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ABSTRACT

This paper presents a theoretical approach for constguatieduced model in the medium-
frequency range in the area of structural acoustics for argéthree-dimensional dissipative
structure made of an anisotropic, inhomogeneous, visstiel@ounded medium coupled with
an external acoustic fluid. All the results presented candael uf the structure is made of
beams, plates and shells. The boundary value problem imefjgéncy domain and its vari-
ational formulation are presented. For a fixed medium-feegy band, an energy operator
related to the structural-acoustic system is introducelis dperator is symmetric positive
definite and has a countable set of positive eigenvaluedoftsnant eigensubspace allows a
reduced model to be constructed using the Ritz-GalerkimatetA finite dimension approx-
imation of the three-dimensional continuous case is ptegeand an effective construction of
the dominant subspace using the subspace iteration metileseloped. As an example, the
reduced model is used for constructing the time-statioraarggom response of the structural-
acoustic system submitted to a random wall pressure fieldalllyj the theory is validated
for a finite length circular cylindrical shell coupled witle\seral dashpots and springs and

immersed in a gas (air) and in a liquid (water).
PACS numbers : 43.40 Gh

INTRODUCTION

This paper is the continuation of initial papers publishgdtie authol? in the area of
modeling and associated solving methods for linear diisgatructural-acoustic systems
in the medium-frequency (MF) range. It is knotwi¥ that, for low-frequency (LF) dynamic

analysis in structural dynamics, reduced models are a Wacyeat tool for constructing the
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solution. These techniques correspond to a Ritz-Galegkingtion of the structural-dynamics
model using, for instance, the normal modes correspondititetiowest eigenfrequencies of
the associated conservative structure and called modattied. The efficiency of this kind of
reduced modelis due to the small number of generalized diahdegrees of freedom used in
the representation and in addition, is obtained by solviwglistated generalized symmetric
eigenvalue problem for which only the first eigenvalues &wedcbrresponding eigenfunctions
have to be calculated. In addition, when such a reduced medditained, responses to
deterministic or random excitations can be calculated éosignificant additional numerical
cost, and the reduced model can be used directly for solvargpws structural-acoustic
problemsinthe LF rang€. The fundamental problem related to the construction adaced
model in the MF range for general dissipative structuralestic systems has not yet been
solved. The authdrrecently proposed an efficient solution for constructinghsa reduced
model for general structural-dynamics systems (strusturex vacuum). Here, we present
an extension of this theory to the case of general strueagalistic systems consisting of a
structure coupled with an external acoustic fluid (gas oiitly Concerning the structure, these
theoretical developments are presented in the contexteditimensional viscoelasticity for
an arbitrary domain geometry and for an anisotropic, inhgemeous material. Extension of
the results presented to beams, plates and shells is stomighrd. Concerning the external
acoustic fluid, the geometry of the fluid-structure integfas arbitrary. In Section |, we
present the boundary value problem to be solved in the frexyudomain and we establish its
variational formulation. In Section II, we construct a ftinoal basis adapted to the MF range.
To do so, we introduce an energy operator related to the digsashthe structural-acoustic
system in an MF band. This operator is symmetric positivendefand has a countable set
of positive eigenvalues. The corresponding eigenfunstimnm a complete family in the
set of admissible displacement fields of the structure. Ikcti&e Ill, the reduced model is
introduced using the Ritz-Galerkin projection of the vAaaal formulation on the dominant
eigensubspace of the energy operator, spanned by the @g#iohs which correspond to
the highest eigenvalues. In Section IV, we present the foliteension approximation of
the three-dimensional continuous case allowing the efectlculation to be carried out for
the general case. In Section V, we give an efficient procefiureonstructing the dominant

subspace using the subspace iteration method. To illestinatinterest of such a reduced
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model, Section VI deals with the construction of the timatisnary random response of
structural-acoustic systems submitted to a random wadisome field. Finally, the theory is
validated for a finite length circular cylindrical shell gdead with several dashpots and springs
and immersed in a gas (Section VII) and in a liquid (Section)VThe method proposed can
also be used in the low-frequency range, but in this case thao additional gain with respect
to the usual modal reduction method. Nevertheless, it shoelinoted that, for a structure in
a vacuum, if the structural damping tends to zero, then ittmaproved that the present MF
method and the usual modal BF method give the same reduceel mdte low-frequency

range.

