
BD

.

Theorem 4.2. Let u ∈ H1
loc(R

1+n
+ ). Then,

(1) u is a weak solution of Lu = 0 with ‖Ñ(∇u)‖2 < ∞ if and only if there
exists F0 ∈ H0,+

DB such that ∇Au = e−tDBF0. Moreover, F0 is unique and

‖F0‖2 ≈ ‖Ñ(∇u)‖2.
(2) u is a weak solution of Lu = 0 with

∫∫
R
1+n

+

t|∇t,xu|
2dtdx < ∞ if and only if

there exists F̃0 ∈ H0,+
BD

such that ∇Au = De−tBDF̃0. Moreover, F̃0 is unique,

‖F̃0‖2 ≈ (
∫∫

R
1+n

+

t|∇t,xu|
2dtdx)1/2 and u is given by u = −(e−tBDF̃0)⊥ + c for

some constant c ∈ C.

The if part was obtained in [3] and the only if part in [1, Theorems 8.2 and 9.2].

Here Ñ(g) is the Kenig-Pipher modified non-tangential function ‖Ñ(∇u)‖2, where

Ñ(g)(x) := sup
t>0

t−(1+n)/2‖f‖L2(W (t,x)), x ∈ R
n,

with W (t, x) := (c−1
0 t, c0t)×B(x; c1t), for some fixed constants c0 > 1, c1 > 0.

Remark 4.3. Although we do not need that, the same proof shows when coefficients

are t-independent that for the equivalence of (1) to hold one could replace ‖Ñ(∇u)‖2
by the weaker condition supt>0(

1
t

∫ 2t

t
‖∇s,xu‖

2
2 ds)

1/2 or by supt>0 ‖∇t,xu‖2 or even by

the square function (
∫∫

R
1+n

+

t|∂t∇t,xu|
2dtdx)1/2, so that in the end all these quantities

are a priori equivalent for weak solutions.

In (2), the function F̃0 is formally built as DF̃0 = ∇Au|t=0 (which belongs to an
adapted Sobolev space of order -1: we shall make this more precise).
The spectral spaces with negative signs correspond to estimates for solutions to

Lu = 0 in the lower-half space, and the similar statement holds using the semigroups
etDB and etBD.
Our aim is to extend this formalism to Sobolev spaces. However, a difficulty

is that R(BD) is really an L2 object as it depends on B. We shall modify the

setup to prepare this extension. Recall that H0 = R(D) is a closed subspace of
H = L2(Rn;C1+n). Let S = D|H0 with domain D(D) ∩ H0. Then S is a one-one,
self-adjoint operator. Define Π as the orthogonal projection from H onto H0. It
is the identity if n = 1 but not otherwise. Let B be the operator on H0 defined
by Bu = ΠBu = ΠBΠu, u ∈ H0. As B is a strictly accretive operator on H0 (for
equations this is true on H but only on H0 for systems, that is, when m > 1), the
restriction of Π on BH0 is an isomorphism onto H0 and B is a strictly accretive
operator on H0.
Define

T : H0 → H0, T = BS = ΠBD|H0 with D(T ) = D(S)

and

T : H0 → H0, T = SB = DΠB|H0 = DB|H0 with D(T ) = B−1
D(S).
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Theorem 4.4. (1) T is a one-one bi-sectorial operator with bounded holomor-
phic functional calculus on H0. A function u ∈ H1

loc(R
1+n
+ ) is a weak solution

of Lu = 0 with ‖Ñ(∇u)‖2 < ∞ if and only if there exists H0 ∈ H0,+
T such

that ∇Au = e−tTH0. Moreover, H0 is unique and ‖H0‖2 ≈ ‖Ñ(∇u)‖2.
(2) T is a one-one bi-sectorial operator with bounded holomorphic functional

calculus on H0. A function u ∈ H1
loc(R

1+n
+ ) is a weak solution of Lu = 0

with
∫∫

R
1+n

+

t|∇t,xu|
2dtdx <∞ if and only if there exists H̃0 ∈ H0,+

T such that

∇Au = Se−tT H̃0. Moreover, H̃0 is unique, ‖H̃0‖2 ∼ (
∫∫

R
1+n

+

t|∇t,xu|
2dtdx)1/2

and u = −(e−tT H̃0)⊥ + c for some constant c.

