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Estimation of the Fuzzy Substructure Model Parameters
Using the Mean Power Flow Equation of the Fuzzy Structure

C. Soize
Structures Department, ONERA, BP 72, F-92322 Chatillone2eBrance

Abstract. This paper presents a theoretical approach for idengfifie dimensionless mean
coefficient of participating fuzzy mass which is the mainmokn parameter of the type | or Il
fuzzy law previously introduced by the author. This metroblased on the use of the associated
power flow equation, each power term being identified by usingjobal statistical energy
analysis of the fuzzy structure (master structure withutsz¥ substructures). Identification is
then carried out by solving a nonlinear constrained op@tnin problem. An example is given
to illustrate the theoretical results.

1. Introduction

In the fuzzy structure theory (Soize, 1986), the concepitdster structuréis introduced to
designate the part of the mechanical system which is attegsiconventional modeling. The
"fuzzy substructufas by definition the part of the structure that is not acdalesio conventional
modeling because details are unknown or are impreciselywknoThe fuzzy substructure
consists of the secondary mechanical subsystems "attatthéfte master structure. Aflizzy
structure' is a master structure plus one or more fuzzy substructuodmly called the fuzzy
substructure. This theory was developed to explain and htleelapparent dissipation occurring
on the master structure in order to improve the structuralstics predictions of structures with
internal structural complexity (Soize, 1986; Chabas ¢tl&l86; Soize 1993 and 1995). This
dissipation is due to the mechanical energy transferred the master structure to the secondary
mechanical subsystems attached to the primary structdrergaring in vibration. Itisimportant
to note that the objective of the fuzzy structure theory éligved by the author) is to predict the
modulus and phase of the response in every point of the n&isieture, taking the effects of the
structural complexity (modeled by a fuzzy substructurecdbed by a probabilistic approach)
into account. Accordingly, this theory is not equivalentSiatistical Energy Analysis (SEA)
(contrary to what was asserted by Lyon, 1995).

Since 1991, much interesting research has been publishisiarea by the US acoustical
community (see for instance Sparrow, 1991; Russell andr8pal992; Pierce et al., 1993;
Dyer, 1994; McCoy, 1994; Pierce, 1994; Rochat and Sparr®®94;1 Sparrow et al., 1994;
Cuschieri and Feit, 1995; Feit and Pierce, 1995; Maidar8®5] Maidanik and Dickey, 1995;
Pierce, 1995a and 1995b; Photiadis, 1995; Rochat and Spdr985; Ruckman and Feit 1995a
and 1995b; Russell, 1995; Russell and Sparrow, 1995; Spat@95; Steinberg and McCoy,
1995; Strasberg, 1996; Strasberg and Feit, 1996).

An important problem with this kind of theory is how to detene the parameters to be used
in the fuzzy structure laws (see for instance Soize, 198&icRiet al. 1993; Feit and Pierce,
1995; Pierce, 1995b; Russell, 1995; Soize, 1995). Thismasents a theoretical approach
for identifying the dimensionless mean coefficient of gaptating fuzzy mass which is the main
unknown parameter of the type | or Il fuzzy law introduced @8@ by the author. This method
is based on the use of the associated power flow equationpeaar term being identified by
using a global statistical energy analysis of the fuzzycstme. The identification is then carried
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out by solving a nonlinear constrained optimization prablén example is given to illustrate
the theoretical results.

2. Modeling of the Master Structure Coupled with its Fuzzy Substructures

This section deals with modeling of a master structure aaiplith its fuzzy substructures to
predict vibration. To simplify the presentation, we assuheg no external or internal fluid is
coupled with the primary structure and consequently thexetls an identity between the master
structure and the primary structure (for the elastoacoustse, see Soize, 1993; Soize et al.,
1992). The physical spade® is referenced to a cartesian coordinate syst@mz,zs; we
denote the generic point & asx = (x1, z2, 23). The geometry of the fuzzy structure and the
notations are defined in Fig. 1. The master structure is @tlimensional continuum which
occupies the open bounded domdif,.g; of R with boundarydDmast = YmastU Suz. The
fuzzy substructuréy,, is written as the unioy,, = Ug/:lDfuzyg of L > 1 fuzzy substructures.
Each fuzzy substructurBy,;, , is attached to the master structure by the boun@iagnd there

is no mechanical connection between any two fuzzy substrest The parE, = UL, T is
the common boundary between the fuzzy substructures anddkeer structure. The external
unit normal tod DpastiS denotedh and the two-dimensional surface area element is denfsted
We then havejfm ds(x) = |I's|, where|I',| is the area of surfackg,.

