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Discontinuous Coarse Spaces for DD-Methods

with Discontinuous Iterates

Martin J. Gander1, Laurence Halpern2, and Kévin Santugini Repiquet3

1 Introduction

Basic iterative domain decomposition methods (DDM) can only transmit informa-

tion between direct neighbors. Such methods never converge in less iterations than

the diameter of the connectivity graph between subdomains. Convergence rates are

dependent on the number of subdomains, and thus algorithms are not scalable. The

use of a coarse space is the only way to provide information from distant subdo-

mains, as they enable global information transfer, ensuring scalability. In this re-

spect, well known methods are the two level additive Schwarz method [2], and the

FETI [9] and balancing Neumann-Neumann methods [3, 10]. For complete analyses

of such scalable methods, see [13, 12].

Adding an effective coarse space correction to an existing method is currently

an active area of research, for example in the case of high contrast problems [11].

Combining coarse spaces with methods with discontinuous iterates, such as opti-

mized Schwarz methods (OSM [7]) is also non-trivial, see [5] and chapter 5 in [4]

which contain extensive numerical tests, and [6] for a rigorous analysis of a special

case. For restricted Additive Schwarz (RAS [1]), which also produces discontinu-

ous iterates, see [8] in the present proceedings. We explain in §2 why an effective

coarse space for non-overlapping OSM (and DDMs with discontinuous iterates in

general) should inherently be discontinuous. In §3, we present one possible realiza-

tion of a coarse grid correction based on a discontinuous coarse space, and we show

that convergence in one coarse correction step can be obtained, although this is only

practical in one dimension. For higher dimensional problems, we then propose ap-

proximations of this optimal coarse space. In §4, we present numerical experiments

with this new algorithm, and finally give an outlook on future work in §5.

2 Choosing a good coarse space

In this section, we explain why it makes sense to consider discontinuous coarse

space corrections. We place ourselves in a continuous setting and consider the model

problem

ηu−∆u = f in Ω , γu = 0 on ∂Ω , (1)
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where Ω is a polygonal domain in Rd (d ≥ 1 ), and γ is a trace operator.

Let (Ωi)1≤i≤N be a non-overlapping domain decomposition of Ω . A non-overlapping

optimized Schwarz method with a coarse grid correction is of the form

Algorithm 1 (Generic).

1. Initialize u0
i , either by zero or using the coarse solution.

2. For n ≥ 0 and until convergence

a. In each subdomain Ωi, compute the uncorrected iterates u
n+1/2
i in parallel

using the optimized Schwarz algorithm.

b. Compute a coarse correction Un+1 belonging to a coarse space X.

c. Set the corrected iterates to un+1
i := u

n+1/2
i +Un+1.

3. Set either ui := u
n−1/2
i or ui := un

i where n is the exit index of the above loop.

Instead of explaining in detail how the coarse correction Un+1 is computed, we first

focus on the more important question of how to choose the coarse space X .

2.1 Suboptimality of a conformal coarse space

We first explain why with a coarse space X ⊂ H1(Ω), it is not possible to compute a

very good coarse correction for a domain decomposition method with discontinuous

iterates. A function u, with u|Omegai
in H1(Ω), is a weak solution of (1) if

1. u satisfies (1) inside each subdomain Ωi,

2. u has no jump between two adjacent subdomains,

3. the normal derivative of u has no jump between two adjacent subdomains.

In an efficient domain decomposition algorithm, each step of the algorithm should

improve as many of these three conditions as possible. In particular, the coarse grid

correction should be such that the iterates un+1
i are closer to satisfying these three

conditions than the uncorrected iterates u
n+1/2
i . However:

1. The uncorrected iterates already satisfy the equation inside each subdomain.

2. The uncorrected iterates are discontinuous, they have jumps in the Dirichlet

traces along interfaces.

3. The uncorrected iterates have also discontinuous normal derivatives, they have

jumps in the Neumann traces along interfaces.

