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A NOTE ABOUT THE CRITICAL BANDWIDTH FOR A KERNEL DENSITY ESTIMATOR WITH THE UNIFORM KERNEL

Among available bandwidths for kernel density estimators, the critical bandwidth is a data-driven one, which satisfies a constraint on the number of modes of the estimated density. When using a random bandwidth, it is of particular interest to show that it goes toward 0 in probability when the sample size goes to infinity. Such a property is important to prove satisfying asymptotic results about the corresponding kernel density estimator. It is shown here that this property is not true for the uniform kernel.

Introduction

Let consider a sample X = (X 1 , . . . X n ) made of independent and identically distributed random variables generated from the density f . To estimate f from this sample of size n, [START_REF] Parzen | On estimation of probability density function and mode[END_REF] and [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF] introduced the kernel density estimator fK,h , defined for every real t by fK,h (t) = 1 nh

n i=1 K t -X i h ,
where K is called the kernel and is most of time a density function while h is a positive real parameter that controls the smoothness of fK,h . We also refer the interested reader to [START_REF] Scott | Multivariate Density Estimation : Theory, Practice and Visualization[END_REF] and Silverman (1986).

Let N ( fK,h ) be the number of modes of fK,h . To decide how smooth fK,h should be, an approach is to set N ( fK,h ). To do so, one can use the critical bandwidth h crit introduced by [START_REF] Silverman | Using kernel density estimates to investigate multimodality[END_REF] for h. It can be defined by (1) h crit,k = min

N ( fK,h )≤k h,
for any k ∈ N * . When K is the Gaussian kernel, that is ∀t ∈ R, K(t) = 1 √ 2π e -t 2 2 , the bandwidth h crit,k has interesting properties. It can easily be computed and, provided that k ≥ N (f ), allows fK,h to exhibit, in probability, a pointwise convergence, an L 1 -convergence and a uniform convergence toward f . Details can be found in [START_REF] Futschik | On the consistency of kernel density estimates under modality constraints[END_REF], [START_REF] Mammen | Some asymptotics for multimodality tests based on kernel density estimates[END_REF], [START_REF] Devroye | The strong uniform consistency of kernel density estimates[END_REF], [START_REF] Devroye | A Course in Density Estimation[END_REF] and [START_REF] Coudret | Comparison of kernel density estimators with assumptions on number of modes[END_REF].

These properties are proven using the key point that h crit,k converges in probability toward 0 when K is the Gaussian kernel. To extend them to other kernels, the asymptotic behavior of h crit,k should thus be studied. In this Note, we focus on the case when K is the uniform kernel defined as

∀t ∈ R, K(t) = 1 [-1 2 , 1 2 ] (t)
, where 1 is the indicator function. We will prove in the following section that for this kernel, h crit,k does not converge toward 0, after giving some properties about fK,h and N ( fK,h ).

Properties for the uniform kernel

Let us first introduce some additional notations. Let

A h = ∪ n i=1 {X i -h 2 } = a h,(i) i∈{1,...,card(A h )} and B h = ∪ n i=1 {X i + h 2 } = b h,(i) i∈{1,...,card(B h )} .
In order to deduce the value of N ( fK,h ), we only need to investigate how the points in A h ∪ B h are ordered because of Proposition 1 below. We write w = card(A h ∪ B h ) ≤ 2n. We set c h,(i) i∈{1,...,w} as the ordered points in A h ∪ B h . Let us also write b h,(0) = c h,(0) = -∞ and a h,(card(A h )+1) = c h,(w+1) = +∞. Proposition 1. Let (X 1 , . . . X n ) be a vector of independent random variables generated from f . Let fK,h be the kernel estimator of f for the uniform kernel K. Then, ∀h > 0, ∀i ∈ {0, 1, . . . , w}, the function fK,h is constant on ]c h,(i) , c h,(i+1) [. The proof is given in Appendix A.1.

Remark 1. The reasoning in the proof of Proposition 1 can also be used to obtain the following results:

• ∀i ∈ {1, . . . , w}, c h,(i

) ∈ A h ⇔ ∃ζ ∈ N * , ∀u ∈]c h,(i-1) , c h,(i) [, f (u) = f (c h,(i) ) -ζ nh , • ∀i ∈ {1, . . . , w} , c h,(i) ∈ B h ⇔ ∃ζ ∈ N * , ∀u ∈]c h,(i) , c h,(i+1) [, f (u) = f (c h,(i) ) -ζ nh , • ∀i ∈ {1, . . . , w}, c h,(i) / ∈ A h ⇔ ∀u ∈]c h,(i-1) , c h,(i) [, f (u) = f (c h,(i) ), • ∀i ∈ {1, . . . , w} , c h,(i) / ∈ B h ⇔ ∀u ∈]c h,(i) , c h,(i+1) [, f (u) = f (c h,(i) ).
Proposition 1 and Remark 1 are illustrated in Figure 1 where the sample (3, 6.5, 6, 1.5, 5) of size n = 5 is used to compute the function fK,2 . We have here w = 9. Note that N ( fK,2 ) = 3 and that a mode of fK,2 is actually a single point. This mode vanishes if we use a bandwidth slightly less than 2 so that there is a jump in the estimator h → N ( fK,h ) located at h = 2. Figure 1 gives a lead to find N ( fK,h ) from A h and B h , as explained in the following property.