|. BOUNDARY VALUE PROBLEM AND ITS SOLUTION
A. Definition of the boundary value problem

We consider linear vibrations (formulated in the frequedoynainw) of a three-dimensional
structural-acoustic system around a static equilibriumfigoiration considered as a natural
state at rest (see Fig. 1). L@tbe a bounded domain &, occupied by the structure at static
equilibrium and made of viscoelastic material. D&t = I'y U X U T" be the boundary which
is assumed to be sufficiently smooth and suchfhat X NI" = (). Letn be its outward unit
normal. Letu(X,w) = (u1(X,w), uz2(X,w), us(X,w)) be the displacement field in each point
X = (z1,z2,x3) in Cartesian coordinates and at frequencyOn partl’, of the boundary,
the structure is fixedu = 0) whereas on paf U T itis free. The structure is surrounded by
an external inviscid acoustic fluid (gas or liquid) occumgyihe unbounded three-dimensional
domain{2g whose boundaryQg isT'. Letc. be the constant speed of sound andbe
the constant mass density of the external fluid at equilibriuThe pressure field and the
velocity potential in each pointin Q2 and at frequency are denoted g¥ X, w) andy (X, w)
respectively. We introduce a narrow MF baBdsuch thatB = [wp — Aw/2 ,wp + Aw/2]

in which wp is the center frequency amlw is the bandwidth such thatw/wp <« 1 and
wp > Aw/2. With B we associate intervaB = [ —wp — Aw/2, —wp + Aw/2]. The
structure is submitted to a square integrable body force fiel> n(w) f(X,w) from € into

C3 and a square integrable surface force fieles n(w) fs(x,w) from X into C3, in which
n(w) is a function fromR into C, such thaty(w) = 0 if w is not in BUB, continuous

on B, verifying |n(—w)| = |n(w)| and such thatn(w)| # 0 for all w in B. Introducing
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components f1, f2, f3) and(fs 1, fx 2, fx,3) of f andfy, respectively, the boundary value
problem Is written as follows in terms of and+) (the convention for the Fourier transform
beingv(w) = [, e"™“"v(t) dt),

—w’pu; — oy =nfi in Q (1)
oin; =mnfss on X | (2)
Oijn; = —pn; 0N r R (3)

u; =0 on Iy

: (4)

in whichi = 1,2, 3 and where the summation over indgis used. Concerning the external

acoustic fluid, we have

p=—iwpg ¢ in QpuUT (5)
5 w? :

V¢+%¢:0 in Qp | (6)

g—zﬁ:iwu-n on I' | (7)

W =0(=) |—+z—¢| O(—) as R=|x|—+c0 .  (8)
R R?

In Eq. (1),p(x) > 0 is the mass density of the structure angl; = Z?Zl Jo;;/0x;. Fora

linear viscoelastic material, stress tensgris written as
Oij = (Dijkh(X, w) e’:‘kh(U) + [bijk:h(x, w) 5kh(iw U) , (9)

in which the summation over indicdsand h is used and wherey,(u) = (Juy /0y, +
Oup/0xy)/2 is the linearized strain tensor. Coefficientg., (X,w) and b;;xx (X, w) are
real, depend om andw, verify the usual properties of symmetry and positiveh&ss and
are such that; jz, (X, —w) = a;jkn(X,w) andb;;xn (X, —w) = bijrn(X,w). EQ. (8) is the
outward Sommerfeld radiation condition at infinity afido R denotes the derivative in the

radial direction from the origin.
B. Acoustic impedance boundary operator and radiation impelance operator

