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Abstract

I propose a Galerkin projection method for solving dynamic economic models with many state vari-
ables. This method employs non-product monomial integration formulas for the computation of
weighted residuals, and its computational cost therefore increases only polynomially in the model’s
dimensionality. I illustrate the practical implementation of the proposed algorithm by solving sev-
eral specifications of the multi-country Real Business Cycle model described in Den Haan et al.
[2010. Computational Suite of Models with Heterogeneous Agents: Multi-country Real Business
Cycle Models, Journal of Economic Dynamics and Control, this issue], and briefly discuss two
possible routes for further improving its numerical accuracy.
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1. Introduction

Projection methods (or weighted residual methods) have a long tradition in the natural sciences
to solve systems of functional equations. In economics, they have first been introduced by Judd
(1992) as a numerical solution method for aggregate growth models. Ever since, projection methods
have become the arguably most popular approach for obtaining globally accurate numerical solutions
to dynamic equilibrium models that lack analytical tractability.1 Contributing largely to their
success is the fact that projection methods are extremely flexible and often perform better than
alternative strategies when the researcher seeks highly accurate numerical solutions (Christiano
and Fisher, 2000; Aruoba et al., 2006).

The projection approach to solving stochastic recursive economic models proceeds in the fol-
lowing steps. First, the model’s true equilibrium decision rules are replaced by parametric ap-
proximating functions which typically take the form of polynomials or spline functions. Second, a
numerical integration method is used to approximate the conditional expectations in the model’s
intertemporal equilibrium conditions. Third, a set of grid points in the state space is selected,
and the approximation error (residual) in the model’s equilibrium conditions at each grid point
is computed. Finally, the unknown parameters in the approximating functions are determined by
minimizing the residuals subject to some loss criterion. According to the specific choice of loss
criterion, projection methods fall into three categories: collocation, least squares, and Galerkin
methods. Collocation selects as many grid points as there are unknown parameters in the approx-
imating functions, and determines these parameters by equating the residual at each grid point to
zero. The least squares and Galerkin approaches, in turn, use larger sets of grid points, i.e., more
grid points than parameters. The parameters are pinned down by minimizing the sum of squared
residuals, in the case of least squares, or by equating weighted averages of the residuals to zero, in
the case of Galerkin. Computing these weighted averages amounts to solving a numerical integra-
tion problem, which is however of a different kind than the problem of approximating conditional
expectations. A key step in the Galerkin algorithm is to choose the numerical integration methods
to be used for both these tasks.

Computational economics textbooks (e.g., Judd, 1998; Marimon and Scott, 1999; Miranda and
Fackler, 2002) present the Galerkin method resorting to Gaussian integration rules. In particular,
Gauss-Chebyshev or Gauss-Legendre integration is used for computing weighted averages over resid-
uals, whereas Gauss-Hermite integration is used for approximating conditional expectations. In low
dimensional applications, Gaussian rules are attractive: they are relatively easy to code, fast, and
accurate. In particular, univariate Gaussian quadrature methods can easily be extended to multi-
dimensional settings using the tensor-product operator. While being conceptually straightforward,
this approach is computationally costly as the number of grid points that have to be considered
grows exponentially in the model’s dimensionality (i.e., in the number of state variables). As a
consequence, so does the computational cost associated with finding the unknown coefficients in
the model’s approximating decision rules, i.e., Galerkin methods using Gaussian product rules suf-

1See Reiter (2009), Niemann et al. (2010), Den Haan et al. (2010), Den Haan and Rendahl (2010), or Maliar et
al. (2010) for just a few recent examples of their application in economics.
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fer from the curse of dimensionality.2 This property renders the “conventional” textbook Galerkin
method infeasible for models with more than a few state variables.3

In the present paper I describe a Galerkin method that avoids the curse of dimensionality and
therefore can be applied to models with many state variables. This method resorts to non-product
monomial cubature rules for solving the numerical multi-dimensional integration problems arising
in (i) the approximation of conditional expectations and (ii) the computation of weighted residuals.
The computational cost of the described Galerkin method increases only polynomially (rather than
exponentially) in the dimension of the model to be solved, and the method thus remains feasible
even for relatively high-dimensional problems. I illustrate this key property by solving the multi-
country Real Business Cycle model of the comparison project described in Den Haan et al. (2010).
The model specifications solved involve up to twenty continuous-valued state variables.

While the present paper illustrates the methodology by means of a Real Business Cycle model,
there are many other applications where the described method is of potential value. In particu-
lar, these include applications where resorting to local approximation methods may not be easily
possible. For example, economic models featuring occasionally binding inequality constraints such
as a zero-floor on nominal interest rates, capacity constraints, or investment irreversibility fall into
this category. Moreover, local approximations around a non-stochastic steady state are typically
infeasible for dynamic models with strategic interaction. In these models, optimal behavior is char-
acterized by generalized Euler equations that involve the derivatives of some equilibrium decision
rules, and thus it is impossible to compute the steady state independent of these rules (Ortigueira,
2006; Martin 2009). Global approximation methods, such as the Galerkin method described in the
present paper, are clearly preferable to local methods in such applications.4

Finally, it is worth emphasizing that the present paper is not the first to suggest the use of
non-product monomial integration formulas in the context of rational expectations models. The
idea to employ such rules for approximating conditional expectations dates back to at least Den
Haan et al. (2004). Moreover, Heer and Maussner (2006) have proposed a Galerkin approach based
on a non-product monomial cubature rule by Mustard et al. (1963). Although their approach
reduces the computational burden compared to the standard approach, it still suffers from the
curse of dimensionality (i.e., the computational cost still increases exponentially in the state space
dimension) and, consequently, the approach cannot be applied to relatively large models. Moreover,
the method proposed by Heer and Maussner requires to evaluate the model’s residual function at
the boundaries of the relevant state space, which, as they point out, leads to numerical instabilities.