Proposition 2. Let (X 1 , . . . X n ) be a vector of independent random variables generated from f . Let fK,h be the kernel estimator of f for the uniform kernel K. The number of modes N ( fK,h ) of fK,h is such that

N ( fK,h ) = card (i, j) : a h,(i) ∈]b h,(j-1) , b h,(j) ] and b h,(j) ∈ [a h,(i) , a h,(i+1) [ , where i ∈ {1, . . . , card(A h )} and j ∈ {1, . . . , card(B h )}.
The proof is given in Appendix A.2. This characterization of N ( fK,h ) based on the sets A h and B h , together with an argument about totally positive matrices, allows us to show the following theorem:

Theorem 1. For any probability density function f of X, let fK,h crit,k be the estimator of f when K is the uniform kernel with h crit,k given in (1). Then we have h crit,k increasing with n, for all k ∈ N.

The proof is given in Appendix A.3.

To illustrate this theorem, we consider again the sample (3, 6.5, 6, 1.5, 5) and every subsamples made of the first n elements of (3, 6.5, 6, 1.5, 5) for n ∈ {1, . . . , 5}. For each subsample, we compute the function h → N ( fK,h ), where K is the uniform kernel. In Figure 2, we display ranges of values of h and n for which N ( fK,h ) is equal to a given number. The increase of N ( fK,h ) with n can be observed for small values of h. In the general case, this feature implies that for any k ∈ N, h crit,k also increases with n.

Theorem 1 means that we can not have that h crit,k goes toward 0 in probability for the uniform kernel. Thus, the proof of the pointwise convergence of fK,h crit,k toward f , as given in [START_REF] Futschik | On the consistency of kernel density estimates under modality constraints[END_REF], does not hold for this kernel. It is also impossible to use the work of [START_REF] Devroye | The strong uniform consistency of kernel density estimates[END_REF] and [START_REF] Devroye | A Course in Density Estimation[END_REF] to show the corresponding L 1 -convergence and uniform convergence. In addition, the simulation study from [START_REF] Coudret | Comparison of kernel density estimators with assumptions on number of modes[END_REF] shows that fK,h crit,k is not an accurate estimator of f , when K is the uniform kernel. For these reasons, we recommend not to use fK,h crit,k with this kernel in practice. [ and X (i) i∈{1,...n} be the ordered sequence of the elements of X. We will show that fK,h (u) is neither greater nor lesser than fK,h (v) with a proof by contradiction. Note that for the uniform kernel we have fK,h (u) = h (v), this implies that there exists at least one k ∈ {1, . . . , n}, for which we have

Appendix A. Proofs A.1. Proof of Proposition 1. Let (u, v) ∈]c h,(i) , c h,(i+1) [×]u, c h,(i+1)
1 nh card X k ∈ [u -h 2 , u + h 2 ] . If fK,h (u) > fK,
X (k) ∈ [u -h 2 , v -h 2 [, which means that there exists k ′ ∈ {1, . . . , w} which satisfies c h,(k ′ ) = b h,(k) ∈ [u, v[. Because [u, v[⊂]c h,(i) , c h,(i+1) [, c h,(k ′ ) ∈]c h,(i) , c h,(i+1) [, which is impossible.
Conversely, fK,h (v) > fK,h (u) implies that there exists

X (k) ∈]u + h 2 , v + h 2 ]. Then there exists k ′ ∈ {1, . . . , w} such that c h,(k ′ ) = a h,(k) ∈]u, v] ⊂]c h,(i) , c h,(i+1) [ and it is impossible.
A.2. Proof of Proposition 2. We will show the equivalence between the presence of a mode between a h,(i) and b h,(j) and the inequality b h,(j-1) < a h,(i) ≤ b h,(j) < a h,(i+1) .

At first, we notice that ordered like this, there is no element of A h or B h that can be between a h,(i) and b h,(j) . This is why the last inequality is equivalent to ∃k ∈ {1, . . . , w -1}, a h,(i) = c h,(k) and b h,(j) = c h,(k+1) , provided that a h,(i) = b h,(j) .

From Proposition 1, fK,h is constant on ]a h,(i) , b h,(j) [, and thanks to Remark 1, it is equivalent to: fK,h is constant on [a h,(i) , b h,(j) ] = [c h,(k) , c h,(k+1) ]. In order for this interval to be a mode, we must prove that there exists ε > 0 for which fK,h is increasing on [c h,(k) -ε, c h,(k) [ and decreasing on ]c h,(k+1) , c h,(k+1) + ε], which is also made in Remark 1.