For all realw # 0 and for a normal velocity field = iwu-n given onI’, the exterior

Neumann problem related to the Helmholtz equation defineddsy (6) to (8) has a unique
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solution'?® 1. Denoting the values af on surfacd asiyr, the corresponding pressure field

pr = —iw pgyr onl' can be written as
pr = Zr(w){iwu-n} (10)

in which Z(w) is the acoustic impedance boundary operator related tacirf At any

pointx in unbounded domaift z, pressure(X, w) can be written as
p(X,w) = Zrag(X, w){iwu-n} | (11)

in which Z,4(X,w) is the radiation impedance operator. For simply shaped g&@sn
of I such as baffled rectangular or circular plates, baffled @rozylinder, etc, analytical
method$* can be used for constructing operatdss(w) andZ,4(X,w). For an arbitrary
shaped surfac®, boundary element methods can be used. This numerical thetlust
be based on the use of integral equation techniques ovemgaimé mathematical difficulty

induced by the problem of spurious or irregular frequericies!”.
C. Variational formulation

For the general methodology concerning the constructiom driational formulation of a
boundary value problem, we refer the reader to Refs. 13, @#8.8n LetH be the space of
all the square integrable functions énhwith values inC3, equipped with the inner product
(u,v), = J,u(x)-v(x)dx and the associated norjiu|,, = (u,u)}/2, in whichz denotes
the conjugate of the complex numberLet V' C H be the space of admissible displacement
fieldsu defined ot with values inC? such thatu = 0 onT'y and such thaWu; € H for

k = 1,2,3. The variational formulation of the boundary value probien defined by Eqgs.

(2) to (9) can be expressed as follows. Foralh B UB, find U(w) in V such that
aWVviw)=f(Viw) , WeV | (12)
in which f(v;w) is defined by
s =n) { [ fotx) ¥0ase + [ o) vigaxf L 3)
and wherex(u, v ; w) is written as

a(u,v;w) = —w* (m(u,v) + br(u,v;w)) +iwd(u,v;w) + k(U,v;w) (14)
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m(u.v) = [ p0uGoTRIdx
d(U,V;w):/Q[bijkh(X,w)é‘kh(U)é‘ij(V)dX ,

k‘(U, A w) = / Qijkh (X, w) 5kh<u) €ij (V) dx ,
Q
in which the summation over indicésj, k andh is used. It is assumed thétu, v ; w) and
k(u,Vv;w) are continuous functions on baitwith respect tav. Finally, br(u, v ;w) is such
that

—w?br(u,v;w) = iw/(V-n) Zr(w){u-n}ds

Forallw in BUB, Eq. (12) has a unique solutiarjw) in V.
[I. CONSTRUCTION OF A FUNCTIONAL BASIS FOR THE REDUCED MODEL

In order to construct a functional basis adapted to MF auaehd useful for the Ritz-Galerkin
method, we begin by introducing the operator-valued fragueesponse function defined for
a special class of mechanical excitations. In a secondwtgefine the energy operator and

we construct the functional basis as its eigenfunctions.
A. Operator-valued frequency response function

Let us assumed th&t = 0 and thaff is independent ab. This assumption is only used for
constructing the functional basis. As soon as the reducetkhi® obtained, the response of
the mechanical system can be calculated for any determciaisti random excitations which
do not use this restrictive assumption (see Eq. (13), Sextlband IV). Then Eq. (13) yields
F(viw) =nw) (f,v),. Itis proved-2? that for allw fixed in B UB, Eq. (12) has a unique

solutionu® (w) belonging toV’ ¢ H which can be written as

u' (W) = (W) T, (W), (15)

whereT,, (w) is an operator ind. Solutionu’(w) corresponds to the vibration induced by

excitationn(w) f andT,, (w) is the operator-valued frequency response function.
B. Definition of an energy operator