2The term curse of dimensionality was coined by Bellman (1961) and refers, in its most general interpretation,
to the exponential increase in hypervolume when adding extra dimensions to a mathematical space. In economics,
it is used mostly in the context of approximating functions (or integrands) arising in recursive dynamic models.
Specifically, within these applications, the curse of dimensionality refers to the exponential rise in the computational
cost associated with numerically approximating a certain function when the number of arguments of this function
increases; see Doraszelski and Judd (2005) or Winschel and Kraetzig (2010).

3This is true also for the “conventional” collocation and least squares projection methods. These methods,
too, employ tensor-grids of points in the state space at which the residuals have to be computed, and thus their
computational cost increases exponentially in the model dimension.

4Other global solution methods that are of potential value within the outlined applications are described in the
contributions to this special issue by Malin, Krueger, and Kubler (2010) and Maliar, Maliar, and Judd (2010).
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The Galerkin method described in the present paper thus improves upon their contribution in two
important ways. First, it remains applicable even for large models. Second, the solution algorithm
is numerically stable and thus easy to use.

The remainder of this paper is organized as follows. Section 2 provides a brief introduction to
solving multi-dimensional integration problems using monomial cubature rules. Section 3 presents
the general description of a Galerkin weighted residual method employing non-product monomial
rules. Section 4 illustrates the implementation of the Galerkin method in practical applications
using the multi-country Real Business Cycle model by Den Haan et al. (2010). Finally, Section 5
briefly discusses two possible routes for further improving the numerical accuracy of the algorithm.

2. Monomial cubature rules

The key property of the proposed Galerkin method is its use of efficient multi-dimensional inte-
gration techniques, i.e., non-product monomial cubature rules, for computing weighted residuals.5

Specifically, these rules are used for (i) the Galerkin integration step, i.e., computing weighted
averages over residuals and (ii) approximating the conditional expectations in the model’s dynamic
equilibrium conditions. In this section I briefly overview monomial rules that can be applied for
these two tasks. Most of the presented material is taken from Stroud (1971), Phillips (1980), and
Judd (1998), and the interested reader is referred to these references for a rigorous treatment of
monomial rules.

Consider the general integration problem

I(f) =

∫
S

f(x)dx (1)

where S ⊆ R
n is a region in the n-dimensional space, and f is a real-valued function on S. Let

Î(f) be a numerical approximation to I(f) of the form

Î(f) =
∑

i

ωif(x(i)), (2)

with real weights ωi and grid points x(i) ∈ R
n.

Definition 1. A monomial cubature rule of degree d is a numerical approximation Î(f) that sat-
isfies Î(f) = I(f) whenever the function f is a monomial of degree not greater than d.

A monomial of degree d is a function xi1
1 ...x

in
n with ij ≥ 0 and i1 + ... + in = d. Notice that a

polynomial of degree d is a linear combination of monomials, with at least one monomial being of
degree d and all others of degree not greater than d. It therefore follows trivially that a degree d
monomial rule is exact for all polynomials of degree not greater than d. The parameter d is often
referred to as the rule’s polynomial degree (of exactness).

5In the mathematics literature, the term cubature is typically used for multivariate integration whereas the term
quadrature refers to univariate integration; see Krommer and Ueberhuber (1998).
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In the mathematics literature there exists a large variety of monomial cubature rules for many
common regions of integration, including the hypercube, the hypersphere, and the entire n-dimensional
space with various weight functions. Stroud (1971) and Cools (2003) provide an encyclopedic treat-
ment of several hundred rules for dozens of different regions. In the following, monomial rules for
the hypercube and the n-dimensional space with weight function e−x2

will be briefly examined.
The first type of rules applies to the Galerkin integration step, while the second type of rules can
be used to approximate conditional expectations.

2.1. Rules for the hypercube

Consider integration over the n-dimensional unit hypercube,

I(f) =

∫
[−1,1]n

f(x)dx. (3)

The choice of region S = Cn = [−1, 1]n is not overly restrictive, as many common regions of
integration can easily be transformed to Cn by change of variables techniques.6 In particular, any
n-dimensional hypercube [a1, b1]× [a2, b2]×· · ·× [an, bn] can be transformed into Cn using the linear
change of variables yj = 2(xj − aj)/(bj − aj)− 1 for j = 1, ..., n.

The arguably most simple and popular rule for the hypercube is the Gauss-Chebyshev product
rule. For the integration problem (3), a Gauss-Chebyshev rule using m points in each dimension
establishes an approximation of polynomial degree 2m− 1,

Î(f) =
( π
m

)n
m∑

i1=1

m∑
i2=1

· · ·
m∑

in=1

f(x̂i1, x̂i2 , ..., x̂in)W (x̂i1 , x̂i2 , ..., x̂in), (4)

with W (x̂i1, x̂i2 , ..., x̂in) =
∏n

j=1(1− x̂2
ij
)

1
2 , and where the grid points x̂k = cos

(
2k−1
2m

π
)
, k = 1, .., m,

are the roots of the univariate Chebyshev polynomial of order m. An attractive feature of the
rule (4) is that a researcher can easily target the degree of polynomial exactness by choosing the
number of points m used in each dimension. Its main weakness is that, due to its product form,
the Gauss-Chebyshev rule suffers from the curse of dimensionality: for any given m, the number of
grid points employed, mn, grows exponentially in the dimension of the integration problem. As a
consequence of this property, the rule is computationally infeasible for high-dimensional problems.