2.1 Probabilistic Equations of the Fuzzy Structure in the Fequency Domain The equations
are written in the frequency domain € R. The master structure is modeled by an inhomo-
geneous, anisotropic, linear viscoelastic solid contmulLet u(x, w) = (u;(x,w), uz(x,w),
us(x,w)) be theC3-valued displacement field of the master structure defineBpr: Bound-
ary Ymastis written asl'y U I'mast The master structure is fixed on bound&gy A given C3-
valued surface force fiel@syi(x,w) = (gsurt1(X,w), gsurt2 (X, w), gsuri3(x,w)) is prescribed
on boundary ' mast Fori € {1, 2,3} the equations of the master structure are

80'2']'

—w? puU; — O = Gvol,i iIN Dmast (1>
j J
u; =0 on Iy (2)
Z 0ij Mj = Ggsurf; ON Fmast (3>
J
Y oiynj=-y on I, , for £e{l,...,L} , (4)
J

in which gyoi(x,w) = (gvol,1(X, w), gvol.2(X, w), gvol.3(X, w)) is a givenC3-valued volumetric
force field applied iNDmas; p(x) is the mass density field aPmast at equilibrium,o;; is the
stress tensor angl’ (x, w) = (71 (x, w), v5(x, w), v5(x, w)) is theC3-valued surface force field
defined onl'y, representing the action of the master structure on theyfsabstructureDy,, ¢
The constitutive law in the frequency domain allows syminediress tensar;; to be related
to the linearized symmetric strain tenggy(u) = 1/2(0u,;/0x; + 0u;/0x;) by the equation

oi(x,w) = Zaijkh(x,w) epn(u) +iw Z bijin(x,w) epp(u) (5)
k,h k,h

in which the real tensat; ;1 (x, w) of the elastic coefficients and the real tensgg, (x, w) of
the damping coefficients have the usual properties of symyraatl positive-definiteness. Using
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the fuzzy structure theory (Soize, 1986 and 1993), eaclasmiforce fieldy’(x, w) related to
the fuzzy substructure attachedlItg is modeled by a random field defined by a probabilistic
boundary impedance operator such that, fofal{1,..., L},

A{g(x,w):/ iw[Zg(x,x',w)] u(xw)ds(x’) on T, |, (6)
Iy

in which [Z*(x,x’, w)] is a(3 x 3) complex random matrix relative to the canonical basiBf
Let H be the Hilbert space of all the integrable square functioms D55 into C3, equipped

with the inner produck w , ow>> = fDmast <w(x),dw(x)> dx where the overline denotes
the complex conjugate and w(x),dw(x) >= >, w;(x)dw;(x). The random boundary
impedance operatd,;(w) of the fuzzy substructur®y,, = UﬁlefuLg can be written as

quz(w) = E{quz<w)} + Zrand<w) ; (7)

in which E{Z,;(w)} is the mathematical expectation Bf,,(w) (mean value) an@ang(w) is
the centered random fluctuation. The mean boundary impedaperatorE{ Zs,,(w)} of the
fuzzy substructure is such that

L FE{Zz(w)} u(w), du>= Z/ / <[Z4(xx,w)|u(x,w),du(x)> ds(x)ds(x')
=17Te/Te )

in which the mean valugZ* (x,x’, w)] of random matriXZ‘(x,x’, w)] verifies[Z*(x, x', w)] =
[Z8 (%', x,w)]T and[Z¢(x,x, —w)] = [Z! (%', x, w)], and the right-hand exponetidenotes the
transpose ofthe matrix. For any fixedn R, F{Z;(—w)} = F{Z;(w)} andiw E{Z;(w)}
can be written as

iw B{Znz(w)} = —w? Rigz(w) + iw Iz (w) 9)

