
HAL Id: hal-00765810
https://hal.science/hal-00765810

Submitted on 16 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation of the fuzzy substructure model parameters
using the mean power flow equation of the fuzzy

structure
Christian Soize

To cite this version:
Christian Soize. Estimation of the fuzzy substructure model parameters using the mean power flow
equation of the fuzzy structure. Journal of Vibration and Acoustics, 1998, 120 (1), pp.279-286.
�10.1115/1.2893818�. �hal-00765810�

https://hal.science/hal-00765810
https://hal.archives-ouvertes.fr


Estimation of the Fuzzy Substructure Model Parameters
Using the Mean Power Flow Equation of the Fuzzy Structure

C. Soize

Structures Department, ONERA, BP 72, F-92322 Chatillon Cedex, France

Abstract. This paper presents a theoretical approach for identifying the dimensionless mean
coefficient of participating fuzzy mass which is the main unknown parameter of the type I or II
fuzzy law previously introduced by the author. This method is based on the use of the associated
power flow equation, each power term being identified by usinga global statistical energy
analysis of the fuzzy structure (master structure with its fuzzy substructures). Identification is
then carried out by solving a nonlinear constrained optimization problem. An example is given
to illustrate the theoretical results.

1. Introduction

In the fuzzy structure theory (Soize, 1986), the concept of "master structure" is introduced to
designate the part of the mechanical system which is accessible to conventional modeling. The
"fuzzy substructure" is by definition the part of the structure that is not accessible to conventional
modeling because details are unknown or are imprecisely known. The fuzzy substructure
consists of the secondary mechanical subsystems "attached" to the master structure. A "fuzzy
structure" is a master structure plus one or more fuzzy substructures globally called the fuzzy
substructure. This theory was developed to explain and model the apparent dissipation occurring
on the master structure in order to improve the structural-acoustics predictions of structures with
internal structural complexity (Soize, 1986; Chabas et al., 1986; Soize 1993 and 1995). This
dissipation is due to the mechanical energy transferred from the master structure to the secondary
mechanical subsystems attached to the primary structure and entering in vibration. It is important
to note that the objective of the fuzzy structure theory (developed by the author) is to predict the
modulus and phase of the response in every point of the masterstructure, taking the effects of the
structural complexity (modeled by a fuzzy substructure described by a probabilistic approach)
into account. Accordingly, this theory is not equivalent toStatistical Energy Analysis (SEA)
(contrary to what was asserted by Lyon, 1995).
Since 1991, much interesting research has been published inthis area by the US acoustical
community (see for instance Sparrow, 1991; Russell and Sparrow, 1992; Pierce et al., 1993;
Dyer, 1994; McCoy, 1994; Pierce, 1994; Rochat and Sparrow, 1994; Sparrow et al., 1994;
Cuschieri and Feit, 1995; Feit and Pierce, 1995; Maidanik, 1995; Maidanik and Dickey, 1995;
Pierce, 1995a and 1995b; Photiadis, 1995; Rochat and Sparrow, 1995; Ruckman and Feit 1995a
and 1995b; Russell, 1995; Russell and Sparrow, 1995; Sparrow, 1995; Steinberg and McCoy,
1995; Strasberg, 1996; Strasberg and Feit, 1996).
An important problem with this kind of theory is how to determine the parameters to be used
in the fuzzy structure laws (see for instance Soize, 1986; Pierce et al. 1993; Feit and Pierce,
1995; Pierce, 1995b; Russell, 1995; Soize, 1995). This paper presents a theoretical approach
for identifying the dimensionless mean coefficient of participating fuzzy mass which is the main
unknown parameter of the type I or II fuzzy law introduced in 1986 by the author. This method
is based on the use of the associated power flow equation, eachpower term being identified by
using a global statistical energy analysis of the fuzzy structure. The identification is then carried
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out by solving a nonlinear constrained optimization problem. An example is given to illustrate
the theoretical results.

2. Modeling of the Master Structure Coupled with its Fuzzy Substructures

This section deals with modeling of a master structure coupled with its fuzzy substructures to
predict vibration. To simplify the presentation, we assumethat no external or internal fluid is
coupled with the primary structure and consequently that there is an identity between the master
structure and the primary structure (for the elastoacoustic case, see Soize, 1993; Soize et al.,
1992). The physical spaceR3 is referenced to a cartesian coordinate systemOx1x2x3; we
denote the generic point ofR3 asx = (x1, x2, x3). The geometry of the fuzzy structure and the
notations are defined in Fig. 1. The master structure is a three-dimensional continuum which
occupies the open bounded domainDmast of R3 with boundary∂Dmast = Σmast∪ Σfuz. The
fuzzy substructureDfuz is written as the unionDfuz = ∪L

ℓ=1Dfuz,ℓ of L ≥ 1 fuzzy substructures.
Each fuzzy substructureDfuz,ℓ is attached to the master structure by the boundaryΓℓ and there
is no mechanical connection between any two fuzzy substructures. The partΣfuz = ∪L

ℓ=1Γℓ is
the common boundary between the fuzzy substructures and themaster structure. The external
unit normal to∂Dmast is denotedn and the two-dimensional surface area element is denotedds.
We then have

∫

Γℓ
ds(x) = |Γℓ|, where|Γℓ| is the area of surfaceΓℓ.

