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Abstract 

The aim of this work is to simulate the pollutants transport in buildings. Focusing mainly on the presence of 

CO2, firstly we resolve the airflow equations for two typical validation cases, the Rao case and the IEA case. 

These numerical results are compared to the most known software and they are used to evaluate of the evolution 

of CO2 concentration in the different rooms. In order to obtain the different parameters and filters of the 

proposed model we use a statistical method based on Bayesian inference. The final comparison of results is 

coherent but a complementary experimental procedure is necessary to calibrate and refine the model.    
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Introduction 

 

Prediction of toxic substances presence in the living places becomes essential to preserve 

human health. The engineers of the building must be able to estimate, simulate and predict the 

concentration of substances defined as pollutants. The most frequently produced of them is 

the carbon dioxide ( 2CO ). People exhale 2CO  whenever they breathe and it is usually not 

toxic expect at very high concentration ( 30,000 ppm ). We find 2CO  in nature everywhere 

and it is the major indication of atmospheric pollution. Parallel to the studies implemented for 

the storage of this substance in the ecological buildings, we must have a forecasting tool to 

alarm population of pollution’s danger. 

In order to add a module for the simulation of pollutant’s transport into the CODYRUN 

software [4, 5], thermal building simulation software developed at LPBS (University of 

Reunion Island), we are interested in the resolution of the transport equations of concentration 

for multi-zones models. This concentration being driving by the circulation of air, we must 

simulate flow within buildings [1]. 

Several software packages are available for thermal simulations with airflow in buildings. 

Most frequently used are generally COMIS [20], CONTAM [17], EPS-r [11, 23], Airflow [7, 

30], etc. There are various methods of numerical resolution. The nodal method [4, 5, 17, 11, 

20] use macroscopic models, which represent room or entire building by a single node and 

calculate the flow through discrete paths such as doors, ducts, openings and cracks. Zonal 

                                                
1 Corresponding author: didier.calogine@univ-reunion.fr 

 

mailto:didier.calogine@univ-reunion.fr


 2 

method [29, 32, 33] split a room into different macroscopic homogeneous zones and 

characterizes the main driving flows in order to predict the spatial temperature distribution in 

the room. Computational Fluid Dynamics (CFD) tools [2, 7, 24] mostly known as 

microscopic modelling technique provide numerical solutions of the partial differential 

equations of governing airflow, contaminant, temperature and other related physical 

processes. CFD is mainly use for single room simulation or can also be combined with other 

previous methods. 

For these different methods, the computing time generally grows according to the model 

complexity. The computing time, the setting up of the boundary conditions and other input 

parameters can be the drawbacks of CFD when practical studies are used. 

For this work, we are interested in the first method giving usually satisfactory results. We are 

going to develop a model of transport of concentration in CODYRUN and to validate the 

proposed model we will successively use the COMIS software [8, 9, 10, 20, 21] and the 

CONTAM software [6, 10, 27] by solving two typical cases. The first case is the same as the 

one used by Haghighat and Rao, 1991). The second test case is called USER Test used in IEA 

Annex 23 [31].  

The first part of this paper gives a brief introduction of the concentrations’ equations to be 

considered. The recall of the method used to simulate airflow follows in second part. A brief 

presentation of the technique of resolution is given in order to introduce the comparison set 

up.  

The third part focuses on a procedure of validation. The description of the two test cases, 

which we will simulate after their implementation in the cited software, is given.  

The both sections following deal with numerical simulations of airflow and the first results for 

concentrations. These results obtained with the referenced software are confronted to our 

simulations. The last section is about to the adjustment of concentration transport. A Bayesian 

procedure is proposed to determine the parameters of our models.  

 

1. Transport equation of concentration 

 

We are interested in the simulation of the dispersion of pollutant in buildings. We consider 

that buildings are composed of numbers of rooms (nodes) which are connected by openings to 

each other and to the outside. Ordinarily we consider equations based on the conservation of 

the concentration by taking into account their circulation in the different rooms. The balance 

equation is made locally using all interconnections of the building. The traditional equation of 

resolution of a dispersion problem of pollutant is summarized by the following relation [17, 

22]: 

 

, ,

1 1

j i
N N

i
i j i j i j i i

j i

C
V Q C Q C S

t  


  


  ,        (1) 

where iV , iC  and iS  are the volume, the concentration and the generation of pollutant for the 

room i  respectively. The quantities ,j iQ and ,j iQ  are the inflow and outflow of the room i  

adjacent at the room j . 