Proof. We begin with the first point. As T is the restriction of DB to H0, it is
a one-one bi-sectorial operator with bounded holomorphic functional calculus. In
particular, the spectral spaces H0,±

T coincide with H0,±
DB. The function H0 is nothing

but F0 in Theorem 4.2, (1). This proves the first point.
Let us turn to the second point. That T is one-one, bi-sectorial with bounded

holomorphic functional calculus onH0 follows from the similarity relation BT = TB.
To obtain the new equations for u is not as direct. Denote by U : BH0 → H0 the
restriction of Π on BH0. For G ∈ H0, we have Π(U−1G−G) = 0 so U−1G ∈ D(D)
if and only if G ∈ D(D). A calculation shows that TG = ΠBDG = UBDU−1G. So

T is also similar to the restriction of BD on BH0. Next, the equation F̃ = e−tBDF̃0

with F̃0 ∈ H0,+
BD

is equivalent to UF̃ = e−tTUF̃0 with UF̃0 ∈ H0,+
T . Hence,

Se−tTUF̃0 = DUe−tBDF̃0 = De−tBDF̃0

and

(e−tTUF̃0)⊥ = (Ue−tBDF̃0)⊥ = (e−tBDF̃0)⊥

as U leaves the scalar component invariant. This concludes the proof with H̃0 =

UF̃0 = ΠF̃0, where F̃0 is the function specified in Theorem 4.2, (2). �

The point is that both operators T and T act on the same space H0 which is
independent of the action of B. Thus, we use the relation between quadratic esti-
mates and interpolation developed in [5, Section 8] for bi-sectorial operators and we
strongly suggest the reader to have this reference handy from now on.
For s ∈ R define Ḣs as the completion of H0 for the quadratic norm

‖F‖S,s =

{∫ ∞

0

t−2s‖ψt(S)F‖
2
2

dt

t

}1/2

where ψ is a suitable holomorphic function on bi-sectors, for example ψ(z) =
zke−z sgn(z), Re z 6= 0 and N ∋ k > max(s, 0). Remark that from the spectral theo-

rem Ḣ0 = H0 and it can be checked that ‖F‖S,s = cψ,s‖|S|
sF‖2 where |S| = (S2)1/2.

Note that S extends to an isomorphism between Ḣs and Ḣs−1. Classically, the
intersection of Ḣs for s in a bounded interval is dense in each of them.
We define similarly for Ḣs

T and Ḣs
T replacing S by T and T . The quadratic

norms are equivalent under changes of suitable ψ that are non degenerate on both
components of the bi-sectors.
Note that |S| preserves the normal and tangential components so we can write

Ḣs = Ḣs
⊥ ⊕ Ḣs

‖ which agrees with our earlier notation when s = 0 and s = −1/2.



8 P. AUSCHER, A. MCINTOSH, AND M. MOURGOGLOU

If n = 1, we have S = D =

[
0 dx

−dx 0

]
so the quadratic norm defines the usual

homogeneous Sobolev space Ḣs(R;C2) which is also the completion of D(|S|s) for
the homogeneous norm ‖|S|sF‖2. It follows that Ḣ

s
⊥
= Ḣs

‖
= Ḣs(R).

For n ≥ 2, recall that R = ∇(−∆)−1/2 denotes the array of Riesz transforms and
let R∗ = −(−∆)−1/2div be its adjoint. The operator

V =

[
I 0
0 −R

]
: L2(Rn;C2) → H0

is an isometry with inverse

V −1 = V ∗ =

[
I 0
0 −R∗

]
: H0 → L2(Rn;C2)

and V V ∗ = Π. A calculation using ∇ = R(−∆)1/2 shows that

V −1SV =

[
0 (−∆)1/2

(−∆)1/2 0

]
.