2.1 Probabilistic Equations of the Fuzzy Structure in the Frequency Domain. The equations
are written in the frequency domainω ∈ R. The master structure is modeled by an inhomo-
geneous, anisotropic, linear viscoelastic solid continuum. Letu(x, ω) = (u1(x, ω), u2(x, ω),
u3(x, ω)) be theC3-valued displacement field of the master structure defined onDmast. Bound-
ary Σmast is written asΓ0 ∪ Γmast. The master structure is fixed on boundaryΓ0. A givenC3-
valued surface force fieldgsurf(x, ω) = (gsurf,1(x, ω), gsurf,2(x, ω), gsurf,3(x, ω)) is prescribed
on boundaryΓmast. Fori ∈ {1, 2, 3} the equations of the master structure are

−ω2 ρ ui −
∑

j

∂σij

∂xj
= gvol,i in Dmast , (1)

ui = 0 on Γ0 , (2)
∑

j

σij nj = gsurf,i on Γmast , (3)

∑

j

σij nj = −γℓ
i on Γℓ , for ℓ ∈ {1, . . . , L} , (4)

in which gvol(x, ω) = (gvol,1(x, ω), gvol,2(x, ω), gvol,3(x, ω)) is a givenC3-valued volumetric
force field applied inDmast, ρ(x) is the mass density field onDmast at equilibrium,σij is the
stress tensor andgℓ(x, ω) = (γℓ

1(x, ω), γℓ
2(x, ω), γℓ

3(x, ω)) is theC3-valued surface force field
defined onΓℓ, representing the action of the master structure on the fuzzy substructureDfuz,ℓ

The constitutive law in the frequency domain allows symmetric stress tensorσij to be related
to the linearized symmetric strain tensorεij(u) = 1/2(∂ui/∂xj + ∂uj/∂xi) by the equation

σij(x, ω) =
∑

k,h

aijkh(x, ω) εkh(u) + iω
∑

k,h

bijkh(x, ω) εkh(u) , (5)

in which the real tensoraijkh(x, ω) of the elastic coefficients and the real tensorbijkh(x, ω) of
the damping coefficients have the usual properties of symmetry and positive-definiteness. Using
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the fuzzy structure theory (Soize, 1986 and 1993), each surface force fieldgℓ(x, ω) related to
the fuzzy substructure attached toΓℓ is modeled by a random field defined by a probabilistic
boundary impedance operator such that, for allℓ ∈ {1, . . . , L},gℓ(x, ω) =

∫

Γℓ

iω [Zℓ(x,x′, ω)] u(x′, ω) ds(x′) on Γℓ , (6)

in which [Zℓ(x,x′, ω)] is a(3×3) complex random matrix relative to the canonical basis ofR3.
Let H be the Hilbert space of all the integrable square functions from Dmast into C3, equipped
with the inner product≪w , δw≫ =

∫

Dmast
<w(x) , δw(x)> dx where the overline denotes

the complex conjugate and< w(x) , δw(x) >=
∑

j wj(x)δwj(x). The random boundary
impedance operatorZfuz(ω) of the fuzzy substructureDfuz = ∪L

ℓ=1Dfuz,ℓ can be written as

Zfuz(ω) = E{Zfuz(ω)} + Zrand(ω) , (7)

in whichE{Zfuz(ω)} is the mathematical expectation ofZfuz(ω) (mean value) andZrand(ω) is
the centered random fluctuation. The mean boundary impedance operatorE{Zfuz(ω)} of the
fuzzy substructure is such that

≪E{Zfuz(ω)}u(ω) , δu≫=

L
∑

ℓ=1

∫

Γℓ

∫

Γℓ

< [Zℓ(x,x′, ω)]u(x′, ω) , δu(x)> ds(x) ds(x′) ,

(8)
in which the mean value[Zℓ(x,x′, ω)] of random matrix[Zℓ(x,x′, ω)] verifies[Zℓ(x,x′, ω)] =