This equation given in a discretised form: 

 
1 1* ( )n n

i i i iC C t M DC S             (2) 
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The concentration 
iC  is then computed successively with computing time step t  and the 

evaluation to transition matrix 1M D . The time step will be selected according to the order of 

magnitude of the flows calculated by the model. With the concentration of pollutant at time  

t , we will be able to evaluate its evolution knowing the transition matrix 1M D . To do it we 

must determine the circulation of air in various building openings. 

 

2. Simulation of air flow 

 

We are going to represent one of the models used to simulate airflow in buildings. The chosen 

model is based on the work done by Haghighat and Rao (1991) [18,] and called system-

theoretic approach. The derivation of this model uses matrix representations and his principle 

consists in calculating various pressures of each zone. The summarized principle is as 

follows: for a building having ZN  zones and 0N  cracks (openings), 
z1 2 3 NΦ={Φ , Φ , Φ , ..., Φ } 

and 1 2 3  { ,  ,  ,...,  }
ONQ Q Q Q Q  are respectively vectors representing the pressure and airflow 

rates through openings. The pressure difference on both sides of these openings is given by 

the vector
O1 2 3 N{ ,  ,  ,  ..., }P P P P P      . The relation between pressures and flow at an 

opening depends on the aeraulic performance of the opening. If we use the model of small 

openings whose effective flow is governed by the following relation: 

 

 f ( )   ( )nQ P C P    ,         (3) 

where C  is the air’s permeability coefficient in 3 /( )nm h Pa . Only the power law is 

implemented in this model version. 

 

The key element in the Haghighat and Rao (1991) method is the matrix known as the 

"incident matrix" of the building interconnections. This matrix represents rooms’ distribution 

in the building. It is defined by matrix elements denoted ij  such that: 

 

1

1

 0        opening  is not connected to zone 

 =  -1        for opening   if flow comes out to zone 

 1        for opening  if flow comes from zone z

O

ij

i N

j N

j i

j i

j i 

 




 



.    (4) 

So the pressure difference P  through all cracks or openings in the building is defined by the 

relation: 

 

     T

fP P     ,           (5) 

where fP  is called the “driving force”. This force corresponds to the sum of all the aeraulic 

elements connected to the opening. The zones' pressures are determined as solution by using 

iterative Newton-Raphson method of the following matrix equation: 

 

 ( )  0T

ff P     ,          (6) 

where F  is the function defined by the equation (3) above. The knowledge of the vector , 

will allow us to deduce the pressure difference P  and consequently to obtain the required 

various flows Q . 
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Now with this formulation we can simulate airflow to estimate the distribution of pollutant in 

buildings. In order to justify our results obtained by this model we propose a comparison 

method.  

 

3. Procedure of validation  

 

3.1. Presentation of validation software 

 

To allow us to compare our simulation results, we used two programs: COMIS and 

CONTAM. These software packages are used by a lot of people working on the thermal 

comfort of buildings [3, 10, 20, 21] and they require small computation. Both multizone 

airflow programs are going to allow us to adjust our model as a numerical experimentation 

method.  

3.1.1. COMIS software (Conjunction of Multi-zone Infiltration Specialists) 

The COMIS software results from the common working sessions (from October, 1998 to 

September, 1989) which took place at Lawrence Berkeley National Laboratory (LBNL). This 

software is now developed by the Scientific and Technical Centre for Building (CSTB) and 

the research institute “EMPA, Materials Science and Technology”. COMIS software 

simulates the airflow transfers and the transport of pollutants inside the buildings. 

The COMIS’s library contains various active and passive components describing the building 

(openings, doors, windows, flows, regulators, ventilators) as well as other components 

defined by the relation between the flows and the apparent pressures. The mathematical 

foundations of COMIS are described by Fuestel (1999) and Lorenzzeti (2002). 