in which Ryy;(w) andIs,(w) are real linear operators, algebraically symmetric. Thezyu
structure theory (Soize, 1986 and 1993) gives an explicistraction of random fluctuations
Zrand(w) and mean valu&{Z,,(w) }. This construction uses type | and type Il fuzzy laws which
depend on mechanical parameters. Each mechanical parahtte fuzzy law is represented
by two deterministic values: a mean value which can be vieaged design value and a value
of a dispersion parameter belonging[ta 1] allowing uncertainties on data (design value) to
be introduced. By construction of the fuzzy structure tlgetrthere are no uncertainties on
the mechanical parameters of the fuzzy law (i.e. if the valueach dispersion parameter is
zero), then random fluctuatidfyang(w) is zero. In this paper, we will only use the modeling of
E{Z,;(w)} and we do not need the modeling@nq«(w). In order to facilitate the reading, we
summarize the model df{Z,,(w)} in Section 3.

2.2 Mean Operator Equation of the Master Structure Coupled wth its Fuzzy Substruc-
tures. We introduce the admissible function sp&ggof functionsu in H, having a generalized
derivative inH and satisfying the constraint = 0 onI'y. The variational formulation of the
problem defined by Egs. (1) to (6) yields the random operajoagon

w (Zmas{w) + Ziuz(w)) U(w) = fmas(w) (10)

whose solutiorU (w) is a random variable with values@gq. For alldu in Cag, elementyasfw)
is defined by

K fas(w) ,5u>>:/ < gvol(x,w) , 0u(x)> dx —|—/<gsurf(x, w),du(x)>ds(x) . (11)

Dmast Pmast
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Impedance operatéyasf{w) of the master structure is a linear operator defined gy

Z'CL) Zmast((.d) - _CL)Q Mmast"’ ZCL) Cmas[(CU) + Kmasl(CU) , (12)

verifying Zmas{ —w) = Zmas{w), and wheréVnasy Cmasf{w) andKmasfw) are real operators,
algebraically symmetric and positive-definite, such tfatall u anddju in Cyg,

< Mpastu(w) , du>= / p(x) <u(x,w),du(x)> dx , (13—-1)
Dmast
< Chas{w) u(w) , du>= / bijin (X, w) epn (1) €5 (5_u) dx (13 -2)
Dmast
< Kmas{w) u(w) , du>= / @ijkn (X, w) epp (1) €5 (bu)dx . (13 —-13)
Dmast

For all fixed realv, random solutiofU(w) of Eq. (10) can be written as
U(w) = u(w) + wandw) (14)
in which u(w) is the solution irC,q of the following mean operator equation

iw (Zmas(w) + E{Zfyz(w)}) u(w) = fmas(w) (15)

and upng(w) is the noncentered random variable with valueg€n It should be noted that
E{U(w)} = u(w) + E{urandw)} and consequently, solutian(w) of mean operator equation
(15) does not represent the mean value of the response. Thg $tructure theory (Soize,
1986 and 1993) gives an explicit construction of randomtsmiuU(w) of Eq. (10) (i.e. the
construction ofu(w) anduang(w) using a Neumann expansion of the random linear operator
(I+ T(w))~ ! with T(w) = (Zmas(w) + F{Zsz(w)}) Zrand(w). Since the present paper is
devoted to identification of the dimensionlessmean coefiicof the participating fuzzy mass
which is the main unknown mechanical parameter of the typezity law (Soize, 1995), it is
coherent to consider that no uncertainties are presentismigchanical parameter (once the
mean value of this mechanical parameter has been identifiedrtainties can be introduced
using a nonzero value of the dispersion parameters, anddhdom Eq. (10) can then be solved.
As was recalled in Section 2.1, if there are no uncertaimtnethe mechanical parameters of the
type Il fuzzy law, thenZ,ng(w) = 0 and in this casei(w) = E{U(w)} represents the mean
response of the master structure coupled with its fuzzytautisres (with no uncertainties on
the mechanical parameters). Consequently, it is consigterse the mean power flow equation
of the fuzzy structure with no uncertainties on the mecharparameters of the fuzzy law (i.e.
the mean power flow equation associated with Eq. (15) fortifyémg the mean coefficient of
the participating fuzzy mass.