Using continuous coarse functions is suboptimal for a method that produces dis-

continuous iterates, since they can not reduce the Dirichlet jumps. Using instead

a discontinuous coarse space, for example P0, then the Dirichlet jumps can be im-

proved, but not the Neumann jumps. If the coarse functions are even more regular,

for example C 1 on the whole domain, then neither the Dirichlet jumps nor the Neu-

mann jumps can be improved.
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2.2 Better coarse spaces for methods with discontinuous iterates

To be effective, a coarse space for a domain decomposition method that produces

discontinuous iterates must contain discontinuous functions. Furthermore the dis-

continuities must be aligned with the interfaces between subdomains. Suppose that

the subdomains Ωi form a conforming polygonal mesh T Ω of Ω (triangles or rect-

angles in two dimensions). The local polynomial space P1 is P1 in the former case,

Q1 in the latter. The conforming coarse space is

P1(T
Ω ) = {v ∈ C0(Ω̄), ∀i, v|Ωi

∈ P1},

but a better choice is the discontinuous coarse space (or broken in the Discontinu-

ous Galerkin literature) Pdisc
1 (T Ω ) where the continuity across the interfaces is no

longer required.

In addition, for linear problems, it is important for the coarse shape functions to

be solutions of the homogeneous counterpart of equation (1) inside each subdomain,

because then the corrected iterates are also solutions of the interior equation inside

each subdomain. To see this, it suffices to note that the error between the mon-

odomain solution and any iterates produced by the optimized Schwarz method is

always a solution to the homogeneous equation inside each subdomain. Therefore,

in H
1,disc
0 (Ω) = {u ∈ L2(Ω), ∀i, u|Ωi

∈ H1(Ωi), u = 0 on ∂Ω}, the space

A = {u ∈ H
1,disc
0 (Ω), ∀i, (η −△)u|Ωi

= 0} (2)

is an ideal candidate for a coarse space. For one-dimensional problems, the space

A is finite dimensional, and can directly be used as the coarse space. In higher

dimensions, the space A is infinite dimensional for the continuous problem, and

must therefore be discretized as well to be practical: a finite dimensional subspace of

A must be chosen. To do so, one only needs to choose boundary conditions on each

∂Ωi. For the particular algorithm presented in the next section, the intersection of

the coarse space with H1 should be “big enough”, and for the coarse space elements

to be “glueable”, they need to be constructed with compatible Dirichlet conditions.

For these reasons we introduce the space of all discontinuous functions, whose

element shape functions are solutions to the homogeneous equation inside each sub-

domain, with Dirichlet boundary conditions:

P
A
1 (T Ω ) = {u ∈ A , ∃û ∈ P

disc
1 (T Ω ), u = û in

N
⋃

i=1

∂Ωi}. (3)

Remark 1. Other Dirichlet boundary conditions can be used to define the discontin-

uous coarse elements. Any finite dimensional vector space of continuous functions

defined over
⋃N

i=1 ∂Ωi may be used to construct finite dimensional coarse spaces

that are subsets of A with a “big enough” continuous subset.

Now that we have chosen the coarse space, we can design an efficient algorithm

to compute a discontinuous coarse space correction. The coarse correction must
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be chosen such that it diminishes both Dirichlet and Neumann jumps while not

losing too much in terms of satisfying the interior equations in each subdomain.

Using the full coarse space A (which is only practical in one dimension), any good

algorithm for computing the coarse correction should converge in a single coarse

iteration, because the error between the iterates and the exact solution belongs to

A . In the next section, we present such an algorithm, the DCS-DMNV algorithm

(discontinuous coarse space - Dirichlet minimizer Neumann variational), which is

suitable for finite element methods.

3 The DCS-DMNV algorithm

We formulate the algorithm with subdomain iterates at the continuous level, with a

discrete coarse space.

Let Xd be any finite dimensional coarse space, subspace of H
1,disc
0 (Ω) (for ex-

ample PA
1 (T Ω ) defined above), and Xc = Xd ∩ H1(Ω). We define the positive

quadratic form over H
1,disc
0 (Ω) by

q : H
1,disc
0 (Ω)→ R+, u 7→ ∑

i j

∫

∂Ωi∩∂Ω j

∣

∣ui −u j

∣

∣

2
dσ .