3.1.2. CONTAM software 

CONTAM is software of multi-zone model available to public. It is an indoor air quality and 

ventilation analysis computer program developed by the National Institute of Standards and 

Technology (NIST). These objectives are to determine the airflow and dispersion of pollutants 

in the buildings systems. Then it proposes to predict the exposure of occupants to 

contaminants. It uses a simplified zonal representation of buildings (Dols, 2001). 

The model is based on the Axley’s method [41]. So airborne contaminants transport depends 

on the presence of all air movements (natural and mechanical) within the building system. For 

the physical phenomena's modelling, it uses the simplified relation of "well mixed zones", i.e. 

all the zone being taken into account by one node of calculation (Walton, 1989).  

3.1.3. CODYRUN software 

CODYRUN is a multi-zone software integrating ventilation and moisture transport transfer in 

buildings [Boyer, 96, 99]. It is developed by the “Laboratoire de Physique du Bâtiment et des 

Systèmes” (LPBS) at the university of Reunion island. In the software, a zone approach based 

on nodal analysis is employed. A coupled system describing thermal and airflow phenomena 

is resolved. In results, ambient thermal comfort is estimated for buildings systems. 

 

 

We will use two tests cases for the models comparison. The first one is the same as the one 

used by Haghighat and Rao (1991). The second test case called USER Test used in IEA 
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Annex 23 [31]. For simplicity these two cases of study will be called in this paper as « RAO » 

and « IAE ». 

 

3.2. Presentation of test models  

 

3.2.1. The RAO test case 

The RAO test case is a four-room building with eight airflow paths. The speed of the external 

wind is 15 m s . It is taken to the maximum height of the building (roof). The outside and the 

neighbouring rooms through eight openings are represented in Fig. 1. The airflow paths are 

assumed to have zero humidity and have constant temperature. 

 

3.2.2. The IEA test case 

The IEA test case consists of a four-room building exposed to -12 m s  wind. As shown in Fig. 

2, the building has ten airflow paths and outdoor temperatures higher than an indoor air 

temperature.  

 

The implementation of the building geometry leads us to define the connections between the 

rooms and physical specificities of the openings such as wind pressure coefficients pC , flow 

coefficient C , flow exponents n and openings level h . All these parameter values of both test 

cases are given in Tab. 1 and Tab. 2.  

 

We are looking for the various stationary mass flows through the openings for theses 

geometries. 

4. Numerical simulation of air flow 

 

We were interested in this part by the airflow through buildings. The use of the introduced 

method of part 3 leads us to define for RAO case and IEA case by the following matrices. 

Both linked in Figure 1 and Figure 2, based on Haghighat’s definition, we introduce the 

“incident matrices”:  

 

RAO

1  0  0  0 -1 -1  0   0

0  0  1  0  1  0  -1  0
Π =

0  1  0  0  0  1   0 -1

0  0  0  1  0  0   1   1

 
 
 
 
 
 

   ,         (7) 

and  

IEA

1   0   0   0   0   -1   0   0    1   0

0   1   0   0   0    0  -1   0  -1   1
Π =

0   0   1   0   0    0   0  -1   0  -1

0   0   0   1   1    1   1   1   0   0

 
 
 
 
 
 

.       (8) 
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4.1.1. RAO case 

All results obtained with the software CONTAM, COMIS and the CODYRUN software are 

represented on the buildings below. Flow’s directions are represented too. We specified the 

numerical values given in the reference [25] corresponding to computed values by Tuomaala. 

 

4.1.2. IAE case 

 

We note results of airflow in the same order of magnitude in general. We note small 

differences in results between different software and the developed model. This great 

geometric difference of this one in comparison with the previous case is the presence of a 

transverse common room including five openings.  

 

5. Simulation of concentration dispersion 

 

5.1. Model of dispersion 

 

Having the velocity fields and flows crossing each room, we are interested now by simulation 

of dispersion of pollutants in the two standard buildings [13, 28].  