Certain non-product monomial rules avoid the curse of dimensionality by operating only on
a sparse set of grid points rather than a full tensor-grid. In general, the construction of non-
product rules can be difficult, because a degree d rule in n dimensions must exactly integrate

(
n+d

n

)
monomials and thus the construction of such a rule typically involves solving a large system of
non-linear equations. For symmetric regions such as the hypercube, however, some monomial rules
can be derived fairly easily as the following theorem is available (Hammer and Stroud, 1957, p.63):

Theorem 1. A fully symmetric rule Î(f) applied to a fully symmetric n-dimensional region S is
of degree d if and only if it is exact for all monomials of degree ≤ d of the form x2i1

1 x2i2
2 . . . x2in

n with
i1 ≥ i2 ≥ · · · ≥ in ≥ 0.

6See chapter 7.2 of Krommer and Ueberhuber (1998) or chapter 7 of Judd (1998) on the application of change
of variables techniques in the context of numerical integration.
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Theorem 1 is extremely helpful in constructing monomial rules, as it substantially reduces the
number of monomials one has to consider. For example, a degree d = 5 rule in n = 10 dimensions
has to exactly integrate all

(
n+d

n

)
=

(
15
10

)
= 3003 monomials of degree ≤ 5. By Theorem 1, this is

automatically guaranteed if the rule is fully symmetric and exactly integrates the four monomials
1, x2

1, x
2
1x

2
2, and x4

1.
Note that fully symmetric monomial rules are rules that employ grid points which are all elements

of fully symmetric sets of points in S, with the same weight given to every point in a certain set.

Definition 2. The fully symmetric set of x, (x1, ..., xn)FS, is the set of all points (±xi1 ,±xi2 , ...,±xin)
where (i1, i2, ..., in) is any permutation of (1, 2, ..., n).

A region S, in turn, is fully symmetric if (x1, ..., xn) ∈ S implies (x1, ..., xn)FS ⊆ S. In what follows,
I will use the shorter notation G1

n(α1) = (α1, 0, 0, 0, ..., 0)FS, G2
n(α1, α2) = (α1, α1, 0, 0, ..., 0)FS,

G3
n(α1, α2, α3) = (α1, α2, α3, 0, ..., 0)FS, etc. to denote fully symmetric sets.7

To emphasize how useful Theorem 1 is for constructing monomial rules, let me briefly sketch the
derivation of one such rule for the hypercube. This rule, which is originally due to Hammer and
Stroud (1958), will play a prominent role in the Galerkin weighted residual method to be developed
in Section 3. Consider an approximation of the form

Î(f) = ω0f(0) + ω1

∑
x∈G1

n(r)

f(x) + ω2

∑
x∈G2

n(r,r)

f(x). (5)

Note that the summation is over 2n and 2n(n − 1) grid points, respectively, and that, according
to Theorem 1, the rule (5) is exact of polynomial degree d = 5 if it exactly integrates the four
monomials 1, x2

1, x
2
1x

2
2, and x4

1. It is straightforward to derive I(1) = 2n, I(x2
1) = 2n/3, I(x4

1) =
2n/5, and I(x2

1x
2
2) = 2n/9, such that the latter requirement translates into the following system of

equations:

2n = ω0 + 2nω1 + 2n(n− 1)ω2, (6)

2n/3 = 2r2ω1 + 4(n− 1)r2ω2, (7)

2n/5 = 2r4ω1 + 4(n− 1)r4ω2, (8)

2n/9 = 4r4ω2. (9)

The solution of this system is r =
√

3/5, ω0 = 2n (25n2−115n+162)
162

, ω1 = 2n (70−25n)
162

, and ω2 = 2n 25
324

.
The following proposition summarizes these findings:

Proposition 1. [Cnd5] The numerical integration formula

Î(f) = ω0f(0) + ω1

∑
x∈G1

n(r)

f(x) + ω2

∑
x∈G2

n(r,r)

f(x),

with r =
√

3/5, ω0 = 2n (25n2−115n+162)
162

, ω1 = 2n (70−25n)
162

, and ω2 = 2n 25
324

is a degree 5 monomial
rule for Cn using 2n2 + 1 grid points.

7For example, the set G1
2(1) = (1, 0)FS is comprised of the four points (1, 0), (−1, 0), (0, 1) and (0,−1); the

set G2
2 (1, 2) is comprised of the eight points (1, 2), (−1, 2), (1,−2), (−1,−2), (2, 1), (−2, 1), (2,−1), and (−2,−1),

respectively.

6



In a completely analogous way, one can construct other monomial rules for the hypercube. One
such rule is the degree 7 rule due to Stenger (1971). The coefficients of this rule, however, are the
solution to a non-linear system of equation, and thus cannot be obtained in closed form (i.e., as
functions of the dimension n). Stenger (1971) provides the coefficients u, v, ω0, ω1, ω2, ω3, ω4, and
ω5 in tabulated form for 2 ≤ n ≤ 20.