Thus, Ḣs
⊥ = Ḣs(Rn) and Ḣs

‖ = RḢs(Rn) where Ḣs(Rn) is the usual homogeneous

Sobolev space with semi-norm ‖(−∆)s/2f‖2.

Proposition 4.5. (1) For s ∈ R, for all bounded holomorphic functions b in
appropriate bi-sectors, b(T ) extends to a bounded operator on Ḣs

T . In partic-

ular, this holds for sgn(T ) which is a bounded self-inverse operator on Ḣs
T ,

and T and |T | = sgn(T )T extend to isomorphisms between Ḣs
T and Ḣs−1

T .

The operator |T | extends to a sectorial operator on Ḣs
T .

(2) Ḣs topologically splits as the sum of the two spectral closed subspaces Ḣs,+
T =

N(sgn(T )− I) and Ḣs,−
T = N(sgn(T ) + I).

(3) The same two items hold with T replaced by T .
(4) For 0 ≤ s ≤ 1, Ḣs

T = Ḣs and for −1 ≤ s ≤ 0, Ḣs
T = Ḣs with equivalence of

norms.
(5) Furthermore, for −1 ≤ s < 0, we have for ‖F‖S,s ≈

{∫∞

0
t−2s‖e−t|T |F‖22

dt
t

}1/2
.

Proof. The first four items are contained in [5, Theorem 8.3] and the previous sec-
tions therein with the exception of the cases s = 1 and s = −1 of (4).
For s = 1, observe that ‖F‖T,1 = c‖|T |F‖. Thus, the bounded holomorphic

functional calculus of T on H0 implies that ‖|T |F‖ ≈ ‖TF‖ [5, Theorem 8.2].
Finally ‖TF‖ ≈ ‖SF‖ ≈ ‖F‖S,1.
For s = −1, we observe the intertwining relation TS = ST (as unbounded op-

erators) so the functional calculi also intertwine. Hence, ψt(T )SF = Sψt(T )F =

t−1B−1ψ̃t(T )F for F ∈ D(T ) = D(S) with ψ̃(z) = zψ(z). This implies that
‖SF‖T,−1 ≈ ‖F‖T,0 ≈ ‖F‖S,0 ≈ ‖SF‖S,−1 and the result follows from the fact

that the functions SF , F ∈ D(T ) = D(S), form a dense subset of Ḣ−1.
To prove (5), we proceed as above and a calculation with ψ(z) = ze−z sgn(z) shows

that e−t|T |SF = Se−t|T |F = t−1B−1ψt(T )F for F ∈ D(T ). It follows easily for
appropriate F and using 0 ≤ s+ 1 < 1 that

{∫ ∞

0

t−2s‖e−t|T |F‖22
dt

t

}1/2

≈ ‖S−1F‖T,s+1 ≈ ‖S−1F‖S,s+1 ≈ ‖F‖S,s.
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�

We can give another useful characterization of solutions with square function
estimates in terms of the negative Sobolev space.

Corollary 4.6. Let u ∈ H1
loc(R

1+n
+ ). Then u is a weak solution of Lu = 0 with∫∫

R
1+n

+

t|∇t,xu|
2dtdx < ∞ if and only if there exists H0 ∈ Ḣ−1,+

T such that ∇Au =

e−tTH0. Moreover, H0 is unique and ‖H0‖T,−1 ≈ (
∫∫

R
1+n

+

t|∇t,xu|
2dtdx)1/2.

Proof. This is a reformulation of the previous results. By Theorem 4.4, (2), given

u, we have ∇Au = Se−tT H̃0 = e−tTSH̃0, where e
−tT is now the semi-group extended

to Ḣ−1,+
T . Setting H0 = SH̃0, we have H0 ∈ Ḣ−1,+

T as H̃0 ∈ H0,+
T and ‖H0‖T ,−1 ≈

‖H0‖S,−1 ≈ ‖H̃0‖2 by Proposition 4.5, (4).