[Zℓ(x′,x, ω)]T and[Zℓ(x,x′,−ω)] = [Zℓ(x′,x, ω)], and the right-hand exponentT denotes the
transpose ofthe matrix. For any fixedω in R, E{Zfuz(−ω)} = E{Zfuz(ω)} andiω E{Zfuz(ω)}
can be written as

iω E{Zfuz(ω)} = −ω2 Rfuz(ω) + iω Ifuz(ω) , (9)

in which Rfuz(ω) and Ifuz(ω) are real linear operators, algebraically symmetric. The fuzzy
structure theory (Soize, 1986 and 1993) gives an explicit construction of random fluctuations
Zrand(ω) and mean valueE{Zfuz(ω)}. This construction uses type I and type II fuzzy laws which
depend on mechanical parameters. Each mechanical parameter of the fuzzy law is represented
by two deterministic values: a mean value which can be viewedas a design value and a value
of a dispersion parameter belonging to[0 , 1[ allowing uncertainties on data (design value) to
be introduced. By construction of the fuzzy structure theory, if there are no uncertainties on
the mechanical parameters of the fuzzy law (i.e. if the valueof each dispersion parameter is
zero), then random fluctuationZrand(ω) is zero. In this paper, we will only use the modeling of
E{Zfuz(ω)} and we do not need the modeling ofZrand(ω). In order to facilitate the reading, we
summarize the model ofE{Zfuz(ω)} in Section 3.

2.2 Mean Operator Equation of the Master Structure Coupled with its Fuzzy Substruc-
tures. We introduce the admissible function spaceCad of functionsu in H, having a generalized
derivative inH and satisfying the constraintu = 0 on Γ0. The variational formulation of the
problem defined by Eqs. (1) to (6) yields the random operator equation

iω (Zmast(ω) + Zfuz(ω)) U(ω) = fmast(ω) , (10)

whose solutionU(ω) is a random variable with values inCad. For allδu in Cad, elementfmast(ω)
is defined by

≪ fmast(ω) , δu≫=

∫

Dmast

<gvol(x, ω) , δu(x)> dx +

∫

Γmast

<gsurf(x, ω) , δu(x)> ds(x) . (11)
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Impedance operatorZmast(ω) of the master structure is a linear operator defined onCad by

iω Zmast(ω) = −ω2 Mmast+ iω Cmast(ω) + Kmast(ω) , (12)

verifying Zmast(−ω) = Zmast(ω), and whereMmast, Cmast(ω) andKmast(ω) are real operators,
algebraically symmetric and positive-definite, such that,for all u andδu in Cad,

≪Mmastu(ω) , δu≫=

∫

Dmast

ρ(x) <u(x, ω) , δu(x)> dx , (13 − 1)

≪Cmast(ω)u(ω) , δu≫=

∫

Dmast

bijkh(x, ω) εkh(u) εij(δu) dx , (13 − 2)

≪Kmast(ω)u(ω) , δu≫=

∫

Dmast

aijkh(x, ω) εkh(u) εij(δu) dx . (13 − 3)

For all fixed realω, random solutionU(ω) of Eq. (10) can be written as

U(ω) = u(ω) + urand(ω) , (14)

in whichu(ω) is the solution inCad of the following mean operator equation

iω (Zmast(ω) + E{Zfuz(ω)}) u(ω) = fmast(ω) , (15)

andurand(ω) is the noncentered random variable with values inCad. It should be noted that
E{U(ω)} = u(ω) + E{urand(ω)} and consequently, solutionu(ω) of mean operator equation
(15) does not represent the mean value of the response. The fuzzy structure theory (Soize,
1986 and 1993) gives an explicit construction of random solution U(ω) of Eq. (10) (i.e. the
construction ofu(ω) andurand(ω) using a Neumann expansion of the random linear operator
(I + T(ω))−1 with T(ω) = (Zmast(ω) + E{Zfuz(ω)})−1Zrand(ω). Since the present paper is
devoted to identification of the dimensionlessmean coefficient of the participating fuzzy mass
which is the main unknown mechanical parameter of the type IIfuzzy law (Soize, 1995), it is
coherent to consider that no uncertainties are present on this mechanical parameter (once the
mean value of this mechanical parameter has been identified,uncertainties can be introduced
using a nonzero value of the dispersion parameters, and thenrandom Eq. (10) can then be solved.
As was recalled in Section 2.1, if there are no uncertaintieson the mechanical parameters of the
type II fuzzy law, thenZrand(ω) = 0 and in this caseu(ω) = E{U(ω)} represents the mean
response of the master structure coupled with its fuzzy substructures (with no uncertainties on
the mechanical parameters). Consequently, it is consistent to use the mean power flow equation
of the fuzzy structure with no uncertainties on the mechanical parameters of the fuzzy law (i.e.
the mean power flow equation associated with Eq. (15) for identifying the mean coefficient of
the participating fuzzy mass.