Proposition 2. [Cnd7] The numerical integration formula

Î(f) = ω0f(0) + ω1

∑
x∈G1

n(u)

f(x) + ω2

∑
x∈G1

n(v)

f(x) + ω3

∑
x∈G2

n(u,u)

f(x) + ω4

∑
x∈G2

n(v,v)

f(x) + ω5

∑
x∈G3

n(u,u,u)

f(x),

with u, v, ω0, ω1, ω2, ω3, ω4, and ω5 such that Î(f) = I(f) for f ∈ {1, x2
1, x

4
1, x

6
1, x

2
1x

2
2, x

4
1x

2
2, x

2
1x

2
2x

2
3},

is a degree 7 monomial rule for Cn using (4n3 + 8n+ 3)/3 grid points.

Finally, notice that the number of grid points used by [Cnd5] and [Cnd7], respectively, grows
only polynomially in the dimension n. Thus, both rules are not subject to the curse of dimension-
ality and, for large n, deliver a better trade-off between speed and accuracy (as measured by the
polynomial degree) than Gaussian product rules.

2.2. Rules for the n-dimensional space with weight function e−x2

Integration over the entire n-dimensional Euclidian space with weight function e−x2
, Er2

n , is
encountered frequently in economic problems: it arises in the computation of the expected value
of a function of normally distributed random variables. Specifically, if y is an n-dimensional vector
of i.i.d. standard normal random variables and g is a non-linear function, then

E(g(y1, y2, ..., yn)) = (2π)−n/2

∫
Rn

g(y1, y2, ..., yn)e
−∑n

j=1

y2
j
2 dy (10)

where E is the expectations operator. Using the change of variables xi = yi/
√

2, expression (10)
can be written as

E(g(y1, y2, ..., yn)) = π−n/2

∫
Rn

g̃(x1, x2, ..., xn)e−
∑n

j=1 x2
jdx = π−n/2I(g̃ · w̃), (11)

where g̃(x1, x2, ..., xn) = g(
√

2x1,
√

2x2, ...,
√

2xn) and w̃(x1, x2, ..., xn) = e−
∑n

j=1 x2
jdx.

If the dimension of integration is low, one possibility to approximate the integral on the right
hand-side of (11) is by resorting to Gauss-Hermite product rules. A Gauss-Hermite rule with m
points in each dimension gives a degree 2m− 1 approximation of the form,

Î(g̃ · w̃) =

m∑
i1=1

m∑
i2=1

· · ·
m∑

in=1

ωi1ωi2 . . . ωin g̃(x̃i1 , x̃i2, ..., x̃in), (12)

where x̃j , j = 1, ..., m, are the roots of the degree m Hermite polynomial Hm, and ωj = 2m−1m!
√

π
m2[Hm−1(x̃j)]2

is the weight associated with grid point x̃j .
If the dimension of integration is relatively large, the curse of dimensionality impedes the use

of Gauss-Hermite integration in practical applications. In such applications one can again resort
to non-product monomial rules. Stroud and Secrest (1963) derive the following two rules (covered
also in chapter 7 of Judd, 1998):
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Proposition 3. [Er2

n d3] The numerical integration formula

Î(g̃ · w̃) = πn/2 1

2n

∑
x∈G1

n(r)

g̃(x),

with r =
√
n/2 is a degree 3 monomial rule for Er2

n using 2n grid points.

Proposition 4. [Er2

n d5] The numerical integration formula

Î(g̃ · w̃) = ω0g̃(0) + ω1

∑
x∈G1

n(r)

g̃(x) + ω2

∑
x∈G2

n(s,s)

g̃(x), (13)

with r =
√

n+2
2

, s =
√

n+2
4

, ω0 = πn/2 2
n+2

, ω1 = πn/2 4−n
2(n+2)2

, and ω2 = πn/2 1
(n+2)2

is a degree 5

monomial rule for Er2

n using 2n2 + 1 grid points.

The number of grid points used by the degree d = 3 rule, [Er2

n d3], grows only linearly in n. This
is an attractive feature, as it implies that the rule is applicable even in very high-dimensional
problems. The rule [Er2

n d5], on the other hand, is of higher polynomial degree (d = 5) but the
number of grid points it uses grows faster (quadratically) in n.

3. A non-product monomial-rule Galerkin method

Having discussed non-product monomial rules, I now turn to the description of a Galerkin
projection method that employs these rules. The described method applies to recursive dynamic
models that can be represented as

R(f) = 0, (14)

where R : B1 → B2 is a non-linear operator, B1 and B2 are function spaces, and f : X → D is a
vector-valued decision rule that maps the state space X ⊆ R

nx into the decision space D ⊆ R
nd.

The proposed Galerkin method produces a global polynomial approximation f̂ : X → D to the
true decision rule, such that R(f̂ ) ≈ 0 over the relevant state space.

A brief outline of the algorithm is as follows:

1. Select approximating functions f̂l(x; κ
l), l = 1, ..., nd, with x ∈ X being a vector of nx state

variables and κl being a vector of ñκ coefficients.

2. Construct a computable operator R̂ by using a non-product monomial rule to approximate
conditional expectations.

3. Use the basis functions of f̂l as weighting functions ωi(x), i = 1, ..., ñκ, construct the multi-
dimensional approximating function

f̂(x; κ) =

⎛
⎜⎝

f̂1(x; κ
1)

...

f̂nd
(x; κnd)

⎞
⎟⎠ ,

8



where κ = (κ1, ..., κnd)′, and compute the weighted residuals∫
X

R̂l(f̂(x; κ))ωi(x)dx, i = 1, ..., ñκ, l = 1, ..., nd,

using a non-product monomial rule for the integration step.8

4. Search for the nκ = nd × ñκ coefficients in κ that equate all weighted residuals to zero.

The following subsections discuss each step in greater detail.