Note that the kernel of q is H1(Ω). The DCS-DMNV algorithm is then given by:

Algorithm 2 (DCS-DMNV).

1. Initialize u0
i by either zero or u0

|Ωi
where u0 is the coarse solution.

2. Until convergence

a. Compute the local iterates u
n+1/2
i ∈ H1(Ωi) in parallel by

ηu
n+1/2
i −△u

n+1/2
i = f in Ωi, (4a)

∂u
n+1/2
i

∂ni

+ pu
n+1/2
i =

∂un
j

∂ni

+ pun
j on ∂Ωi ∩Ω j, (4b)

u
n+1/2
i = 0 on ∂Ωi ∩Ω . (4c)

b. Define a global un+1/2 ∈ H
1,disc
0 (Ω) as u

n+1/2
i in Ωi. Set Un+1 as the unique

function in Xd such that

q(un+1/2 +Un+1) = min
v∈Xd

q(un+1/2 + v), (5a)

and satisfying
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η

∫

Ω
Un+1(x)v(x)dx+

∫

Ω
∇Un+1(x)∇v(x)dx

=−∑
i, j

∫

∂Ωi∩∂Ω j





∂u
n+1/2
i

∂ni

+
∂u

n+1/2
j

∂n j



vdσ , (5b)

for all test functions v in Xc.

c. Set un+1
i := u

n+1/2
i +Un+1.

3. Set u := u
n−1/2
i on Ωi for each i in {1, . . . ,N}.

Proposition 1 (Existence of the coarse iterate). Let (u
n+1/2
i )1≤i≤N be the local

iterates, . Then there exists a unique Un+1 in Xd that satisfies (5).

Proof. The function V 7→ q(un+1/2+V ) is quadratic, choose one minimizer Un+1
d on

Xd . By Lax-Milgram’s Lemma, there exists a unique Un+1
c in Xc such that Un+1 =

Un+1
c +Un+1

d satisfies (5b). Uniqueness comes from the fact that q is quadratic. ⊓⊔

The DCS-DMNV algorithm 2 has the important property of converging in a sin-

gle coarse step if the full coarse space A is used. However, it is only practical in

a one dimensional setting as the coarse space is too big in higher dimensions. We

state that theorem in the discrete case.

Theorem 1 (Convergence in a single coarse step for the full coarse space). Let Ω
be a bounded polygonal domain in Rd . Let (Ωi)1≤i≤N be a domain decomposition

of Ω that also forms a coarse mesh of Ω . Let Th be a simplicial or a cartesian

fine mesh on Ω which is a refinement of the (Ωi)1≤i≤N domain decomposition. Let

F be the conformal finite element space given either by P1(Th) if Th is simplicial

or by Q1(Th) if Th is cartesian. Let F disc be the set of all functions on Ω whose

restriction to each Ωi is also the restriction of a function belonging to F to Ωi, F0

be the space of functions in F vanishing on all subdomain boundaries.

Let Xd ⊂ F disc be a coarse space. Suppose all elements in Xd satisfy the ho-

mogenous variational equation for all test functions in F0. Let Xc = Xd ∩F . Sup-

pose u 7→ ((u(xi, j))1≤ j≤ki
)1≤i≤N is from Xd onto ∏N

i=1R
ki where ki is the number

of nodes of Th located on ∂Ωi \ ∂Ω and where xi, j is the j-th node located on

∂Ωi \∂Ω . Then, for any choice of initial fine iterate (u0
i )1≤i≤N satisfying the varia-

tional equation for all test functions in F0, the DCS-DMNV algorithm 2 converges

in a single coarse step.