3. Modeling of the Fuzzy Substructures Using the Type II Fuzzy Law

In this section, we summarize the model of the mean impedanceoperatorE{Zfuz(ω)} of the
fuzzy substructure (defined by Eq. (8)) using the renormalization and notation introduced in
Soize, 1995. Each fuzzy substructureDfuz,ℓ, attached to the master structureDmast by the
boundaryΓℓ, is assumed to be a homogeneous orthotropic fuzzy substructure which can be
described by the type II fuzzy law (see Soize, 1993). It should be noted that an isotropic fuzzy
substructure is a particular case of the orthotropic case, and that the type I fuzzy law (see Soize
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1986), which models a fuzzy substructure with no spatial memory effect, is a particular case of
the type II law which allows a spatial memory effect to be modeled. For an orthotropic fuzzy
substructureDfuz,ℓ, there exists (see Soize 1986) an orthogonal(3× 3) real matrix[Φℓ(x)]T for
transition from the canonical basis to a local orthonormal basis{eℓ1(x), eℓ2(x), eℓ3(x)} related
to the boundaryΓℓ at pointx ∈ Γℓ such that[Zℓ(x,x′, ω)] = [Φℓ(x)] [Zℓ

0(x,x′, ω)] [Φℓ(x′)]T in
which[Zℓ

0(x,x′, ω)] is a(3×3) complex diagonal matrix whose elements are[Zℓ
0(x,x′, ω)]jk =

δjk zℓ
k(x,x′, ω), with δjk = 0 if j 6= k andδjj = 1. The impedanceszℓ

k(x,x′, ω) are such that

iω zℓ
k(x,x′, ω) = νℓ

k

{

−ω2 rℓ
k(ω) + iω hℓ

k(ω)
}

δΓℓ
(x′−x) , (16)

in which
∫

Γℓ
ϕ(x′) δΓℓ

(x′−x) ds(x′) = ϕ(x) if x ∈ Γℓ and whereνℓ
k will soon be defined.

Above the cutoff frequency introduced in the type II fuzzy law, if 2 ω nℓ
k > 1/2, then we have

hℓ
k(ω) =

mℓ
k

|Γℓ|

1

nℓ
k

J
(

ξℓ
k , 2ωnℓ

k , αℓ
k

)

, (17)

rℓ
k(ω) =

mℓ
k

|Γℓ|
E
(

ξℓ
k , 2ωnℓ

k , αℓ
k

)

, (18)

in which, for0 < ξ < 1 andτ ∈ [0.5 , +∞[, real-valued functionsJ andE are such that

J (ξ, τ, α) = ξτ(1 − α) + αJ0(ξ, τ) ,

E(ξ, τ, α) = (α − 1)(1 +
1

3τ2
) + α E0(ξ, τ) .

Real-valued functionJ0 is defined by

J0(ξ, τ) =
τ2

8
√

1 − ξ2
{arctan Y+(ξ, τ)− arctan Y−(ξ, τ)} ,

in which Y±(ξ, τ) = ξ−1(1 − ξ2)−1/2{ξ2 + (1/τ ± 2)/(2τ)}. Real-valued functionE0 is
defined by

E0(ξ, τ) =
2

τ
−

1

4
√

1 − ξ2
ln

{

N(ξ, τ)

D(ξ, τ)

}

,

in which N(ξ, τ) = {U
+
(τ) + W

+
(ξ, τ)} × {U

−
(τ) − W

−
(ξ, τ)} andD(ξ, τ) = {U

+
(τ) −

W
+
(ξ, τ)} × {U

−
(τ) + W

−
(ξ, τ)} with U±(τ) = 1 + (1 ± 1/τ)2 andW±(ξ, τ) = 2 (1 −

ξ2)1/2(1±1/τ). For each fuzzy substructureDfuz,ℓ attached toΓℓ, we denote asKℓ ⊆ {1, 2, 3}
the subset of the directions in which the fuzzy substructureacts (for instance if the active
directions are1 and3, Kℓ = {1, 3}). For each fuzzy substructureDfuz,ℓ and each direction
k ∈ Kℓ, the frequency-dependent mean fuzzy input parametersνℓ

k, nℓ
k, ξℓ

k, αℓ
k which appear in

Eqs. (16) to (18) are defined as follows:
(1)- Dimensionless parameterνℓ

k ≥ 0 is themean coefficient of the participating fuzzy mass(see
Soize, 1995) of fuzzy substructureDfuz,ℓ for directionk, such that

µℓ
k = νℓ

k

mℓ
k

|Γℓ|
, (19)
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wheremℓ
k ≥ 0 is thetotal massacting in directionk for Dfuz,ℓ andµℓ

k ≥ 0 is themean equivalent
massper unit measure of surfaceΓℓ of Dfuz,ℓ for directionk, introduced in the type I or II fuzzy
law (see Soize, 1986 and 1993).
(2)- Parameternℓ

k > 0 is themean modal densityof fuzzy substructureDfuz,ℓ for directionk.
For details concerning the calculation of this parameter, see Soize, 1995.
(3)- Parameterξℓ

k > 0 is themean rate of internal dissipationof fuzzy substructureDfuz,ℓ for
directionk. Generally, we haveξℓ

k ≪ 1, with typical values of the order of0.001 to 0.01.
(4)- Finally, αℓ

k is themean equivalent coupling factor(related to the spatial memory effect)
of fuzzy substructureDfuz,ℓ for directionβ. This parameter is such that0 ≤ αℓ