3.1. Selection of approximating functions

The first step in implementing the Galerkin algorithm is to select the approximating functions,
i.e., the basis and approximation degree. In principle, the method is compatible with many different
sets of basis functions. The present paper employs as basis a complete set of Chebyshev polynomials
(Judd, 1992; Gaspar and Judd, 1997). The approximation for each parameterized decision rule thus
takes the form

f̂l(x; κ
l) =

ñκ∑
i=1

κl
iψi(ξ(x)) (15)

where ξ is a linear mapping from the state space X into [−1, 1]nx and ψi(ξ(x)) ∈ Ψ with

Ψ =

{
nx∏
j=1

Tij (ξ(xj))
∣∣∣ nx∑

j=1

ij ≤ p, 0 ≤ i1, ..., inx

}

being a complete set of Chebyshev polynomials of total degree p in nx variables.9 The choice of
approximation order p is typically a matter of computational cost. For large models, such as the
multi-country Real Business Cycle model with several countries, computing high-order approxima-
tions is impeded by the large associated computational cost, and the researcher is confined to work
with linear or quadratic approximations, respectively.

3.2. Choice of numerical method to evaluate conditional expectations

If the model to be solved is stochastic and features random variables with continuous support,
the operatorR(f̂(x; κ)) in general cannot be evaluated without approximation error on a computer:
it involves conditional expectations over non-linear functions of the model’s variables which cannot
be computed in closed form. R therefore has to be replaced with a computable operator R̂ by
using a numerical method to approximate the conditional expectations. Section 2.2 has presented
some methods that can be used for this purpose. In choosing between these methods, one typically
faces a trade-off between speed and accuracy. For example, the degree five rule [Er2

n d5] may be the
optimal choice for medium scale models, but for larger models the degree three rule [Er2

n d3] might
be more attractive due to its low computational cost.

8R̂l denotes the l-th equation in the multi-dimensional operator R̂.
9Univariate Chebyshev polynomials are defined by the recursion T0(y) = 1, T1(y) = y, Tj(y) = 2yTj−1(y) −

Tj−2(y), j = 2, 3, .... Multivariate Chebyshev polynomials can be easily constructed as the products of the respective
univariate polynomials.
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3.3. Computation of weighted residuals

While the model’s true solution satisfies R(f) = 0 over the entire state space X, R̂(f̂(x; κ))
is typically not equal to zero due to approximation error; R̂ is therefore often referred to as the
model’s residual function. The Galerkin method determines the coefficients κ of the approximating
polynomial by constructing a system of weighted sums (or averages) over residuals and equating
these sums to zero. As originally proposed by Galerkin (1915), the weighting functions are the
basis functions of the approximating polynomial, ωi(x) = ψi(ξ(x)).

10 The weighted residuals are
thus given by

ûl,i(κ) =

∫
X

R̂l(f̂(x; κ))ωi(x)dx (16)

for i = 1, ..., ñκ and l = 1, ..., nd. Section 2.1 has presented several methods to solve the integration
problem in (16), including two non-product monomial rules of degrees d = 5 and d = 7, respectively.
In order to apply these rules, the following identity can be exploited:∫

X

R̂l(f̂(x; κ))ψi(ξ(x))dx =

∫
Cn

g(z)dz

where Cn = [−1, 1]nx, z = ξ(x), and g(z) = R̂l(f̂(ξ−1(z); κ))ψi(z)[ξ
′(x)]−1.

Rule [Cnd5] is particularly attractive for the integration step. First, it uses only points that are
well inside the hypercube; this contributes to the numerical stability of the Galerkin algorithm by
avoiding that variables get out of bounds as described in Heer and Maussner (2006). Second, the
rule [Cnd5] is quite efficient, i.e., it uses the lowest number of grid points of all degree 5 monomial
rules currently known (Cools, 2003). Figure 1 shows the grid points employed by [Cnd5] for three
dimensions, and compares them to alternative approaches (the Smolyak algorithm used by Malin
et al. (2010) and the Gauss-Chebyshev integration rule).

A drawback of rule [Cnd5] is that it only allows for first and second-order approximations to
the decision rules, i.e. p ≤ 2. This is a consequence of its specific choice of grid points, causing
the regressors in the approximate functions (15) to be linearly dependent for p ≥ 3. As hinted
before, this shortcoming is not overly restrictive for relatively large models (say, models with more
than 10-15 state variables) as higher-order approximations are arguably infeasible for any global
solution method due to their huge computational cost. For smaller models, however, we may want
to compute such higher-order approximations. In particular, obtaining third-order approximations
can be important in applications where a value function is parameterized, because third-order
accurate value functions are often needed to obtain second-order accurate decision rules. In such
applications, one can resort to the rule [Cnd7]. This rule does allow for an approximation order
p = 3, but it is computationally more costly than [Cnd5] as illustrated by Table 1.