3. Modeling of the Fuzzy Substructures Using the Type Il Fuzy Law

In this section, we summarize the model of the mean impedapegator£{Zs,(w)} of the
fuzzy substructure (defined by Eq. (8)) using the renorratibn and notation introduced in
Soize, 1995. Each fuzzy substructutk,, ,, attached to the master structulg,,s: by the
boundaryI',, is assumed to be a homogeneous orthotropic fuzzy substeuathich can be
described by the type Il fuzzy law (see Soize, 1993). It sthdve! noted that an isotropic fuzzy
substructure is a particular case of the orthotropic case®fteat the type | fuzzy law (see Soize
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1986), which models a fuzzy substructure with no spatial orgreffect, is a particular case of
the type Il law which allows a spatial memory effect to be mede For an orthotropic fuzzy
substructureDy,, ¢, there exists (see Soize 1986) an orthogddal 3) real matrix[®*(x)]” for
transition from the canonical basis to a local orthonornasi®{e’! (x), e?(x), e3(x)} related
to the boundar¥, at pointx € I'y such thafZ*(x, x', w)] = [®*(x)] [Z5(x, %', w)] [®4(x/)]T in
which[Z§(x, x,w)]is a(3 x 3) complex diagonal matrix whose elements@fg(x, x', w)];x =
ik 2t (x, %', w), with 8, = 0if j # k andd;; = 1. The impedances, (x, x’,w) are such that

w zi(x, x' W) = y,i {—w2 rﬁ(w) + w hi(w)} or, (x'—x) (16)

in which fm o(x') o, (x' —x) ds(x') = ¢(x) if x € T, and wherev{ will soon be defined.
Above the cutoff frequency introduced in the type Il fuzzy)& 2 wnf > 1/2, then we have

M) = T L giet aumt L af) (17)
|1—1‘€| nf; b b b
Oy m_i ¢ ¢
rk(w> - |1—\£| g(gk 9 2wnk 9 ak) ) (18>

in which, for0 < ¢ < 1andr € [0.5, +oc[, real-valued functiong’ and€ are such that

j(f, T, Oé) = 57-(1 - a) + Oéj()(g, T) ’

£€,m0) = (@ = D1+ 53) +al&,7

Real-valued functioyy, is defined by

7_2
8\/1_ €2

in which Yo (¢,7) = €711 — €2)7Y2{¢? + (1/7 + 2)/(27)}. Real-valued functior€y is
defined by
(

_2 1 N(&, )
50(577)—;_4 1_521n{D(§,7’>} ,

inwhichN(&,7) ={U, (7)) + W, (&)} x {U_(7) = W_(§,7)}andD(&,7) = {U, (1) —
W, (&N} x{U (1) + W_(§&,7)}withUy(r) =1+ (1£1/7)> and Wy (&, 7) = 2(1 —
£2)1/2(141/7). For each fuzzy substructuf#,, , attached td',, we denote ak, C {1, 2, 3}
the subset of the directions in which the fuzzy substrucagis (for instance if the active
directions arel and3, K, = {1,3}). For each fuzzy substructute,, , and each direction
k € Ky, the frequency-dependent mean fuzzy input paramefers;, ¢&, o which appear in
Egs. (16) to (18) are defined as follows:

(1)- Dimensionless parametef > 0 is themean coefficient of the participating fuzzy mésse
Soize, 1995) of fuzzy substructufs,, , for directionk, such that

Jo(&, 1) = {arctan Y, (¢, 7) —arctanY_ (&, 7)}

:uk:l/f:— ’ (19>
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Wheremf; > 0is thetotal massacting in directiork for Dy, ¢ anduf; > 0isthemean equivalent
massper unit measure of surfadg of Dy, , for directionk, introduced in the type | or Il fuzzy
law (see Soize, 1986 and 1993).

(2)- Parameten, > 0 is themean modal densityf fuzzy substructuréy,, , for directionk.
For details concerning the calculation of this parametss,30ize, 1995.

(3)- Parametet¢? > 0 is themean rate of internal dissipatioof fuzzy substructurey,;, , for
directionk. Generally, we havél < 1, with typical values of the order @£.001 to 0.01.

(4)- Finally, o is themean equivalent coupling factgrelated to the spatial memory effect)
of fuzzy substructuréy,, , for direction3. This parameter is such that< ai < 1 and for
af = 1, the model corresponds to the type | fuzzy law. In the othsesait is the type Il fuzzy
law.