k ≤ 1 and for
αℓ

k = 1, the model corresponds to the type I fuzzy law. In the other cases, it is the type II fuzzy
law.
From Eqs. (8) and (16), we deduce that

iω E{Zfuz(ω)} = −ω2
L

∑

ℓ=1

∑

k∈Kℓ

νℓ
k Sℓk

fuz(ω) + iω
L

∑

ℓ=1

∑

k∈Kℓ

νℓ
k Cℓk

fuz(ω) , (20)

in which linear operatorsSℓk
fuz(ω) andCℓk

fuz(ω) are such that

≪ Sℓk
fuz(ω)u(ω) , δu≫= rℓ

k(ω) cℓk(u, δu) , (21)

≪ Cℓk
fuz(ω)u(ω) , δu≫= hℓ

k(ω) cℓk(u, δu) , (22)

cℓk(u, δu) =

∫

Γℓ

<u(x, ω) , eℓk(x)><δu(x) , eℓk(x)> ds(x) . (23)

4. Solution of the Mean Operatorial Equation

Let n be the vector inRN , L ≤ N ≤ 3L, with componentsνℓ
k, ℓ ∈ {1, . . . , L}, k ∈ Kℓ. From

Eqs. (12) and (20), we deduce that Eq. (15) can be rewritten as

A(ω; n)u(ω) = fmast(ω) , (24)

A(ω; n) = − ω2
(

Mmast+
L

∑

ℓ=1

∑

k∈Kℓ

νℓ
k Sℓk

fuz(ω)
)

+ iω
(

Cmast(ω) +

L
∑

ℓ=1

∑

k∈Kℓ

νℓ
k Cℓk

fuz(ω)
)

+ Kmast(ω) . (25)

Taking into account the assumptions, it can be proved that, for all fixed realω, Eq. (24) has a
unique solutionu(ω) = T(ω; n) fmast(ω) in Cad with T(ω; n) = A(ω; n)−1.
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5. Mean Power Flow Equation of the Fuzzy Structure

Using Eq. (25), Eq. (24) can be rewitten as

fcons(ω) + fmast,diss(ω) +
L

∑

ℓ=1

f ℓ
fuz,diss(ω) = fmast(ω) , (26)

fcons(ω) =
{

−ω2
(

Mmast+

L
∑

ℓ=1

∑

k∈Kℓ

νℓ
k Sℓk

fuz(ω)
)

+ Kmast(ω)
}

u(ω) , (27)

fmast,diss(ω) =
{

iω Cmast(ω)
}

u(ω) , (28)

f ℓ
fuz,diss(ω) =

{

iω
∑

k∈Kℓ

νℓ
k Cℓk

fuz(ω)
}

u(ω) . (29)

We assume thatgsurf(x, t) and gvol(x, t) are R3-valued stochastic fields such that, for any
functionsa(x) andb(x) belonging toCad, fa(t) =≪ fmast(t) , a≫ andfb(t) =≪ fmast(t) ,b≫
are limited band stationary second-order stochastic processes indexed byR with values inC
and centered. In addition, we assume that there exists a cross spectral density functionSab(ω),
related to the cross correlation function byRab(θ) = E{fa(t + θ)fb(t)} =

∫R eiωθSab(ω) dω,
such that

Sab(ω) = f2
0 1

Bm∪Bm
(ω)

∫

Dmast

χ(x) <b(x) , a(x)> dx , (30)

in whichf0 is a real number,1
Bm∪Bm

(ω) is the indicatrix function of limited bandBm∪Bm with

Bm = [ ωm, ωm+∆ωm] andBm = [−ωm−∆ωm,−ωm] andχ(x) is a given bounded positive-
valued function onDmast. This model means that stochastic fieldfmast(x, t) is stationary in time
(with limited bandBm∪ Bm), nonhomogeneous and delta correlated in space with intensity
χ(x). Consequently,u(x, t) is a time-stationary stochastic field and from Eq. (26), we deduce
the following equality of time-stationary stochastic fields

fcons(t) + fmast,diss(t) +

L
∑

ℓ=1

f ℓ
fuz,diss(t) = fmast(t) . (31)

For all fixedt, we introduce the real-valued random variables

Πcons(t; n) =≪ fcons(t), ∂tu≫ ,

Πmast,diss(t; n) =≪ fmast,diss(t), ∂tu≫ ,

Πℓ
mast-fuz(t; n) =≪ f ℓ

fuz,diss(t), ∂tu≫ ,

Πmast,in(t; n) =≪ fmast(t), ∂tu≫ ,

which represent instantaneous powers. For all fixedt in R, we denote the mathematical ex-
pectation of random variableΠ(t; n) as< Π(n) >= E{Π(t; n)}. It can then be proved that
< Πcons(n) >= 0 and from Eq. (31), we deduce that the mean power flow equation can be
written as