Referring to part 1 and figures 1 and 2, these equations are written as follow. If Ci denote the 

present concentration in the room i, Vi his volume and m the mass flows, calculated before, by 

taking into account the difference between inside and outside, the mass conservation equation 

for these concentrations in the different rooms is written as: 

 

, ,

i
i j k l m i

j k l m

C
V m C m C S

t


  


  .         (9) 

 

Applying this relation for the IEA model, we obtain the following system of equations for 

concentrations 1C , 2C , 3C  and 4C : 

 

1
1 1 0 6 1 9 1 1

2
2 2 0 10 2 9 1 7 2 2

3
3 10 2 8 4 3 3 3

4
4 6 1 7 2 8 4 4 4 5 0 4

C
V m C m C m C S

t

C
V m C m C m C m C S

t

C
V m C m C m C S

t

C
V m C m C m C m C m C S

t


   




    




   




     



      (10) 

 

 

The same procedure applied to the RAO model, we obtain the analogue following system of 

equations: 
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1
1 2 0 6 3 5 2 1

2
2 5 1 7 4 3 2 2

3
3 1 0 6 3 8 3 3

4
4 8 3 4 4 7 4 4

C
V m C m C m C S

t

C
V m C m C m C S

t

C
V m C m C m C S

t

C
V m C m C m C S

t


   




   




   




   



         (11) 

 

At this level, the procedure of comparison consists in confronting the results of simulation 

acquired with software CONTAM and those of the first-order model of equations (10) and 

(11). 

To do it we define a test case by imposing an initial concentration in one of the rooms of a 

building. Then in order to obtain a comparison of our results with CONTAM software, we 

simulated with this software the same geometry and the same initial conditions of C02 

concentration. Of course we can use independently the RAO or the IEA case at our disposal. 

 

5.2. Introduction of displacement factor and filters  

 

For the IEA case, we will be interested in the variation of the concentration of C02 in the 

different rooms of the building. We considered for this simulation an initial concentration of 

100 kg/m
3
 of pollutant in a room located at the ground floor, the room number 3 of Figure 1. 

 

 

In our model, we also initiated the concentration with 100 kg/m
3
 in the room at the ground 

floor. So we have to cancel the various sources of pollutants: 1 2 3 4 0S S S S     and we 

specified the initial concentrations 0 -3

3 100 kg mC   and 0 0 0 -3

1 2 4 0 kg mC C C   . We obtain 

the time evolutions of concentrations in the rooms of Figure 10. 

These results seem coherent with those of the previous figure. We notice the reduction of 

initial concentration, accumulations and then discharges in the other rooms according to time. 

This kind of classical evolution is also noticed by CONTAM software. However a 

confrontation of the two results reveal a difference for the speed of accumulation and the 

reduction of curves. This great difference is due on the one hand to the little disparity in the 

calculation of flows (cf. results part 4) and on the other hand to the difference in dispersion 

model used. Therefore we must look closely at the model. 

Indeed, the model used by CONTAM software [6] can be summarized by the following 

quantities. 

If we denote ,im  defined by notation ,i.im C , the product of the mass of contaminant α in 

zone i , with  im  the mass of air in the zone  i and ,iC  the mass fraction of concentration α, 

the time variation of this mass of contaminant is written as: 

 

,

, , , , , , , , , , ,

(  Airflow  
outside the zone inside the zone (  ) 1  

(1 )

st

i

i i i j i j i j i i i i i

j j
sourcedisplacement
generchimical reactionAirflow

filter order

dm
R C F C F C m C G

dt



        




         
)ation

,  (12) 
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where 
i,jF  is the mass flow between rooms of indices i and j,  

,iG  is the term source, 
,  are 

stœchiometric parameters linked to the chemical reactions, 
,iR is the term of displacement 

and 
,i,j  are the filter parameters. 

This is a conservation equation taking into account all the contributions intervening within the 

room. The terms similar to our model are those of airflow between the room and the term of 

generation (source). The modelling of the equation (12) uses filters at openings and an 

additional term of displacement. 

According to previous models results, the displacement term turns out not to be negligible for 

the estimation of concentration transfer within the building. We are going to propose a 

procedure of Bayesian method to identify these parameters. 

 

6. Bayesian estimation of parameter 

 

6.1. Introduction to Bayesian method 

 

To solve this difference in numerical results we are looking for a supplementary displacement 

term in the form C  and the filter parameters for our model.  