Conversely, let H0 ∈ Ḣ−1,+
T and set H̃0 = S−1H0 ∈ Ḣ0,+

T . Then e−tTH0 =

e−tTSH̃0 = Se−tT H̃0 is the conormal gradient of a solution u by Theorem 4.4, (2). �

Now, we prove a representation for energy solutions

Proposition 4.7. Let u ∈ H1
loc(R

1+n
+ ). Then u is a weak solution of Lu = 0 with∫∫

R
1+n

+

|∇t,xu|
2dtdx < ∞ (i.e., u is an energy solution) if and only if there exists

H0 ∈ Ḣ
−1/2,+
T such that ∇Au = e−tTH0. Moreover, H0 is unique and ‖H0‖T ,−1/2 ≈

(
∫∫

R
1+n

+

|∇t,xu|
2dtdx)1/2.

Proof. Let us prove the converse first. If H0 ∈ Ḣ
−1/2,+
T , then Hε = e−εTH0 ∈

Ḣ
−1/2,+
T ∩ Ḣ

1/2,+
T ⊂ Ḣ0,+

T for any ε > 0. By Theorem 4.4, e−tTHε is the conormal

gradient of some solution uε. As Hε converges to H0 in Ḣ
−1/2,+
T , it is easy to conclude

that uε converges to a solution u is the energy space and (
∫∫

R
1+n

+

|∇t,xu|
2dtdx)1/2 ≈

‖H0‖T ,−1/2.
Assume now that u is a weak solution of Lu = 0 with

∫∫
R
1+n

+

|∇t,xu|
2dtdx < ∞.

Set H0 = ∇Au|t=0 ∈ Ḣ−1/2. Decomposing H0 = H+
0 +H−

0 according to the spectral

decomposition Ḣ−1/2 = Ḣ
−1/2,+
T ⊕ Ḣ

−1/2,−
T from Proposition 4.5 (2) and (4), and

using the implication just proved, H+
0 is the trace of the conormal gradient of an

energy solution u+ in the upper half-space and, by the same result in the lower
half-space, H−

0 is the trace of the conormal gradient of an energy solution u− in the
lower half-space. It is then easy to see that the function v, defined by v = u − u+

on the upper half-space and v = u− in the lower half-space, is an energy solution
of Lv = 0 in R1+n. By Lemma 3.5, v = 0 (modulo constants) so that u = u+ and
H0 = H+

0 . Thus, ∇Au = ∇Au
+ = e−tTH+

0 from the first part of the proof. �

Corollary 4.8. The elements of Ḣ
−1/2,+
T are

[
f

ΓANDf

]
, f ∈ Ḣ

−1/2
⊥ . They can also

be written

[
ΓADNg
g

]
, g ∈ Ḣ

−1/2
‖ .

Proof. It suffices to check the first representation by Theorem 3.4. By the previous

result, H0 ∈ Ḣ
−1/2,+
T if and only if H0 = ∇Au|t=0 for some solution u in the energy

space. So if f is the conormal derivative ∂Au|t=0 in Ḣ
−1/2
⊥ then the tangential gradient

at t = 0 is ΓANDf by (5).
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Conversely, if f ∈ Ḣ
−1/2
⊥ , then we let u be the energy solution to Lu = 0 with

Neumann datum f . We know ΓANDf = ∇xu|t=0 and that ∇Au = e−tTH0 for some

H0 ∈ Ḣ
−1/2,+
T . It follows that

[
f

ΓANDf

]
= H0 ∈ Ḣ

−1/2,+
T . �

Remark 4.9. It is interesting to compare Theorem 4.4, Corollary 4.6 and Propo-
sition 4.7. The use of T allows the same representation for conormal gradients of
solutions and the only difference is the space to which the trace belongs. Solving
Neumann, Dirichlet and/or regularity problems amount to proving boundedness of
Neumann to Dirichlet map and/or the Dirichlet to Neumann map with different
topologies on the boundary.

Remark 4.10. In [3, section 5], some a posteriori identification of the solutions
coming from the DB formalism in L2 is made with energy solutions, upon some
further assumptions. But note that energy solutions require a different trace space.
Here, the extension of this formalism to Sobolev spaces allows to prove a priori
representation (Proposition 4.7) for energy solutions.