<Πmast,diss(n)> +
L

∑

ℓ=1

<Πℓ
mast-fuz(n)>=<Πmast,in(n)> , (32)
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in which <Πmast,diss(n)> is the mean power dissipated in the master structure,<Πℓ
mast-fuz(n)>is

the mean power flow from the master structure to fuzzy substructureDfuz,ℓ and<Πmast,in(n)>
is the mean input power of the master structure. In order to calculate the mean powers appearing
in Eq. (32), we use the Ritz-Galerkin method which allows approximations to be constructed
in a subspaceCn ⊂ Cad of dimensionn ≥ 1. Let {bα(x), α = 1, . . . , n} be a basis ofCn. Any
u(t) ∈ Cn ⊂ Cad can be written asu(x, t) =

∑n
α=1 Uα(t)bα(x). It can then be proved that

<Πmast,diss(n)>= 2f2
0

∫

Bm

ω2 tr
{

[T (ω; n)]∗ [ Cmast(ω)] [T (ω; n)] [SF(ω)]
}

dω , (33)

<Πℓ
mast-fuz(n)>= 2f2

0

3
∑

k=1

∫

Bm

νℓ
k ω2 tr

{

[T (ω; n)]∗ [ Cℓk
fuz(ω)] [T (ω; n)] [SF(ω)]

}

dω ,

(34)

<Πmast,in(n)>= 2f2
0 ℜe

∫

Bm

iω tr
{

[T (ω; n)] [SF(ω)]
}

dω , (35)

in which tr{[M ]} =
∑

j [M ]jj denotes the trace of matrix[M ], [M ]∗ = [M ]
T

denotes the
adjoint of matrix[M ], ℜe z denotes the real part of complex numberz, [T (ω; n)] is an(n × n)
complex symmetric matrix defined by

[T (ω; n)] = [A(ω; n)]−1 , (36)

where the components of the(n × n) complex symmetric matrix[A(ω; n)] are such that

[A(ω; n)]βα =≪A(ω; n)bα,bβ ≫ , (37)

with A(ω; n) given by Eq. (25),[ Cmast(ω)] and[ Cℓk
fuz(ω)] are(n × n) real positive symmetric

matrices (the first one being positive-definite) defined by

[ Cmast(ω)]βα =≪Cmast(ω)bα,bβ≫ , (38)

[ Cℓk
fuz(ω)]βα =≪Cℓk

fuz(ω)bα,bβ ≫ , (39)

and finally,[SF(ω)] is a(n× n) complex Hermitian matrix such that[SF (ω)]βα = Sbβbα
(ω),

i.e. taking Eq. (30) into account,

[SF(ω)]βα = f2
0 1

Bm∪Bm
(ω)

∫

Dmast

χ(x) <bα(x) ,bβ(x)> dx , (40)

which represents the matrix-valued spectral density function of second-order stationary stochas-
tic processF(t) = (F1(t), . . . ,Fn(t)) with Fα(t) =≪ fmast(t) ,bα≫.

6. Estimation of the Mean Powers Using Statistical Energy Analysis
We assume that the mean powers appearing in Eq. (32) can be estimated with an SEA model
(Lyon and DeJong, 1995). This means that the master structure coupled with all the fuzzy
substructuresDfuz,ℓ, each of which can be considered as an appropriate union of subsystems,
can be modeled by SEA. Consequently, for a given frequency bandBm∪Bm, Statistical Energy
Analysis is used to estimate the mean power<Π

SEA

mast,diss> dissipated in the master structure, the

mean input power< Π
SEA

mast,in> related to the master structure and for each fuzzy substructure

Dfuz,ℓ, the mean power flow<Π
SEA,ℓ

mast-fuz> from the master structure to fuzzy substructureDfuz,ℓ.
By construction, these mean powers verify the SEA mean powerflow equation

<Π
SEA

mast,diss> +
L

∑

ℓ=1

<Π
SEA,ℓ

mast-fuz>=<Π
SEA

mast,in> . (41)
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7. Estimation of the Mean Coefficients of the Participating Fuzzy Mass

7.1 Definition of a nonlinear constrained optimization problem. An estimate of the mean
coefficientsνℓ

k of the participating fuzzy mass can be obtained by solving a global nonlinear
constrained optimization problem based on the use of the mean power flow equation. To do so,
we introduce the cost functionJ(n) fromRN intoR+

J(n) =

L
∑

ℓ=1

(

<Πℓ
mast-fuz(n)> − <Π

SEA,ℓ

mast-fuz>
)2

, (42)

and the spaceDN ⊂ RN of constraints such that, for alln in DN ,

νℓ
k ≥ 0 , ℓ ∈ {1, . . . , L} , k ∈ Kℓ , (43)

<Πmast,diss(n)> − <Π
SEA

mast,diss>= 0 , (44)

<Πmast,in(n)> − <Π
SEA

mast,in>= 0 . (45)