10Since the basis functions are chosen from a complete set of functions, using them as weighting functions implies
that the Galerkin solution approaches the true solution as more and more basis functions are included (as the order
of approximation p goes to infinity). This argument employs the fact that the residual function R̂ is continuous
over X , and therefore it is identically zero if it is orthogonal to every member of a complete set of functions; see
McGrattan (1999, p. 117).
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Figure 1: Grid points in three dimensions
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Note: For clarity, the top three panels show the grid points of the rule [Cnd5] in two of the three dimensions, holding
the third dimension fixed at 0; the bottom left panel shows the three-dimensional grid. To ease comparison with
alternative methods, the bottom middle panel and the bottom right panel illustrate the grids associated with the
Smolyak and Gauss-Chebychev approach, respectively.

Table 1: Number of grid points used by different integration formulas
Formula Dimension (nx)

2 3 4 12 20
Gaussian (d = 5) 3nx 9 27 81 531.441 3.486.784.401
[Cnd5] 2nx

2 + 1 9 19 33 289 801
[Cnd7] (4nx

3 + 8nx + 3)/3 17 45 97 2.337 10.721

3.4. Finding the solution

In the last step of the Galerkin algorithm, the parameter vector κ is determined such that
weighted residuals equal zero. This amounts to solving a system of nκ nonlinear equations in nκ
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unknowns,

ûl,i(κ) = 0, i = 1, ..., ñκ, l = 1, ..., nd. (17)

Given a proper initial guess, obtained for example from a log-linear solution of the model, it
is conceptually straightforward to solve (17). Among other alternatives, one can use a Newton
method as described in chapter 4 of Judd (1998). The present paper follows this strategy to
determine the parameter vector such that (17) holds. Using this vector in (15) finally gives the
model’s approximate solution f̂ .

4. Implementing the algorithm to solve the multi-country Real Business Cycle model

In this section I describe the proposed Galerkin method within a particular application. Specifi-
cally, I illustrate the implementation of the method to solve the multi-country Real Business Cycle
model in Den Haan et al. (2010). Juillard and Villemot (2010) provide a detailed description of this
model, discussing four variants (I-IV ) which differ with respect to the functional forms chosen for
the utility and production functions. In the present paper, I provide only the minimal description
of the economy sufficient to describe the implementation of the solution algorithm.

A key feature of the model to be solved is that the decentralized equilibrium is Pareto-optimal
and therefore can be derived by solving an appropriately designed social planner’s problem. The
planner’s optimality conditions are given by:

0 = τ ju′jc(c
j
t , 	

j
t)− λt, (18)

0 = τ ju′j�(c
j
t , 	

j
t) + λta

j
tf
′j
�(k

j
t , 	

j
t), (19)

0 = λt

[
1 + φ

(
ijt

kj
t

− δ

)]
(20)

− βEt

{
λt+1

[
1 + aj

t+1f
′j
k(k

j
t+1, 	l

j
t+1) + φ

(
1 +

1

2

(
ijt+1

kj
t+1

− δ

))(
ijt+1

kj
t+1

− δ

)]}
,

0 = kj
t+1 − (1− δ)kj

t − ijt , (21)

0 =
N∑

j=1

(
cjt + ijt − δkj

t

)− N∑
j=1

⎡
⎣aj

tf
j(kj

t , 	
j
t)−

φ

2
kj

t

(
ijt

kj
t

− δ

)2
⎤
⎦ , (22)

0 = ln aj
t − ρ ln aj

t−1 − σ(et + ej
t ). (23)

The parameter τ j is the weight given to country j ∈ {1, ..., N} in the planner’s optimization
problem, with N being the total number of countries; uj(cjt , 	

j
t) gives country j’s instantaneous

utility as a function of its period-t consumption cjt and labor effort 	jt ; u
′j
c and u′j� denote marginal

utilities; λt is the Lagrangian multiplier attached to the world budget constraint; aj
t denotes country

j’s technology level; aj
tf

j(kj
t , 	

j
t) gives country j’s production net of capital depreciation, with

kj
t being the capital stock employed in country j; f ′jk and f ′j� denote marginal productivities; φ

determines the size of capital adjustment costs; δ is the capital depreciation rate; β is the planner’s
time preference factor; ρ and σ determine the persistence and volatility of the countries’ technology
levels; et and ej

t denote aggregate respectively idiosyncratic i.i.d. N(0, 1) technology innovations.
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4.1. Solving variant I of the multi-country Real Business Cycle model
In the following, I describe the implementation of the Galerkin method to solve model I in

Juillard and Villemot (2010). This model features inelastic labor supply (each country supplies
one unit of labor), a CRRA utility function in consumption with γj denoting the inverse of the
coefficient of relative risk aversion, and a Cobb-Douglas production function f j(kj

t , 	
j
t) = A(kj

t )
α,

with parameters α ∈ (0, 1) and A > 0. As there is no labor choice, and eliminating the exogenous
laws of motion for the productivity levels, one can characterize the model’s equilibrium by the
3N + 1 conditions:

0 = τ j(cjt )
−γj − λt, (24)

0 = λt

[
1 + φ

(
ijt

kj
t

− δ

)]
(25)

− βEt

{
λt+1

[
1 + (aj

t)
ρeσ(et+1+ej

t+1)Aα(kj
t+1)

α−1
+
φ

2

(
2− δ +

ijt+1

kj
t+1

)(
ijt+1

kj
t+1

− δ

)]}
,

0 = kj
t+1 − (1− δ)kj

t − ijt , (26)

0 =

N∑
j=1

(
cjt + ijt − δkj

t

)− N∑
j=1

⎡
⎣aj

tf
j(kj

t , 	
j
t)−

φ

2
kj

t

(
ijt

kj
t

− δ

)2
⎤
⎦ (27)

with j = 1, ..., N . Notice that, at the time when period-t decisions are made, the state vector
composed of capital stocks and productivity levels, xt = (k1

t , ..., k
N
t , a

1
t , ..., a

N
t ), is known. The

planner’s optimal decisions can be expressed as functions of this state vector, λt = λ(xt), c
j
t = cj(xt),

kj
t+1 = k′j(xt), and ijt = ij(xt) for j = 1, ..., N .