From Egs. (8) and (16), we deduce that

iw E{Znz(w)} = —w? Z > v Stk (w) + iw Z Y v Clhw) ,  (20)

(=1 keK, (=1 ke,

in which linear operator8{¥ (w) andC£k (w) are such that

< S (w)u(w) , dus=ri(w) c*(u,6u) (21)

< CiE(wyu(w) , du>= AL (W) ™ (u,ou) (22)

*(u, 6u) = / <u(x,w),e(x)> <ou(x),e®(x)> ds(x) . (23)
1)

4. Solution of the Mean Operatorial Equation

Let v be the vector iR, L < N < 3L, with components}, ¢ € {1,..., L}, k € K,. From
Egs. (12) and (20), we deduce that Eq. (15) can be rewritten as

A(wyv)u(w) = fnas(w) (24)

A(w;v)=—w (Mmast+ Z Z ; Sfuz )

(=1 kEICg

+ iw (Cmasl(w )+ Z Z vy CEE(w ) + Knas(w) - (25)

=1 ke,

Taking into account the assumptions, it can be proved thaglf fixed realw, Eq. (24) has a
unique solutioni(w) = T(w; ¥) fmas(w) iN Cag With T'(w; ») = A(w;v) L.
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5. Mean Power Flow Equation of the Fuzzy Structure
Using Eq. (25), Eq. (24) can be rewitten as

L
foondw) + fmastdisw) + Z ffﬁz,dis&“‘)) = fmas(w) (26)
/=1
feondw) = {—w (Mma5t+ ; kZ; Vi Stp(w ) + Kmasl(‘ﬂ)} (W) (27)
fmast,dis£W> = {iw Cmasl(w>}u(w) ) (28>
ffuz dlSS(w {2"‘) Z Vk Cfuz } ( ) : (29)
ke,

We assume thags,i(x,t) and gyo(x,t) are R3-valued stochastic fields such that, for any
functionsa(x) andb(x) belonging teCag, fa(t) =< fmas(t) , a> and fy,(t) =< fnas(t) , b>
are limited band stationary second-order stochastic geeseindexed bR with values inC
and centered. In addition, we assume that there exists 8 spestral density functiofly, (w),
related to the cross correlation function By, (0) = E{ fa(t + 6) fu(t)} = [ €™ Sab(w) dw,
such that

Sunl@) = f21, (@) /D x(x) <b(x),a(x)> dx | (30)

inwhich fyisareal numberJ,B e (w) is the indicatrix function of limited bang,,,u B,,, with

B = [Win, wm +Awy] andB,, = [~wm —Awn,, —wp,] andy(x) is a given bounded positive-
valued function oD, This model means that stochastic fi€lds(x, t) is stationary in time
(with limited bandB,, U B,,), nonhomogeneous and delta correlated in space with itgens
x(x). Consequentlyu(x, t) is a time-stationary stochastic field and from Eq. (26), weude
the following equality of time-stationary stochastic field

L
feons(t) + fmastdisé?) + Z iz disdt) = fmas(t) - (31)
=1

For all fixedt, we introduce the real-valued random variables
Hcons(tQ V) =K fCOI’IS(t)7 ou> |

Hmast,dis£t§ V) = fmast,dis£t), du>
anast-fuz(t; )’) =< fféz,diss(t)? du>
1_[mast,irl(t§ V) =<K fmast(t), du>

which represent instantaneous powers. For all fixéd R, we denote the mathematical ex-
pectation of random variablH(¢; ¥) as< II(v) >= E{Il(¢;»)}. It can then be proved that
< eond¥) >= 0 and from Eqg. (31), we deduce that the mean power flow equatiarbe

written as
L

< Hmast,disg)/) > + Z < anast-fuz(y) > — < Hmast’"*()/) > 5 (32)
(=1
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inwhich <TInastgis{¥) > is the mean power dissipated in the master structuf&, ., () >is
the mean power flow from the master structure to fuzzy subtstre Dy, » and < Ilnastin(¥) >

