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This paper solves the multi-country RBC model described in den Haan, Judd and Juillard (2010) and Juillard and Villemot (2010), using a perturbation method. We explain how to apply first-and second-order versions of the gensys2.m algorithm to this model. The perturbation method is computationally cheap and can easily be applied to large models with possibly hundreds of state variables.
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Introduction

This paper explains how we solve the multi-country RBC model described in den Haan, [START_REF] Den Haan | Computational Suite of Models with Heterogeneous Agents: Multi-Country Real Business Cycle Models[END_REF] and Juillard and Villemot (2010), using first-and second-order perturbation methods. These methods are represented by PER1 (first-order perturbation) and PER2 (second-order perturbation) in the comparison paper of [START_REF] Kollmann | Comparison of Solutions to the Multi-Country Real Business Cycle Models[END_REF].

Perturbation methods solve for the coefficients of Taylor expansions of the true model solution around a deterministic steady state. Compared to projection-based non-linear techniques (e.g., [START_REF] Judd | Numerical Methods in Economics[END_REF], perturbation methods have two key advantages: their high computational speed and the ease with which they can be applied to models with a large number of state variables. This explains why many dynamic stochastic general equilibrium (DSGE) models have been solved using perturbation methods. First-order (i.e., linearization) techniques have been most widely used in the macroeconomics literature. Recently however, a rapidly growing number of studies have applied second-order perturbation methods, thanks to several publicly available solution algorithms. 1In applying perturbation methods, we use the MATLAB algorithm gensys2.m described in [START_REF] Sims | Solving Linear Rational Expectations Models[END_REF], Kollmann (2003b), and Kim, Kim, Schaumburg and Sims (2008). 2 Other solution algorithms for second-order perturbation include [START_REF] Jin | Applying PertSolv to Complete Market RBC Models[END_REF], Schmitt-Grohé and Uribe (2004), [START_REF] Anderson | Higher-Order Perturbation Solutions to Dynamic, Discrete-Time Rational Expectations Model[END_REF], Lombardo and Sutherland (2007), and Dynare by Juillard et al. (2010). 3 Although perturbation methods are computationally cheap, accuracy may be lower, especially when the model economy moves significantly away from the steady state.

Between the two versions considered in this paper, the second-order perturbation solution can be noticeably more accurate than the first-order perturbation solution (see [START_REF] Kollmann | Comparison of Solutions to the Multi-Country Real Business Cycle Models[END_REF] for detailed results).

Solution Algorithm

The gensys2.m code can be applied to models of the following form:
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We assume that the model has a unique deterministic steady state ω (satisfying
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3 Some algorithms are available that can perform third-(or higher-) order perturbation, e.g. Dynare++ and [START_REF] Jin | Applying PertSolv to Complete Market RBC Models[END_REF]. However, these higher-order algorithms have not yet been applied to large DSGE models such as those used in central banks or the multi-country model in this paper. Evaluating the accuracy of such higherorder algorithms for large models would be an interesting topic for future research.

where t y (q s ×1 vector) and t x ((q-q s )×1 The solution can also be expressed in terms of original variables t ω as follows:
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where 1 Z is a matrix consisting of the first q s rows of the matrix Z (

1 t t y Z ω = ).
The gensys2.m code constructs second degree polynomials which approximate ( 2) and (3), in the neighborhood of the deterministic steady state. The coefficients of those polynomials are functions of Ω and of the first and second derivatives of 2) and (3). Then
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Application to the Model in the Comparison Project

We use log variables in perturbing the model in the comparison project. That is, the approximation is taken in terms of the following variables: We use a two-point finite difference procedure (Fackler and Miranda, 2002, p.98 and p.102) to compute the first and second derivatives of 1 1 ( , , )
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The comparison paper requires computation of a policy function that expresses the date 

ω ε + + + + + Φ Α = Α , (6) 
where we use that fact that the influence of t A and 1 t ε + on 1 t ω + can be subsumed by 1 t A + (due to the AR(1) structure of the vector of log TFP's, t A ).