To solve the model (24)-(27) using the Galerkin method, it is useful to first represent it by an
operator equation R(f) such that the arguments outlined in Section 3 directly apply. In construct-
ing this representation, a researcher has several degrees of freedom. Specifically, there exists some
freedom in choosing which functions to approximate by parametric forms and which equilibrium
conditions to use as residual functions.

In the present application it turns out convenient to parameterize the capital decision rules and
to use as residual functions the dynamic equilibrium conditions (25). First, the capital decision rules
in the model under consideration are relatively linear and smooth, and therefore can be reasonably
well approximated by polynomials.11 Second, conditional upon parameterizing the future capital
decision rules, the remaining choices can be computed in closed form (and thus it is relatively
straightforward to construct the operator representation R(f)). In particular, (26) can be solved
to obtain the individual investment levels, which can then be plugged into the resource constraint
(27) to yield aggregate consumption Ct =

∑
j c

j
t . By equation (24) for j = 1, ..., N , one can then

obtain c1t by numerically solving

Ct = c1t +

N∑
j=2

[
τ 1

τ j
(c1t )

−γ1
]− 1

γj

(28)

11See Malin, Krueger, and Kubler (2007) for a discussion.
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for c1t . Upon knowing c1t , one can compute the remaining N − 1 individual consumption levels and
the Lagrangian multiplier from (24). Proceeding in this way, all control variables are solved for
such that the static conditions (24), (26), and (27) hold exactly, and the operator R(f) therefore
contains only the N dynamic equilibrium conditions (25).

Note that the described procedure involves numerically solving a non-linear equation for c1t ,
i.e., one needs to compute a non-linear function c1t = c̃(Ct) that satisfies (28). It is conceptually
straightforward to do this using a numerical solver at each grid point and iteration step of the
solution procedure, however, such an approach would be computationally costly. In light of this
difficulty, the route taken in the present paper is to use (28) to construct a polynomial approximation
ĉ to the function c̃ over an appropriately chosen interval [C, C̄], and use this approximation to
compute consumption of country one as c1t = ĉ(Ct) within the Galerkin procedure. Importantly,
as the function c̃ has only one argument and the approximation ĉ needs to be computed only
once before the Galerkin algorithm is initiated, one can use a very high order of approximation
for ĉ, which allows for an approximation error close to machine precision. The idea to use an
approximation to the function c̃ is not an innovation of the present paper, but was first pointed
out and employed in an earlier version of Maliar et al. (2010). In that paper, Maliar and Maliar
(2007), the authors computed consumption levels on a grid outside of the iterative circle and used an
interpolation strategy to restore c1t within the solution procedure. Finally, notice that alternative to
approximating the function c̃ one could parameterize the decision rule for c1t , i.e., use a polynomial
approximation to c1(xt). This approach is however sub-optimal: as c1 has 2N arguments, one
would have to use a low-order approximation and thus introduce additional approximation error
that can be avoided by resorting to the former strategy.

Once the operator representation R(f) is chosen, the Galerkin method can be used to compute
an approximate model solution f̂ as described in Section 3. This procedure involves choosing among
several implementation details as laid out in Sections 3.1-3.4. The specific Galerkin implementation
used in the present paper is characterized by the choices summarized in Table 2.

Table 2: Implementation details for model variant I
1. Approximating function Complete Chebyshev polynomial of order p = 2
2. Method to evaluate conditional expectations [Er2

n d5] for N = 2, [Er2

n d3] for N > 2
3. Method to compute weighted residuals [Cnd5]
4. Solver to find the coefficient vector Newton (starting from log-linear perturbation guess)

The rationale behind these choices is as follows. Regarding the functional form of the approxi-
mate decision rules, this paper follows Gaspar and Judd (1997) and uses

k̂′
j
(xt; κ

j) =

ñκ∑
i=1

κj
iψi(ξ(xt)) (29)

where ψi(ξ(xt)) ∈ Ψ with Ψ being a complete basis of Chebyshev polynomials up to the second
order (p = 2). To map the state space X into the unit hypercube [−1, 1]nx , a linear transformation
ξ(xi) = 2(xi − xi)/(x̄i − xi) − 1 is used which requires to postulate lower and upper bounds for
each state variable. The specific choice of bounds is found to matter noticeably for accuracy. For
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model variant I, a relatively narrow interval (k = 0.95kss, k̄ = 1.05kss, a = 0.9ass, ā = 1.1ass, with
ss denoting the steady state value of a variable) is found to deliver very accurate results.

The specific choice of monomial rule for computing conditional expectations is mostly motivated
by computational cost. The degree five rule [Er2

n d5] is only used for the low-dimensional problems
with N = 2, while [Er2

n d3] is employed for the larger models (N > 2).
To compute the weighted residuals, the non-product rule [Cnd5] is used for all model specifica-

tions. Gains from using the degree seven rule [Cnd7] were found to be small for an approximation
order of p = 2, and therefore did not justify the extra computational burden associated with
choosing [Cnd7] over [Cnd5].