is the mean input power of the master structure. In orderltutate the mean powers appearing
in Eg. (32), we use the Ritz-Galerkin method which allowsragpnations to be constructed
in a subspacé,, C Cyq0f dimensiom > 1. Let{b,(x),« = 1,...,n} be a basis of,,. Any
u(t) € C, C Cagcan be written asi(x,t) = >_"_, U, (t)b,(x). It can then be proved that

a=1 "o

< IImastdis¢¥) >= 2f02/ w? tr{[T (w; »)]* [Cmas(w)] [T (w; ¥)] [SE(w)]} dw ,  (33)

m

3
M) >= 2023 /B vt tr{ [T (w; )] [CEE ()] [T (wi»)] [Sr(@)] }dw
e (34)
< Tmasun(v) >= 22 Re / iw [T (w;)] [Se()]}dw (35)

in which tr{[M]} = > .[M];; denotes the trace of matrpd/], [M]* = [M]" denotes the
adjoint of matrix[M], Re z denotes the real part of complex numbef7 (w; v)] is an(n x n)
complex symmetric matrix defined by

[T (w;w)] = [Alws»)] (36)
where the components of tlie x n) complex symmetric matrik4(w; »)] are such that
[A(w;¥)]pa =<A(w;¥) ba, bg> (37)

with A (w; ) given by Eq. (25)]Cmas(w)] and[CfE(w)] are(n x n) real positive symmetric
matrices (the first one being positive-definite) defined by

[Cmast(w)]ﬁa =< Cmasl(w> ba, bﬁ >, (38>
[Ciuz(@)]pa =< Cii(w) bas bp> (39)

and finally,[Sx(w)] is a(n x n) complex Hermitian matrix such thg§ = (w)]sa = Spsb, (W),
i.e. taking Eg. (30) into account,

Se@loo =3 1, 5, @) [ x(x) <ba(), B> dx . (40)

which represents the matrix-valued spectral density fanaf second-order stationary stochas-
tic processF (t) = (Fi(t), ..., Fn(t)) with Fo (t) =< fmas(t) , ba >>.

6. Estimation of the Mean Powers Using Statistical Energy Aalysis

We assume that the mean powers appearing in Eq. (32) canitmatest with an SEA model
(Lyon and DeJdong, 1995). This means that the master steuctupled with all the fuzzy
substructuredy,, ¢, €ach of which can be considered as an appropriate unionbsf/stems,
can be modeled by SEA. Consequently, for a given frequenag Bg,U B,,,, Statistical Energy

Analysis is used to es:iEZnate the mean powéﬁfgst,disg dissipated in the master structure, the
mean input powek 11, i,> related to the master structure and for each fuzzy subateict

SEA, ¢
Dryz ¢, the mean power flow 11, ...+,,> from the master structure to fuzzy substructixg, ,.
By construction, these mean powers verify the SEA mean ptaerequation

L
SEA SEA, ¢ SEA
< 1_[mast,diss> + Z < 1_[mast-fuz> =< 1_[mast,in> : (41)
=1
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7. Estimation of the Mean Coefficients of the Participating kizzy Mass

7.1 Definition of a nonlinear constrained optimization prodem. An estimate of the mean
coefficientsv;, of the participating fuzzy mass can be obtained by solvindpaal nonlinear
constrained optimization problem based on the use of thempeaer flow equation. To do so,
we introduce the cost functiof(») from RY into R*

L SEA, £ 2
Z ( mast fuz()’ - < 1—Imast-fuz>> ’ (42)
(=1

and the spac®,y C RY of constraints such that, for allin Dy,

ve>0 , (e{l,....L} , kek, |, (43)
SEA

<Hma5t,dis£1’> > = <Hmast,diss>: 0, (44>
SEA

<Hma5t’|n()’) > - <Hmast,in>: O . (45)

By construction, the value of is then obtained by minimizing(v) onDy, i.e. by solving the
following global nonlinear constrained optimization plein

ylélli)lzlv Jv) . (46)

7.2 Remarks concerning the solution of the constrained optiization problem. First, using
the implicit function theorem, it can be proved that, if fach? € {1,..., L}, the mean power
flow < anE;gt_fup is sufficiently small (that is to say anE;gt_fuz>—> 0), then the constrained
optimization problem defined by Eq. (46) has a unique satutiecondly, subtracting Eqg. (41)
from Eqg. (32), and using Egs. (44) and (45), we deduce thaslfe in Dy, we have