By construction, the value ofn is then obtained by minimizingJ(n) onDN , i.e. by solving the
following global nonlinear constrained optimization problem

minn∈DN

J(n) . (46)

7.2 Remarks concerning the solution of the constrained optimization problem. First, using
the implicit function theorem, it can be proved that, if for eachℓ ∈ {1, . . . , L}, the mean power
flow < Π

SEA,ℓ

mast-fuz> is sufficiently small (that is to say< Π
SEA,ℓ

mast-fuz>→ 0), then the constrained
optimization problem defined by Eq. (46) has a unique solution. Secondly, subtracting Eq. (41)
from Eq. (32), and using Eqs. (44) and (45), we deduce that, for all n in DN , we have

<Πmast,diss(n)>=<Π
SEA

mast,diss> , (47)

<Πmast,in(n)>=<Π
SEA

mast,in> , (48)

L
∑

ℓ=1

<Πℓ
mast-fuz(n)>=

L
∑

ℓ=1

<Π
SEA,ℓ

mast-fuz> . (49)

If nopt ∈ DN denotes the solution of Eq. (46), minimization of cost function J(n) on DN

implies the equivalences

<Πℓ
mast-fuz(nopt)>≃<Π

SEA,ℓ

mast-fuz> , ∀ ℓ ∈ {1, . . . , L} , (50)

in place of Eq. (49). The equalities< Πℓ
mast-fuz(nopt) >=< Π

SEA,ℓ

mast-fuz> are verified only if
J(nopt) = 0, but generally,J(nopt) > 0.
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7.3 Solving procedure. Let n 7→ G(n) = (G1(n), . . . , GN+2(n)) be the function fromRN

intoRN+2 defined by

G(n) =





−n
(<Πmast,diss(n)> − <Π

SEA

mast,diss>)2

(<Πmast,in(n)> − <Π
SEA

mast,in>)2



 . (51)

The constrained optimization problem defined by Eq. (46) canthen be rewritten as follows

min
G(n)≤0

J(n) , (52)

in whichG(n) ≤ 0 means thatGj(n) ≤ 0 for j ∈ {1, . . . , N +2}. The nonlinear constrained
optimization problem defined by Eq. (52) can be solved using the Sequential Quadratic Pro-
gramming (SQP) method (implemented, for instance, in Matlab’s Optimization Toolbox (see
Grace, 1992)).

8. Validation with an Example

8.1 Master structure. It is a simply supported beam with a constant cross-sectional area, length
20 m, total mass20000 kg, Young’s modulus2.1× 1011 N/m2, bending inertia0.001 m4 and a
constant structural damping rate0.01. The frequency band of analysis isB = [0 , 200] Hz. The
beam is excited in bending mode in the(x1, x3) plane by a force applied atx1 = 7, with a unit
flat spectrum over all the bandB of bandwidth∆ω = 2π× 200 rad/s. Functionχ(x) appearing
in Eq. (30) is the mass density of the master structure andf0 = 1.

8.2 Fuzzy substructures. There are two fuzzy substructures attached to the beam onΓ1 =
{x1 ; 4 ≤ x1 ≤ 8} andΓ2 = {x1 ; 12 ≤ x1 ≤ 18}. Each fuzzy substructure consists of a large
number of simple linear oscillators acting in directionx3. All the oscillators have the same mass
m0 = 1.8 kg and the same damping dateξ = 0.002. There areN1 = 484 oscillators onΓ1

andN2 = 729 onΓ2. The eigenfrequency of each oscillator and the location of its attachment
point on the beam are uniformly distributed. The total mass of the fuzzy substructure is2183
kg compared with20000 kg for the master structure.

8.3 Construction of the reference by numerical simulation. The response of the fuzzy
structure, i.e. the response of the master structure coupled with its fuzzy substructures (beam
coupled with the two sets of oscillators), is calculated by numerical simulation in which the
eigenmodes of the master structure are used as the basis{bα(x), α = 1, . . . , n} of Cn, with
n = 12. This response is called the reference below. The irregularsolid lines of Figs. 2 and
3 show the modulus of the transverse acceleration of the beamin pointsx1 = 7 (Fig. 2) and
x1 = 15 (Fig. 3). In order to see the role played by the fuzzy substructures, we have also
represented the response of the master structure alone (beam with no oscillators) in Figs. 2 and
3, with dashed lines.