Proof. Let (Ui)1≤N be the coarse correction. Let u1
i = u0

i +Ui be the corrected it-

erates. The corrected iterates must satisfy the minimum jump condition (5a). Since

u 7→ ((u(xi, j))1≤ j≤ki
)1≤i≤N is onto, it is possible to completely cancel the jumps,

therefore q((u1
i )1≤i≤N) = 0 and u1 defined over Ω as u1

|Ωi
= u1

i belongs to F , i.e.

is continuous across subdomains. Moreover, since the coarse correction satisfies the

homogenous counterpart of (1) inside each subdomain, the corrected iterates sat-

isfy the variational equation for all test functions in F0. By (5b), the corrected

iterates also satisfy the variational equation for all test functions v in Xc. Since



6 Martin J. Gander, Laurence Halpern, and Kévin Santugini Repiquet

Fig. 1 Convergence curves of the DCS-DMNV algorithm in 1D

u 7→ ((u(xi, j))1≤ j≤ki
)1≤i≤N is onto, F = Xc +F0. Therefore, the corrected iterates

satisfy the variational equation for all test functions in F . ⊓⊔

In a practical implementation however, convergence in a single coarse iteration

would only be possible if the coarse space contains all the degrees of freedom on the

interfaces corresponding to the fine discretization of the subdomain problems, which

would be a very rich and expensive coarse space. We will see in the next section that

the approximation by linear Dirichlet boundary conditions already leads to a very

good discontinuous coarse correction.

4 Numerical results

We implemented the DCS-DMNV algorithm 2 in one and two dimensions, using

a finite element discretization based on a regular cartesian grid. In 1D, we chose

Ω =]0,4[, η = 10 and the right hand-side f (x) =−1. For the Robin parameter, we

used p = 5, with 60 subdomains. Convergence curves are presented in Figure 1.

As expected, a coarse grid correction with conforming P1 finite elements already

improves convergence. Requiring the coarse shape functions to be solutions of the

homogeneous equation within each subdomain does not bring any further gain. A

striking improvement is the use of discontinuous P1 elements. Optimal convergence

(see Theorem 1) can then be reached if in addition the coarse functions solve the

homogeneous equation inside each subdomain.

In two-dimension, we chose η = 0 and iterate directly on the error equations, i.e.,

we solve −∆e = 0 but start with random boundary conditions on each subdomain.

Q1 elements discretize Ω =]0,4[2, and the algorithm is run with p= 12.4, 5×5 sub-
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Fig. 2 Convergence curves of the DCS-DMNV algorithm in 2D

domains and 10×10 cells per subdomain. Robin boundary conditions are lumped.

To compute the coarse correction, we use the Conjugate Gradient algorithm to com-

pute the result of the multiplication of the pseudo-inverse of Q, q(u,v) = (Qu|v)
with a right hand-side derived from the uncorrected iterates. This gives us one min-

imizer in Xd of the q functionnal. To satisfy the variational condition, an additional

continuous coarse correction can then be computed in Xc.

As in the 1D case, the convergence curves presented in Figure 2 show that the

discontinuous coarse space correction leads to a much faster convergence than the

continuous one. Even though the discontinuous coarse space is only a subset of the

optimal theoretical coarse space, the improvement over continuous coarse spaces is

substantial. In order to see in the error how the jumps slow down the convergence of

the continuous coarse correction version, we present in Figure 3 a few snapshots of

the errors. We observe the formation of a checkerboard like structure which cannot

be corrected by a continuous coarse space. Once the errors look like a checkerboard,

the convergence of the continuous coarse correction algorithm slows down consid-

erably. Using a discontinuous coarse space prevents the checkerboard like structure

from appearing.

5 Conclusion

We have shown that for domain decomposition methods with discontinuous iterates,

the use of a discontinuous coarse space greatly improves that of a standard contin-

uous one. We have designed one such discontinuous coarse space algorithm, the

DCS-DMNV algorithm, the formulation of which is well suited for finite element

discretizations. We are currently studying such algorithms also for finite difference

and finite volumes schemes, and investigating how the optimization parameter p in
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Fig. 3 Error of the algorithm with continuous coarse grid correction at iterations 5 and 20

the transmission conditions interacts with the Dirichlet boundary conditions used in

the definition of the coarse space.
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