When

a h,(i) = b h,(j) = c h,(k) , fK,h is increasing on [c h,(k) -ε, c h,(k) [ too and decreasing on ]c h,(k) , c h,(k) + ε].
The mode is reduced to a single point.

A.3. Proof of Theorem 1. First, note that when K is the uniform kernel, for some h > 0, we can find N ( fK,h ) by counting the number of variations of sign of the following function

g ′ h,ε (x) =    1 for x ∈ [a h,(i) -ε, a h,(i) [, ∀i ∈ {1, . . . , card(A h )} , -1 for x ∈ [b h,(i) , b h,(i) + ε[, ∀i ∈ {1, . . . , card(B h )} , 0 elsewhere,
where ε is chosen in a way that ensures that ∀(i, j) ∈ {1, . . . , card(A h )} × {1, . . . , card(B h )} , (a h,(i)b h,(j) ) ∈] -∞, 0]∪]ε, ∞[, in order to obtain a unique value of g ′ h,ε (x) for each x. The aim of g ′ h,ε is to mimic the derivative of fK,h . It seems easier to use than dirac functions involved in f ′ K,h . Besides, one can see that N (g h,ε ) = N ( fK,h ), using the fact that Proposition 2 is valid for g h,ε . That is why the number of variations of sign of g ′ h,ε is equal to 2N ( fK,h ) -1. Let C ε,n = c h,ε,(i) i∈{1,...,w} be the ordered sequence made of the sets a h,(i) -ε 2 i∈{1,...,card(A h )} and b h,(i) + ε 2 i∈{1,...,card(B h )} . Let

d h,ε,(i) = 1 c h,ε,(i) ∈ a h,(i) -ε 2 i∈{1,...,card(A h )} -1 c h,ε,(i) ∈ b h,(i) + ε 2 i∈{1,...,card(B h )} ,
and D ε,n = d h,ε,(i) i∈{1,...,w} . Every interval where g ′ h,ε (x) = 0 is represented by a c h,ε,(i) , then the number of variations of sign is the same for g ′ h,ε and for D ε,n . We write v(D ε,n ) for the number of variations of sign of D ε,n like [START_REF] Schoenberg | On pólya frequency functions II: Variation diminishing integral operators of the convolution type[END_REF] did in his article. Now, we prove that v(D ε,n ) ≥ v(D ε,n-1 ), for n > 1. This property is satisfied if D ε,n-1 = JD ε,n where J is a totally positive matrix, following [START_REF] Schoenberg | On pólya frequency functions II: Variation diminishing integral operators of the convolution type[END_REF]. To define J, we first focus on the case where the last point in the sample is different from the others. This means that if Ω is our sample space, we define Ω 1 as:

Ω 1 = {ω : ∀i ∈ {1, . . . , n -1} , X i (ω) = X n (ω)} .
We remark that, when our sample comes from ω ∈ Ω 1 , D ε,n-1 is constructed by removing two points in D ε,n . These points correspond to c h,ε,(γ1) = X n -h -ε 2 and c h,ε,(γ2) = X n + h + ε 2 . This is why we have :

J =                  I γ1-1 0 . . . 0 • • • • • • 0 . . . 0 • • • 0 . . . • • • 0 0 • • • . . . 0 • • • 0 . . . 0 I γ2-γ1-1 0 . . . 0 • • • 0 . . . • • • 0 0 • • • . . . 0 • • • 0 . . . 0 • • • • • • 0 . . . 0 I w-γ2                 
where I γ is the γ × γ identity matrix. It is straightforward to show that J is a totally positive matrix since every minor of J is not negative.

If ω / ∈ Ω 1 , then D ε,n = D ε,n-1 , because A h and B h stay the same if we build them with (X 1 , . . . , X n ) or with (X 1 , . . . , X n-1 ). Then J = I w and is totally positive.

To conclude, we write ÑK,h : n → ÑK,h (n) = N ( fK,k ). Recall that ÑK,h (n

) = v(g ′ h,ε )+1 2 = v(Dε,n)+1 2
. Because n → v(D ε,n ) is increasing, ÑK,h is also an increasing function. Let h crit,k,n be the critical bandwidth defined in (1) for a sample of size n, then we have:

∀h < h crit,k,n , ÑK,h (n) > k.
Because ÑK,h increases with n, it follows that, ∀η ∈ N, ∀h < h crit,k,n , ÑK,h (n + η) > k.

Thus, with the definition of h crit,k , ∀η ∈ N, h crit,k,n+η ≥ h crit,k,n , and the proof is complete.

Figure 1 .

 1 Figure 1. Estimation of a density with the estimator fK,2 and the uniform kernel K (solid line). Solid circles are special points of this estimated density while brackets indicate a difference between the limit and the value of fK,2 . Crosses represent the underlying sample.

Figure 2 .

 2 Figure 2. Evolution of N ( fK,h ) with respect to the bandwidth h and to the sample size n, for the uniform kernel K. The considered samples are the first n values of(3, 6.5, 6, 1.5, 5).