All results generated by PER1 and PER2 in the comparison paper are based on dynamic simulations of equation ( 6). (The first-order solution PER1 is generated by setting the second-order coefficients of the policy function-including the constant term that is affected by the amount of uncertainty-to zero.) In other words, the simulations for the comparison paper do not use the pruning technique of [START_REF] Kim | Calculating and Using Second Order Accurate Solutions for Discrete Time Dynamic Equilibrium Models[END_REF]. 7 For the model variants in the comparison paper, the simulated series without pruning (10,000 periods) do not differ noticeably from pruned series.8 

While our results reported in the comparison paper use logged variables as perturbation variables, as a sensitivity analysis we also solved the model using levels as 7 A second-order approximation of a difference equation such as (4) has extraneous steady states (that are not present in the original model), and some of these steady states mark transitions to unstable behavior. Large shocks thus can move the model into an unstable region. The pruning procedure overcomes this problem. It is motivated by the observations that in repeated applications of the second-order perturbation solution (6), third or higher-order terms of state variables appear. For example, when

2 t K + is quadratic in 1 , t K + then 2 t K + is quartic in t K .
The pruning procedure removes these higher-order terms by computing the second-order terms using the squares of the linearized solution. Since the first-order expansion is stable, the pruned version of a second-order approximation achieves stability. perturbation variables. 9 The motivation for this alternative approach is that the law of motion for capital is linear in the levels of capital and of investment; thus this law of motion is exactly (i.e., without any approximation error) captured by employing levels as a perturbation variable. Inspection of the errors in the individual model equations shows that the errors in the Euler equation and the world resource constraint are roughly unaffected when a level approximation is used, but that the errors in the risk sharing and labor supply equations increase (compared to the log approximation). Maximum errors across all model equations typically change little. For example, at values of state variables visited along 10,000-period stochastic simulation runs, we find that, across all equations of all 'asymmetric' model specifications (in which preferences/technology parameters differ across countries), the maximum absolute error is 6.30% under a first-order log approximation, compared to 4.57% under a first-order level approximation.

  vector) are linear combinations of the original variables :

	t y x Zω t t =	, for some square, non-singular matrix Z. Note that t y and t x can
	be interpreted as internally generated state and control variables, respectively. 4 Users of the
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For example, the second-order perturbation method is widely used for welfare analyses of monetary and fiscal policy rules.

The authors of the present paper participated in the development of the code, which can be found on Chris Sims' webpage: http://sims.princeton.edu/yftp/gensys2. For applications of this specific second-order perturbation algorithm, see for example[START_REF] Bergin | Does Exchange Rate Variability Matter for Welfare? A Quantitative Investigation of Stabilization Policies[END_REF],[START_REF] Kim | A Note on the Comparison of First-and Second-Order Approximate Solutions to DSEG Models[END_REF] Kim (2003a, 2003b),[START_REF] Kim | A Note on the Comparison of First-and Second-Order Approximate Solutions to DSEG Models[END_REF],[START_REF] Kim | Solving the Incomplete Markets Model with Aggregate Uncertainty Using a Perturbation Method[END_REF],[START_REF] Kollmann | Monetary Policy Rules in the Open Economy: Effects on Welfare and Business Cycles[END_REF]Kollmann ( , 2003a[START_REF] Kollmann | Welfare Effects of a Monetary Union: the Role of Trade Openness[END_REF][START_REF] Kollmann | Welfare Maximizing Operational Monetary and Tax Policy Rules[END_REF],[START_REF] Marzo | Fiscal Policy and Automatic Stabilizers: Welfare and Macroeconomic Stability[END_REF],[START_REF] Shin | Monetary Policy Regimes in a Small Open Economy with Multiple Foreign Currencies[END_REF],[START_REF] Straub | Non-Fundamental Exchange Rate Volatility and Welfare[END_REF] and[START_REF] Teo | Optimal Monetary Policy in a Multi-country World[END_REF].

The notation here follows[START_REF] Kim | Calculating and Using Second Order Accurate Solutions for Discrete Time Dynamic Equilibrium Models[END_REF]. By contrast, Schmitt-Grohé and Uribe (2004) denote state variables by x and control variables by y.

This state-free approach is also adopted by[START_REF] Anderson | Higher-Order Perturbation Solutions to Dynamic, Discrete-Time Rational Expectations Model[END_REF] and Dynare, while other algorithms such as Schmitt-Grohé and Uribe (2004) andLombardo and Sutherland (2007) require users to specify the partition between the state and control variables as an input to the algorithm.

The derivatives could also be computed using the MATLAB symbolic toolbox. The two-point finite difference procedure is computationally faster; the differences between the two methods turn out to be numerically insignificant in this model.

Explosive paths typically emerge in non-pruned 10,000 period simulations only when the standard deviation of shocks is set at an order-of-magnitude larger than specified in the comparison paper.

Specifically, we approximate the Lagrange multiplier of the world resource constraint, consumption, hours worked, investment, and capital in levels. However, we continue to approximate TFP in logs (as the law of motion of TFP is linear in logs).