8.4 Estimation of the mean powers using Statistical Energy Analysis. The frequency band
of analysis is written asB = ∪10

m=1Bm with, for all m, ∆ωm = ∆ω/10. A classical SEA
model was developed for the fuzzy structure (beam coupled with the oscillators). Figure 4
shows<Π

SEA

mast,diss> (solid line) and<Π
SEA

mast,in> (dashed line). Figure 5 shows the power flow

<Π
SEA,1

mast-fuz> (dashed line) and<Π
SEA,2

mast-fuz> (solid line).
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8.5 Estimation of the mean coefficients of the participatingfuzzy mass. Each fuzzy sub-
structure can be simulated by a homogeneous, orthotropic fuzzy substructure acting only in
directionx3. Consequently, we haveL = N = 2 andK1 = K2 = {3}. There is no spatial
memory effect, and the mean equivalent coupling factors aretherefore such thatα1

3 = α2
3 = 1

(Type I fuzzy law for each fuzzy substructure). The mean modal density, the mean rate of
internal dissipation and the total mass of each fuzzy substructure can be estimated directly using
the formulas given by Soize, 1995, yieldingn1

3 = 0.0175 (rad/s)−1, n2
3 = 0.0215 (rad/s)−1,

ξ1
3 = ξ2

3 = 0.002 andm1
3 = 871, m2

3 = 1312. The mean coefficientsν1
3 andν2

3 of the partici-
pating fuzzy mass of the fuzzy substructures are estimated by solving the nonlinear constrained
optimization problem defined by Eq. (52), using the Sequential Quadratic Programming (SQP)
method implemented in Matlab’s Optimization Toolbox of Matlab (see Grace, 1992)). The mean
powers< Πmast,diss(n) >, < Π1

mast-fuz(n) >, < Π2
mast-fuz(n) > and< Πmast,in(n) > are calculated

using Eqs. (33) to (35). Figure 6 shows the results(ν1
3)opt,m(dashed line) and(ν2

3)opt,m (solid
line) for m = 1, . . . , 10, in which (νℓ

3)opt,m denotes the solution of the nonlinear constrained
optimization problem for bandBm.

8.6 Comparisons between the reference and the response obtained by the fuzzy structure
theory. Figures 7 and 8 show the response of the master structure coupled with its fuzzy
substructures and give the comparisons between the reference (see Section 8.3) and the response
calculated using the fuzzy structure theory presented in Sections 2 to 4. The mean coefficients
of the participating fuzzy mass are calculated in Section 8.5. For this calculation, we used the
valuesν1

3 = 1
10

∑10
m=1(ν

1
3)opt,m = 0.0427 andν2

3 = 1
10

∑10
m=1(ν

2
3)opt,m = 0.0386 in Eqs. (24)

and (25). The results shown in Figs. 7 and 8 concern the modulus (in dB), the real part and
the imaginary part (in linear scale) of the transverse acceleration of the beam at pointx1 = 7
(Figs. 7-a, 7-b, 7-c) and atx1 = 15 (Figs. 8-a, 8-b, 8-c). It can be seen that the results given
by the fuzzy structure theory (smoothed solid line) and the reference (irregular solid line) are in
excellent agreement in terms of modulus and phase.

9. Conclusion

We have presented a constructive method for estimating the mean coefficients of the participating
fuzzy mass for each fuzzy substructure modeled with a type I or type II fuzzy law. The method
is based on the use of a mean power flow equation which is established for a general fuzzy
structure modeled by the fuzzy structure theory (developedearlier by the author). The proposed
theoretical approach is applied to an example. The results obtained are good. Finally, it should
be noted that the theory presented can be viewed as a new method for the coupling between
a subdomain modeled by the local elastodynamic equation (for which the local modulus and
phases are preserved) with another subdomain modeled by theglobal mean power equation of
the Statistical Energy Analysis (for which the local modulus and phases are lost and replaced
by the global energy).
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LEGENDS ACCOMPANYING EACH FIGURE

Fig. 1. Geometrical configuration of the master structure coupled with its fuzzy substructures.

Fig. 2. Modulus of the acceleration atx1 = 7 for the beam with no oscillators (dashed line)
and the beam coupled with the oscillators (irregular solid line).

Fig. 3. Modulus of the acceleration atx1 = 15 for the beam with no oscillators (dashed line)
and the beam coupled with the oscillators (irregular solid line).

Fig. 4. Values of<Π
SEA

mast,diss> (solid line) and<Π
SEA

mast,in> (dashed line) obtained by SEA for
the beam coupled with the oscillators.

Fig. 5. Values of<Π
SEA,1

mast-fuz> (dashed line) and<Π
SEA,2

mast-fuz> (solid line) obtained by SEA for
the beam coupled with the oscillators.

Fig. 6. Solution of the nonlinear constrained optimizationproblem:(ν1
3)opt,m (dashed line) and

(ν2
3)opt,m (solid line).

Fig. 7. Modulus (a), real part (b) and imaginary part (c) of the acceleration atx1 = 7 of
the beam coupled with the oscillators, corresponding to thereference (irregular solid line) and
obtained by the fuzzy structure theory (smoothed solid line).

Fig. 8. Modulus (a), real part (b) and imaginary part (c) of the acceleration atx1 = 15 of
the beam coupled with the oscillators, corresponding to thereference (irregular solid line) and
obtained by the fuzzy structure theory (smoothed solid line).
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