Remark 4.11. We note that Proposition 4.7 was stated without proof for systems
on the ball in [2], even with some radially dependent coefficients. While this article
was in its final stage, we learned that this kind of representations of solutions with
data in Sobolev spaces was pursued in more generality by Andreas Rosén [12], and
has some overlap with ours.

5. The operator theoretic lemma

The main ingredient in our proof is the next lemma which will provide a factorisa-
tion of the boundary maps with simpler operators to analyze. The following lemma
is essentially taken from [6, Section 6].

Lemma 5.1. Let X1, X2 be Banach spaces and let Z = X1⊕X2 whose elements are

written as

[
u⊥

u‖

]
. Let S =

[
s11 s12
s21 s22

]
∈ L(Z) such that

(1) S2 = IZ .
(2) There exists c ∈ (0, 1) such that for all u ∈ N(S ± I), one has

c−1‖u⊥‖X1
≤ ‖u‖‖X2

≤ c‖u⊥‖X1
.

Then, s12, s21, s11±I, s22±I are one-one with closed range in the respective L(Xi, Xj).

Proof. Let P± = 1
2
(I ±S) be the pair of projectors on Z associated to S by (1) and

Q± the pair of projectors on X1 ⊕ {0} and {0} ⊕X2. The assumption (2) implies

‖Q+P
±u‖ ≈ ‖Q−P

±u‖ ≈ ‖P±u‖, u ∈ Z.

We infer that

‖P+Q±u‖ ≈ ‖P−Q±u‖ ≈ ‖Q±u‖.

For example, usingQ−Q+ = 0, then ‖Q+u‖ ≤ ‖P+Q+u‖+‖P−Q+u‖ . ‖P+Q+u‖+
‖Q−P

−Q+u‖ . ‖P+Q+u‖+ ‖Q−P
+Q+u‖ . ‖P+Q+u‖ . ‖Q+u‖.

Going further, one easily sees that

‖Q−P
+Q±u‖ ≈ ‖Q+P

+Q±u‖| ≈ ‖Q±u‖ ≈ ‖Q−P
−Q±u‖ ≈ ‖Q+P

−Q±u‖.
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Thus, let φ ∈ X2 and u =

[
0
φ

]
= Q−u. One checks that

[
s12φ
0

]
= Q+Su = Q+(2P

+ − I)u = 2Q+P
+Q−u

and [
0

(I ± s22)φ

]
= 2Q−P

±u = 2Q−P
+Q−u,

hence
‖s12φ‖X1

≈ ‖(I ± s22)φ‖X2
≈ ‖φ‖X2

.

Similarly, with φ ∈ X1 and u =

[
φ
0

]
= Q+u, one obtains

‖s21φ‖X2
≈ ‖(I ± s11)φ‖X1

≈ ‖φ‖X1
.

�

Lemma 5.2. (1) The operator sgn(T ) satisfies the hypotheses of the above lemma

on Ḣ
−1/2
T = Ḣ−1/2 = Ḣ

−1/2
⊥ ⊕Ḣ

−1/2
‖ . Moreover, the operators s12(T ), s21(T ),

s11(T )± I, s22(T )± I are invertible.

(2) The same conclusion holds replacing T by T on Ḣ
1/2
T = Ḣ1/2 = Ḣ

1/2
⊥ ⊕Ḣ

1/2
‖ .

Proof. We prove (1). Recall first that Ḣ
−1/2
T = Ḣ−1/2 = Ḣ

−1/2
⊥ ⊕ Ḣ

−1/2
‖ follows from

Proposition 4.5, (2) and (4). Next, equality sgn(T )2 = I on Ḣ
−1/2
T holds by the

bounded holomorphic functional calculus and sgn2(z) = 1 on C \ R. Recall that

N(sgn(T )− I) = H
−1/2,+
T and by Corollary 4.8 and setting Γ+(T ) = ΓAND : Ḣ

−1/2
⊥ →

Ḣ
−1/2
‖ , one has for any u ∈ Ḣ

−1/2
T

u‖ = Γ+(T )u⊥ ⇐⇒

[
u⊥

u‖

]
∈ N(sgn(T )− I) = H

−1/2,+
T .