The technique employed looks like an optimisation method (fitting procedure). For each 

room, the parameters ,   and ,i j  associated concentration will be determined by Bayesian 

identification. 

Bayesian probability theory is currently experiencing an increase in popularity in the sciences 

as a means of probabilistic inference [19]. Bayesian methods can be used either for model 

selection problems or for parameter estimation problems. Advantages of Bayesian approach 

include the aptitude to incorporate prior information about model parameters into the analysis. 

This leads to obtain inference (up to Monte Carlo error) without need for large sampling 

approximations and notably, the development of the WinBUGS software [37, 38] gave an 

overview of using WinBUGS for Bayesian modelling and reviewed several models to 

estimate the sensitivity and specificity of multiple diagnostic tests. A good review of the 

Bayesian approach is given by Jaynes and Loredo [12, 16]. 

 

For parameter estimation problems, Bayesian inference deals with the estimation of the values 

of p model parameters 1 2( , , , )p     about which there may be some prior beliefs. These 

prior beliefs can be expressed as a probability density function (p.d.f) called prior, ( )   and 

may be interpreted as the probability placed on all possible parameter values before collecting 

any new data. The dependence of observations (or measurements) 1 2( , , , )ND d d d  on the 

p parameters   can be also expressed as a p.d.f.: ( / )L D   called the likelihood function. The 

latter is used to update the prior beliefs on , to account for the new data D. This updating is 

done through the Bayes’ theorem: 

 

( ) ( / )
( / )

( ) ( / )

L D
D

L D d


  
 

   



         (13) 
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Where ( / )D   represents the posterior p.d.f and expresses the values of the parameter after 

observing the new data. In other words, the prior is modified by the likelihood function to 

yield the posterior. 

In the Bayesian framework, uncertainties in parameter values are naturally assessed. For 

instance, the position of the maximum of the posterior p.d.f represents a best estimate of the 

parameter; its width or spread about this optimal value gives an indication of the uncertainty 

in the estimate of the parameters.  

 

In this paper, in order to estimate the parameters of our models by a Bayesian approach, the 

simulations are made with “WinBUGS”. The R [39] package R2WinBUGS [40] was used to 

call WINBUGS and export results in R. As we have no knowledge about the parameter values 

before collecting new data, we attributed a uniform distribution for the prior. 

6.2. Comparison of results 

 

Firstly the procedure consists in identify the filter parameters ,j k  associated at each input 

flux referenced j  for the different rooms of index k . Secondly we have to take into account a 

displacement term depending of concentration.  The masse conservation equation (9) can be 

rewritten as: 

i ,

, ,

i
i j k j k l m i

j k l m

C
V C m C m C S

t

 


     


  ,      (14 ) 

where index i refers to the room considered, index j and k are associated to the inflow and 

indexes l and m to the outflow.  

We are looking for the parameters denoted  ,   and ,j k  which appear in equation (15).  

The procedure is implemented using the BRugs package [15]. 

To determine the model’s parameters, we are interested by the evaluation of probability 

densities provided by the software. In order to determine the appropriate parameters which 

satisfy the model at best, these values are given by the maximum of the probability densities. 

With the initial values 0 -3

3 100 kg mC   and 0 0 0 -3

1 2 4 0kg mC C C   , for the rooms A, B, C 

and D to initialize our model, we statistically estimate the parameters which adjust the 

CONTAM software results. These reference simulations are done with a time step of one 

second. 

By this method, the maximum of probability density curve given by the BRugs package will 

nearly predict the best candidates.  

The obtained values are homogeneous for the four rooms. Concerning the replacement terms, 

the amplitude terms are about 10
-4

 and the exponential terms is lower than one. These global 

terms are moderated in amplitude: so we deduce than the displacement of concentration is 

mainly drived by the airflow.     

For the filter terms, the results give a majority of factor lower than one. These   factors 

correspond to the parameters denoted (1  ) in CONTAM software. The attenuation of the 

filters introduced by the   factor is well effective in this kind of simulation.  Otherwise we 

obtain an estimation of 1.207 for the parameter (7,4) even if the airflow calculation for this 

crack is satisfactory. 