Finally, to equate the system of weighted residuals to zero, first an initial guess for the coefficient
vector is obtained from a log-linear perturbation solution around the non-stochastic steady state
using the method and computer code provided by Klein (2000). This guess is then used in a
Newton solver12 to find the solution to (17). Note that the solver searches over a high-dimensional
parameter vector κ,13 and at each iteration step computes a Jacobian. The residual function R̂
is therefore evaluated very frequently. To achieve reasonable computing times, it is extremely
important to code the residual function such that its evaluation is cheap. The first prerequisite
to achieve this goal is avoiding non-linear equations solving; this can generally be accomplished
by choosing an appropriate set of parameterized decision rules. Finally, the computer code must
also avoid for-loop structures as the execution of loops is very time-consuming in a matrix oriented
environment like MATLAB.

4.2. Solving variants II-IV of the multi-country Real Business Cycle model

The model variants II − IV described by Juillard and Villemot (2010) feature an endogenous
labor choice and are therefore more challenging to solve. In the following, I briefly describe how
the algorithm described in the previous section is modified to deal with these challenges.14

Model II employs a utility function that is separable in consumption and labor together with
a Cobb-Douglas production function over capital and labor. Under this specification of functional
forms, it is no longer possible to solve for aggregate consumption from the world budget constraint
(22), given the parameterized decision rules for future capital holdings. To address this problem, I
add the aggregate consumption policy to the set of parameterized decision rules and use the world
budget constraint (27) as an additional residual function in R. Apart from this modification, the
same approach as laid out for model I is used solve model II.

Models III and IV feature non-separable utility. This further complicates matters, as one can
no longer compute individual consumption levels from aggregate consumption using (18). Notice,
however, that one can use (18) and (19) to express the labor supply of country j as a non-linear
function 	̃jt(k

j
t , a

j
t , λt). As for the function c̃, a very accurate high-order polynomial approximation

to each function 	̃jt , j = 1, ..., N , can be computed outside of the Galerkin algorithm, and this

12To be precise, the fcsolve function developed by Chris Sims and later modified by Fabrice Collard is employed.
13The dimension of κ is nd(1 + 2N + N(2N + 1)) where nd gives the number of parameterized decision rules

and N the number of countries. For model variant I where only the decision rules for future capital holdings are
parameterized, nd = N . This implies, for example, that nκ = 2.310 when N = 10.

14See the MATLAB codes accompanying this paper for further details.
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approximation can be used to compute labor supplies within the solution algorithm. Once the
labor supplies are determined, the remaining control variables can again be computed easily from
the equilibrium conditions. The strategy just described has been used for models III and IV . To
make this strategy feasible at a reasonable computational cost, the decision rule for λ has to be
added to the set of parameterized decision rules. In particular, the implementation used considers
f = (logλ,k′1, ...,k′N)′ together with the same operator representation used for model II. Notice
that the log-approximation to λ is chosen as it gives higher accuracy than a level-approximation.
Nevertheless, as log λ is still relatively non-linear, adding it to the parameterized decision rules
comes at a cost in terms of accuracy.

5. Improving accuracy

The performance (as measured by the computational speed and numerical accuracy) of the pro-
posed monomial rule Galerkin method is examined in detail by Kollmann et al. (2010). In partic-
ular, these authors present several accuracy tests and compare the Galerkin method to competing
approaches. Out of space considerations, their findings are not replicated in the present paper.
Rather I briefly examine two possible directions for further improving the numerical accuracy of
the algorithm.

The first (obvious) direction for improving numerical accuracy is to increase the order of ap-
proximation in the parameterized decision rules, i.e., increase p. This comes at the expense of
increased computational cost, in particular since p ≥ 3 impedes the use of rule [Cnd5] for com-
puting weighted residuals.15 Instead, computationally more intensive rules such as [Cnd7] must be
employed for this purpose. To gain some intuition about the trade-off between speed and accuracy
when moving from second- to third-order approximations, consider as an example the asymmet-
ric specification of model I with N = 2 countries. The second-order Galerkin approximation for
this model has an associated CPU time of slightly less than a second, while the log10 measures of
the average and maximum error on a stochastic simulation of 10.000 periods are given by −6.33
and −4.49, respectively.16 In comparison, a third-order Galerkin approximation using [Cnd7] has
an associated CPU time of roughly 2 seconds, while the corresponding error measures are −7.64
and −5.56, respectively. For this relatively low-dimensional example, the accuracy improvement of
more than one order of magnitude may likely compensate for the increase in computational cost
by one second. Notice, however, that for models with larger N the difference in speed between a
second- and third-order approximation will be significantly larger, while the difference in accuracy
will presumably be roughly the same.

A second possible route for improving accuracy for models II-IV is to use an implementation of
the Galerkin method that only parameterizes the capital decision rules. Such an implementation,
however, requires that all decision rules other than the capital decision rules must be computed
directly from the static equilibrium conditions, i.e., a large system of non-linear equations has to
be solved repeatedly. Using a Newton method to solve this system grid point by grid point is con-
ceptually straightforward, but in practice such an approach is impeded by the huge running time

15Recall the discussion in Section 3.3.
16See Kollmann et al. (2010).
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associated with it. To address this difficulty, the contribution to this special issue by Maliar et al.
(2010) develops a vectorized iteration-on-allocation strategy for solving the system of static equi-
librium conditions at low computational cost. Using their approach within the proposed Galerkin
method would arguably allow to achieve higher accuracy for models II-IV , while the running time
of the algorithm would possibly be only moderately affected.
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