Similarly, the Neumann to Dirichlet map for the lower half-space yields the corre-

sponding operator Γ−(T ) characterized by for any u ∈ Ḣ
−1/2
T

u‖ = Γ−(T )u⊥ ⇐⇒

[
u⊥

u‖

]
∈ N(sgn(T ) + I) = H

−1/2,−
T .

Details are left to the reader. Thus, the second assumption of Lemma 5.1 is granted
and we have lower bounds for all six operators in the statement. Thus, when A = Id,

T = S and so sgn(T ) = sgn(S) =

[
0 H
H∗ 0

]
if n = 1 whereH is the Hilbert transform

and sgn(T ) = sgn(S) =

[
0 −R∗

−R 0

]
on H0 if n ≥ 2. Thus, the six operators are

invertible in this case and in particular onto. The ontoness for general A follows
from the method of continuity. This proves (1).
To prove (2), we observe that the intertwining relation Ssgn(T ) = sgn(T )S ex-

tends to Ḣ
1/2
T = Ḣ1/2 using that S is an isomorphism from Ḣ1/2 onto Ḣ−1/2. Thus,

the conclusion follows straightforwardly from (1). �

Lemma 5.3. In L(Ḣ
−1/2
⊥ , Ḣ

−1/2
‖ ),

ΓAND = s12(T )
−1(I − s11(T )) = (I − s22(T ))

−1s21(T ).
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Proof. We have seen that the operators Γ±(T ) are bounded and invertible. To obtain
the formulas, one uses their operator defining relations

[
s11(T ) s12(T )
s21(T ) s22(T )

] [
I

Γ±(T )

]
= ±

[
I

Γ±(T )

]
,

and then solve for Γ±(T ) using the invertibilities of the operators in Lemma 5.2. We
conclude using ΓAND = Γ+(T ). (As mentioned, the operator Γ−(T ) is the Neumann to
Dirichlet operator for the lower half-space and has similar representations Γ−(T ) =
−s12(T )

−1(I + s11(T )) = −(I + s22(T ))
−1s21(T ).) �

6. block triangular matrices

So far, everything holds for arbitrary (t independent) coefficients and can be used

in full generality. Assume that A is block lower-triangular: A(x) =

[
a(x) 0
c(x) d(x)

]
.

In the PDE language for L, this means that the conormal derivative is proportional
to the t derivative: ∂νA = a∂t. If B = Â, as in the second section, then this is
equivalent to B being block lower-triangular as well.

Let us write B(x) =

[
a′(x) 0
c′(x) d′(x)

]
, which we identify with the operator of mul-

tiplication by B. Then B = ΠBΠ also has the same structure

[
α 0
γ δ

]
, where α, γ, δ

are the following operators: if n = 1, they are the operators of multiplication by
a′, c′, d′ respectively. If n ≥ 2, then α = a′, γ = RR∗c′ and δ = RR∗d′RR∗.

Lemma 6.1. If the coefficients are block lower-triangular then s12(T ) is invertible
from H0

‖
onto H0

⊥
.

Proof. We write the proof when n ≥ 2. The proof when n = 1 is similar and
simpler as we do not have to consider the Riesz transforms. By Lemma 5.2, s12(T )

is invertible from Ḣ
−1/2
‖ onto Ḣ

−1/2
⊥ . By the characterization of Ḣ

−1/2
‖ usingR, this is

equivalent to s12(T )R invertible from Ḣ−1/2(Rn) onto itself. Remark that the same
holds for s12(T )R from Ḣ1/2(Rn) onto itself. Thus, looking at the upper off-diagonal
coefficient in the relation Bsgn(T )Π = sgn(T )B between bounded operators for the
L2 topology, we find

αs12(T )RR∗ = s12(T )δ.