Afterward the selection of these parameters allows us to compare our adjusted model with the 

concentration of computed by CONTAM software as in the preceding case. In order to do 

that, we plot the evolution of contaminant concentration in every room. The decrease of initial 

concentration in the room C is observed and the model matches accurately with the reference 
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data. The concentration increasing is represented in the three other rooms at first followed by 

the decreasing phase. These simulations are in total accordance to the software. The assumed 

overestimation of the parameter 
(7,4) seems to have a limited influence on the concentrations. 

At this stage, we can assert that the RAO model described by eq. 15 is suitable.  

 

We apply the same estimation procedure for the IEA model. According to the circulation of 

airflow in the building we choose to introduce the initial values 0 -3

1 100 kg mC  , 

0 -3

2 75 kg mC  , 0 -3

3 50 kg mC   and 0 -3

4 0kg mC  . 

The estimation of the smoothed kernel density for each parameter’s identification are 

quantified and reported. As for the preceding case most of parameters are coherent between 

them. Otherwise the   value of the room D ( 210 ) seems to be too wide compared to the 

others ( 410 ) and for the room C the parameter  (10,2)  obtained is superior to one.  

Using identified parameters, we can compare the new results for the IEA case to those 

simulated by the CONTAM software. The evolution of concentration for each room is then 

evaluated.  

We note a little difference in the decreasing form of the concentrations for the rooms A, B and 

C. These amplitudes disparity is significant but acceptable. Otherwise the difference is 

accentuated for the room D.  Our model underestimates the peak of concentration at this 

place. This failing is due to the strong value of  , responsible to the discharge phase and the 

weakness to parameters (6,1)  and (7,2) . These filter parameters seem to be close to 1. When 

one parameter is too small, a second one needs to compensate for the adjustment like for the 

room C in the IEA case and for the room B in the ROA case. Unfortunately we have not 

obtained convergence with the BRugs package for this scale of values.   

 

6.3. Remark 

The procedure proposed in the previous paragraph not allows us to obtain all the parameter of 

the model (12). In fact the filters parameters associated to openings with a positive inflow are 

cancelled by the null exterior concentration. We need to specify several different outdoor 

concentrations in CONTAM software, one concentration for each opening, in order to 

validate our model. A complementary experimental procedure of validation seems to be 

necessary to adjust some specific parameters and to set up a “crossed estimate” taking into 

account several groups of parameters. For example, an experimental procedure of combined 

opened/closed crack will be necessary to characterise one after another all the openings. 

 

7. Conclusion 

 

 

These simulations enabled us to test two traditional cases, the RAO case and the IEA case 

with COMIS software and CONTAM software. The results are summarized on Fig. 7 and Fig. 

8 for airflow simulations. 

In order to implement a contaminant dispersion model in CODYRUN software we presented 

a module to calculate in a first step, the flows at the openings and in the second step, the 

estimation of time variation for one or several concentrations in the different rooms (in 

absence of chemical reactions). 
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This model is simple and effective. It gives values comparable to those of others commercial 

software of reference. The values of concentrations are underestimated when we neglect filter 

at the openings. These filters tend to attenuate the exchange between the rooms. 

 

The simulations have showed the relative importance of displacement term in the formulation 

of contaminant variation. 

 

A first approach of parameters estimation is proposed. The results obtained using Bayesian 

inference are similar to those obtained with commercial software. 

 

The following stage will consist in taking into account the thermal equations. Indeed, the 

temperature field may modify the airflow. Consequently, the distribution of concentration 

could be significantly affected. 

 

Furthermore, we propose to set up a procedure of validation thanks to the use of concentration 

sensors in order to dispose experimental measurements [14]. These data will allow us to 

complete the model validation procedure and if necessary to refine the model of   pollutants' 

dispersion. 