SEA
<mast,dis¥) >=< 1_[mast,diss> ) (47)
SEA
< Hmast,in()’) >=< Hmast,in> ) (48>
L SEA, £
Z < Hmast fuz(” Z < 1_Ima:st-fuz> : (49>
=1

If vopt € Dy denotes the solution of Eq. (46), minimization of cost fumet/(¥) on Dy
implies the equivalences

SEA, £
< Hf;ast-fuz()’opt) >=< 1_[mast-fuz> ’ Vie {17 ) L} ) (50)

in place of Eq. (49). The equalities T s Yopt) >=< H;EQ’Si_fuz> are verified only if
J(vopt) = 0, but generally,J (vopt) > 0.
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7.3 Solving procedure Lety — G(¥) = (G1(»),...,Gni2(¥)) be the function fronRY
into RN+2 defined by

—V
G(v) = (< mastdisé¥) > — <Hf:25t,disg>)2 . (51)

SEA

(< Hmast,in(”) > —< Hmast,in>>2
The constrained optimization problem defined by Eq. (46)tban be rewritten as follows

in J 52
Gl (v) ., (52)

in which G(») < 0 means that;(v) < 0for j € {1,..., N+2}. The nonlinear constrained
optimization problem defined by Eq. (52) can be solved usiegSequential Quadratic Pro-
gramming (SQP) method (implemented, for instance, in N¥&I®ptimization Toolbox (see
Grace, 1992)).

8. Validation with an Example

8.1 Master structure. Itis a simply supported beam with a constant cross-seaitemea, length
20 m, total mas20000 kg, Young’s modulug.1 x 10'' N/m?, bending inerti®.001 m* and a

constant structural damping rdi#)1. The frequency band of analysisis= [0, 200] Hz. The

beam is excited in bending mode in the , z3) plane by a force applied at = 7, with a unit

flat spectrum over all the bargl of bandwidthAw = 27 x 200 rad/s. Functiory(x) appearing
in Eq. (30) is the mass density of the master structurefgnd 1.

8.2 Fuzzy substructures There are two fuzzy substructures attached to the beai, ca

{z1 ;4 <z <8}andl'y = {z; ; 12 < z; < 18}. Each fuzzy substructure consists of a large
number of simple linear oscillators acting in direction All the oscillators have the same mass
mgo = 1.8 kg and the same damping date= 0.002. There areN; = 484 oscillators onl';
andN, = 729 onI'y. The eigenfrequency of each oscillator and the locatiotscdtachment
point on the beam are uniformly distributed. The total mdshe fuzzy substructure #8183

kg compared witl20000 kg for the master structure.

8.3 Construction of the reference by numerical simulation The response of the fuzzy
structure, i.e. the response of the master structure cowgté its fuzzy substructures (beam
coupled with the two sets of oscillators), is calculated bynerical simulation in which the
eigenmodes of the master structure are used as the ffasfg), o = 1,...,n} of C,, with

n = 12. This response is called the reference below. The irrecuabal lines of Figs. 2 and
3 show the modulus of the transverse acceleration of the eg@wintsx; = 7 (Fig. 2) and
x1 = 15 (Fig. 3). In order to see the role played by the fuzzy subsiines, we have also
represented the response of the master structure alona (biano oscillators) in Figs. 2 and
3, with dashed lines.

8.4 Estimation of the mean powers using Statistical Energy Aalysis The frequency band
of analysis is written a®? = UL’_, B,,, with, for all m, Aw,, = Aw/10. A classical SEA
model was developed for the fuzzy structure (beam coupléld thie oscillators). Figure 4
shows< anE;\st'disg (solid line) and< H;E;m> (dashed line). Figure 5 shows the power flow

SEA, 1 . SEA,2 L
<1 astuz> (dashed line) anet I, .+, (solid line).
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8.5 Estimation of the mean coefficients of the participatinguzzy mass Each fuzzy sub-
structure can be simulated by a homogeneous, orthotropiy faubstructure acting only in
directionzs. Consequently, we have = N = 2 andX; = K3 = {3}. There is no spatial
memory effect, and the mean equivalent coupling factorsremefore such that} = a2 = 1
(Type | fuzzy law for each fuzzy substructure). The mean rhoeéasity, the mean rate of
internal dissipation and the total mass of each fuzzy sutistre can be estimated directly using
the formulas given by Soize, 1995, yielding = 0.0175 (rad/sy !, n3 = 0.0215 (rad/s) !,