Hence we have the equality in L(L2(Rn))

s12(T )R = a′−1(s12(T )R)(R∗d′R)

and this implies that s12(T )R extends to an invertible operator from (R∗d′R)−1Ḣ1/2(Rn)
onto a′−1Ḣ1/2(Rn). Using the complex interpolation equalities

[a′−1Ḣ1/2(Rn), Ḣ−1/2(Rn)]1/2 = L2(Rn)

and
[(R∗d′R)−1Ḣ1/2(Rn), Ḣ−1/2(Rn)]1/2 = L2(Rn),

we obtain the desired conclusion.
It remains to explain the interpolation equalities. The first one was actually first

observed (without proof) in [10] as a consequence of the solution of the 1-dimensional
Kato square root problem [8] using that a′ is an accretive function. See [11, Section



BLOCK TRIANGULAR COEFFICIENTS 13

6] for some account. It can also be seen as a consequence of the Tb theorem. See
[9, Théorème 9] for an explicit statement.
The second equality is a consequence of the solution of the n-dimensional Kato

square root problem [4] and the results in [5] as follows. Remark that R∗d′R is a
strictly accretive and bounded operator on L2(Rn). Combining [5, Theorems 5.3,
7.2, 7.3] using that Ḣs(Rn) is defined by the semi-norms ‖(−∆)s/2f‖2, we have

[(R∗d′R)−1Ḣ1/2(Rn), Ḣ−1/2(Rn)]1/2 = Ḣ0
T ,

where T is the sectorial operator (−∆)1/2(R∗d′R). But Ḣ0
T = L2(Rn) means that

T has a bounded holomorphic functional calculus on L2(Rn), which is the same as
(R∗d′R)(−∆)1/2 has a bounded holomorphic functional calculus on L2(Rn). By [5,
Theorem 10.1], this is equivalent to the claim

‖L
1/2
‖ f‖2 ≈ ‖(−∆)1/2f‖2, f ∈ D(L

1/2
‖ ),

where L‖ is the operator (−∆)1/2(R∗d′R)(−∆)1/2. As L‖ is nothing but the diver-
gence operator −divd′∇, the claim is proved in [4]. �

Theorem 6.2. The Neumann problem for operators L with block lower-triangular,
t-independent coefficients A is well-posed for L2 data.

Proof. From the relation ΓAND = s12(T )
−1(I − s11(T )) and the previous lemma, we

have that ΓAND is bounded from Ḣ0
⊥
to Ḣ0

‖
. Thus, given a Neumann data f ∈ L2(Rn),

ΓANDf ∈ L2(Rn,Cn), and from this it is easy to conclude that H0 =

[
f

ΓANDf

]
∈ H0,+

T

with ‖H0‖2 ≈ ‖f‖2. By Theorem 4.4, (i), we can define a weak solution u of Lu = 0

with ‖Ñ(∇u)‖2 ≈ ‖H0‖2 by ∇Au = e−tTH0. �

Remark 6.3. Under the same assumptions, by interpolation, ΓAND is bounded from

Ḣ−s
⊥ to Ḣ−s

‖ for 0 ≤ s ≤ 1/2. When 0 < s ≤ 1/2, given any f ∈ Ḣ−s(Rn)
the above formalism furnishes a solution to Lu = 0 with conormal derivative f
and

∫∫
R
1+n

+

t−1+2s|∇t,xu|
2dtdx ≈ ‖f‖2

Ḣ−s(Rn)
. By Sneiberg’s perturbation result [13],

this can be pushed to s < 1/2 + ε for some ε > 0 because s11(T ) ∈ L(Ḣ−s
⊥
) and

s12(T ) ∈ L(Ḣ−s
‖ , Ḣ−s

⊥ ) for all s ∈ [0, 1], the spaces are complex interpolation scales
and invertibility holds at s = 1/2.

The same arguments apply to block upper-triangular coefficients: this time, the
lower off-diagonal block coefficient c′ vanishes but not the upper off-diagonal block
coefficient b′.

Theorem 6.4. The regularity problem for operators L with block upper-triangular
t-independent coefficients A is well-posed for L2 data.