 

Otherwise a procedure of model comparison is possible to refine the model of displacement. It 

will be supplemented by the correlation of searched parameters with the physical and 

geometric properties of openings to offer a practical tabulation of parameters α and β. 
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Tables 

 

 

Path Cp C [m3s-1Pa-n] n Height [m] Path Cp C [m3s-1Pa-n] n Height [m] 

1 +0.9 0.005 0.66 5.0 5 0.0 0.015 0.66 5.5 

2 +0.3 0.008 0.66 1.0 6 0.0 0.020 0.66 3.0 

3 -0.4 0.007 0.66 5.0 7 0.0 0.020 0.66 3.0 

4 -0.3 0.009 0.66 2.0 8 0.0 0.015 0.66 1.5 

Tab. 1.  Flow element parameters for the RAO test case 

 

 

 

Path Cp C [m3s-1Pa-n] n Height [m] Path Cp C [m3s-1Pa-n] n Height [m] 

1 +0.2 0.02 0.65 2.0 6 0.0 2.0 0.50 1.0 

2 +0.4 0.02 0.65 5.0 7 0.0 0.04 0.50 4.0 

3 +0.5 0.02 0.65 8.0 8 0.0 0.04 0.50 7.0 

4 -0.4 0.02 0.65 9.0 9 0.0 0.004 0.50 3.0 

5 -0.3 0.02 0.65 1.0 10 0.0 0.004 0.50 6.0 

Tab. 2.  Flow element parameters for the IEA test case 

 

Room  β ( , )j k  

A -0.0002808 0.395 (6,3) = 0.9882 

B -0.000964 0.8738 
(5,1) : 0.2873 

(7,4) : 1.207 

C -0.0007427 0.6436  

D -0.0009862 0.219 (8,3) : 0.992 

Tab. 3.  Identification of parameters for RAO model 

 

room  β 
( , )j k  

A 0.003331 0.9971  

B 0.001241 0.9593 
(9,2) : 0.7695 

C  

0.0003706 

 

0.3923 
(10,2) : 1.286 

(8,4) : 0.565 

D  

0.01157 

 

0.9866 
(6,1) : 0.5404 

(7,2) : 0.5441 

Tab. 4.  Identification of parameter for model IEA 
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Figures 

 

 
Fig. 1. The « RAO » building 

 

 
Fig. 2. The « IEA » building 

 

 

 
  

Fig. 3. Results for RAO building 
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Fig. 4. Results for RAO building 

 

 
Fig. 5. Airflow for each crack (RAO case above and IEA one down) 
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Fig. 6. Variation of C02 in rooms. 

 

 
Fig. 7. Variation of C02 concentration in the same room (IEA case) 
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Fig. 8. Parameters ,  and (6,3)  for the room A 
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Fig. 9. Parameters , β, (5,1)  and (7,4)  for the room B 
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Fig. 10. Parameters  and β for the room C 
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Fig. 11. Parameters ,  and (8,3)  for the room D 

 

 

 

 

 
 

Fig. 12. Comparison of concentration results for each rooms 
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Fig. 13. Parameters ,  for the room A 
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Fig. 14. Parameters ,   and (9,1)  for the room B 
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Fig. 15. Parameters ,  , (10,2)  and (8,4)  for the room C 
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Fig. 16. Parameters ,  , (6,1)  and (7,2)  for the room D 

 

 

 

 

 

 
 

 
Fig. 17. Comparison of concentration results for each room 
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Je me demande s’il faut mettre ce système d’équations avec les paramètres ou pas (à la place 

de l’autre) 

 

Le modèle IEA: 

 

1
1 1,0 1 0 6 1 9 1 1

2
2 2,0 2 0 9,1 9 1 10 2 7 2 2

3
3 10,2 10 2 8,4 8 4 3 3 3

4
4 6,1 6 1 7,2 7 2 5,0 5 0 8 4 4 4 4

C
V F m C m C m C S

t

C
V F m C F m C m C m C S

t

C
V F m C F m C m C S

t

C
V F m C F m C F m C m C m C S

t


   




    




   




     



 

 

 

Le modèle RAO: 

 

1
1 2 0 63 6 3 5 2 1 1

2
2 51 5 1 74 7 4 3 2 2 2

3
3 10 1 0 6 3 8 3 3 3

4
4 83 8 3 4 4 7 4 4 4

C
V m C F m C m C C S

t

C
V F m C F m C m C C S

t

C
V F m C m C m C C S

t

C
V F m C m C m C C S

t


















    




    




    




    



 

 

 