&} = & = 0.002 andm} = 871, m3 = 1312. The mean coefficients} andv? of the partici-
pating fuzzy mass of the fuzzy substructures are estimatedling the nonlinear constrained
optimization problem defined by Eq. (52), using the SeqaéQtuadratic Programming (SQP)
method implemented in Matlab’s Optimization Toolbox of Mat(see Grace, 1992)). The mean
powers< Imastdis{?) >, < I} aceud?) > <2 aseud?) > and < mastin(v) > are calculated
using Egs. (33) to (35). Figure 6 shows the res(s opt,»(dashed line) an@v3 )opt (solid
line) for m = 1,..., 10, in which (£)opt.» denotes the solution of the nonlinear constrained
optimization problem for band,,, .

8.6 Comparisons between the reference and the response oipied by the fuzzy structure
theory. Figures 7 and 8 show the response of the master structupdecbwith its fuzzy
substructures and give the comparisons between the reée(ege Section 8.3) and the response
calculated using the fuzzy structure theory presented ati@es 2 to 4. The mean coefficients
of the participating fuzzy mass are calculated in Secti®n Bor this calculation, we used the
valuesv} = £ 5700 (Ud)optm = 0.0427 andv? = = 3210 (13)opem = 0.0386 in Eqs. (24)
and (25). The results shown in Figs. 7 and 8 concern the medifulB), the real part and
the imaginary part (in linear scale) of the transverse atagbn of the beam at point; = 7
(Figs. 7-a, 7-b, 7-c) and at; = 15 (Figs. 8-a, 8-b, 8-c). It can be seen that the results given
by the fuzzy structure theory (smoothed solid line) and #ference (irregular solid line) are in
excellent agreement in terms of modulus and phase.

9. Conclusion

We have presented a constructive method for estimating éaawoefficients of the participating
fuzzy mass for each fuzzy substructure modeled with a typeyipe Il fuzzy law. The method

is based on the use of a mean power flow equation which is edtatllfor a general fuzzy
structure modeled by the fuzzy structure theory (devel@aelier by the author). The proposed
theoretical approach is applied to an example. The reshttsreed are good. Finally, it should
be noted that the theory presented can be viewed as a newadrfethiine coupling between

a subdomain modeled by the local elastodynamic equationaficch the local modulus and
phases are preserved) with another subdomain modeled lgyaih& mean power equation of
the Statistical Energy Analysis (for which the local moduand phases are lost and replaced
by the global energy).
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LEGENDS ACCOMPANYING EACH FIGURE

Fig. 1. Geometrical configuration of the master structungoted with its fuzzy substructures.

Fig. 2. Modulus of the acceleration @t = 7 for the beam with no oscillators (dashed line)
and the beam coupled with the oscillators (irregular said)L

Fig. 3. Modulus of the acceleration at = 15 for the beam with no oscillators (dashed line)
and the beam coupled with the oscillators (irregular safid)L

Fig. 4. Values ok H;E;t,disg (solid line) and< anE;‘Smn> (dashed line) obtained by SEA for
the beam coupled with the oscillators.

Fig. 5. Values ok o > (dashed line) ane: I1

mast-fuz
the beam coupled with the oscillators.

Fig. 6. Solution of the nonlinear constrained optimizagoablem: (v )opt., (dashed line) and
(v3)optm (solid line).

Fig. 7. Modulus (a), real part (b) and imaginary part (c) of ticceleration at; = 7 of
the beam coupled with the oscillators, corresponding ta¢ference (irregular solid line) and
obtained by the fuzzy structure theory (smoothed solidline

Fig. 8. Modulus (a), real part (b) and imaginary part (c) of Hcceleration at; = 15 of
the beam coupled with the oscillators, corresponding ta¢ference (irregular solid line) and
obtained by the fuzzy structure theory (smoothed solidline

SEA, 2
mast-fuz

> (solid line) obtained by SEA for
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Power flow from the master structure to each fuzzy substructure
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