Proof. It follows from Theorem 3.4 and Lemma 5.3 that ΓADN = s21(T )
−1(I−s22(T ))

in L(Ḣ
−1/2
‖ , Ḣ

−1/2
⊥ ) from the invertibility of s21(T ) from Ḣ

−1/2
⊥ onto Ḣ

−1/2
‖ . By

Theorem 4.4, (i), it is enough to show the invertibility of s21(T ) from Ḣ0
⊥
onto Ḣ0

‖
,

that is the invertibility of R∗s21(T ) on L2(Rn). This is based on the interpolation
argument and the formula

R∗s21(T )a
′ = (R∗d′R)(R∗s21(T ))

in L(L2(Rn)) that can be checked as above using that the coefficient c′ vanishes.
Details are left to the reader. �
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Remark 6.5. Observations similar to the ones in Remark 6.3 apply for regularity
problems with data (the tangential gradient at the boundary) in Ḣ−s

‖
for block

upper-triangular coefficients.

Theorem 6.6. The Dirichlet problem for operators L with block lower-triangular
t-independent operators A is well-posed for L2 data.

Proof. Here, well-posedness is within the class of solutions with
∫∫

R
1+n

+

t|∇t,xu|
2dtdx <

∞ and by [1], this implies then that ‖Ñ(u)‖2 ≈
∫∫

R
1+n

+

t|∇t,xu|
2dtdx ≈ ‖u|t=0‖2.

Well-posedness follows from the duality principle [2, Proposition 17.6] that the reg-
ularity problem for L with data in L2 is well-posed in the class with modified
non-tangential estimate if and only if the Dirichlet problem for L∗ with L2 data
is well-posed in the above class. �

Remark 6.7. We point out that the relation between L and A is a correspondence
only when L and A are imposed to be self-adjoint. Otherwise, one L may be rep-
resented by many different strictly accretive matrices A. As a consequence, there
are as many Neumann problems for L as choices of A since the conormal derivative
depends on A. However, for the regularity and Dirichlet problems, the choice of A
is irrelevant. Although the solution algorithms depend on the coefficients A, they
produce in the end the same solutions (note that the tangential part of the conormal
gradient is independent of the coefficients).
For example, one does not modify L by adding to A any matrix of the formMγ =[
0 γ(x)t

−γ(x) 0

]
with γ a Rn-valued, measurable and bounded function with divxγ =

0. First, the divergence free equation implies −divt,x(A +Mγ)∇t,x = −divt,xA∇t,x

in the sense of forms. Second, the accretivity constant of A+Mγ is the lower bound
of 1

2
(A+Mγ +A

∗+M∗
γ ), but Mγ +M

∗
γ = 0 when γ is Rn-valued, so this is the same

as the accretivity constant of A. This argument also shows that A +Mγ remains
strictly accretive if γ is Cn-valued provided the norm of its imaginary part is not
too large.
For systems of size m, this example has to be modified as follows. Rn-valued is

replaced by Sn-valued where S is the space of real and symmetric m×m matrices.
The divergence free equation is understood coefficientwise

∑n
j=1 ∂jγ

α,β
j = 0.

Remark 6.8. Recall that any of these well-posedness results is stable under complex
perturbation in L∞ within the class of t-independent coefficients A by [3, Theorem
2.2] and [1] (the latter reference extends the solution spaces for the results of the
former to hold).
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[13] Šnĕıberg, I. J. Spectral properties of linear operators in interpolation families of Banach

spaces. Mat. Issled. 9, 2(32) (1974), 214–229, 254–255.

Univ. Paris-Sud, laboratoire de Mathématiques, UMR 8628 du CNRS, F-91405

Orsay

E-mail address : pascal.auscher@math.u-psud.fr

Centre for Mathematics and its Applications, Mathematical Sciences Institute,

Australian National University, Canberra ACT 0200, Australia

E-mail address : Alan.McIntosh@maths.anu.edu.au

Univ. Paris-Sud, laboratoire de Mathématiques, UMR 8628 du CNRS, F-91405
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