The energy: z(u') of a structural vibration correspondingubgiven by Eq. (15) is defined
as twice the value of the total kinetic energy of the strugtue. using the Plancherel formula,
1
cn(u) =5 [ wPMU'@) 0 @), do (16)
21 JpuB
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in which M is the mass operator i/ such thatMu,v), = m(u,v). Letu'(w) =
N(w) T, (w)f andud(w) = n(w) T,,(w) g be the solutions corresponding to the vibrations
induced by excitationg)(w) f and n(w) g respectively, wherd and g are in H and are
independent ob. The energy operatdt s relative to bandB is defined by

Esf,0) = 5 [ M) 8w, o (17)

We then deduce thats (uf) = (Epf,f),,. It should be noted that operatéy; depends o3
andn but does not depend on spatial pdrédg of the excitations. In addition, this operator
depends on the external acoustic fluid due to the couplingatgre In the present context,
operatorE i is only used to calculate a functional basis for constrgciineduced model of
the structure coupled with the external acoustic fluid. Iati®a VII which is devoted to the
coupling with an external liquid, we will see that the conplioperator must be kept for the
calculation ofEg. A contrario, the coupling operator can be omitted for the calculation of

Ez in the case of a coupling with a gas as shown in Section VIII.
C. Properties of the energy operator

Energy operatoE s is a positive-definite symmetric operator #h whose range space is a
subspace oV and which can be written as

Ep = %/ w? [n(w)]* Re {T, ()" MT, (W)} dw (18)
B

in which Re denotes the real part and whére(w)* is the adjoint ofT,, (w). Consequently,
operatorEz has a countable set of decreasing positive eigenvaluesfiwite multiplicity,
possibly excepting zera\; > s > ... — 0, in which the )\, terms are the repeated

eigenvalues oE . The corresponding eigenfunctiofs, },>; such that
Eze, =X\ e (19)

are functions, (x) from Q into R? and form a complete family in admissible spacec H,
orthonormal for the inner product éf. This fundamental result allows a reduced model to
be constructed in the MF range. We then hé&ege, e, ), = J,,-. Finally, the eigenvalues
are such thap_ > )\, < +oo (one says thaE s is a trace operatét2') and its trace norm

denoted as fE 5 is written as

+00
trEp=» A\ <+oo . (20)

v=1
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The proof of these results is a straightforward extensigheproof established by the author

for the case of a three-dimensional viscoelastic strudgtuaevacuum.
[1l. CONSTRUCTION OF A REDUCED MODEL IN THE MF RANGE

The reduced model adapted to MF baBds obtained using the Ritz-Galerkin projection of
the variational formulation defined by Eq. (12) on the subsgda” of V spanned by the
eigenfunctions{e,, ..., ey} corresponding to théV highest eigenvalue§\,, ..., Ay} of
energy operatdEz. Letu(w) € V be the solution of Eqg. (12) and lef’ (w) be its projection

onV™,

N
uN(xw) =) f(we ) (21)
v=1
in which 6, (w) € C. From Eq. (12), we deduce that, for all in BUB, 8(w) =
(01(w),...,0n(w)) € CV is the unique solution of the linear equation
[An ()] 8(w) = n(w) F(w) (22)

in which [Ay(w)] is the symmetriq N x N) complex matrix defined byAy(w)],., =

a(e,, e, ;w) and whereF(w) = (F(w),...,Fn(w)) € CV is such that)(w) F, (w) =

f(e,;w). Egs. (21) and (22) constitute the reduced model in MF b@raf the structural-
acoustic dynamical system described by Egs. (1) to (9). Farim B UB, matrix [An(w)]

is invertible and the solution of Eq. (22) is written@sv) = n(w) [7n (w)] F(w) in which

[Tn(w)] = [An(w)] L. Forallwin BUB, u¥(w) — u(w)in V asN — +oc.

IV. FINITE DIMENSION APPROXIMATION

An explicit construction of eigenfunctiongey, ..., ey} of energy operatoEp cannot be
obtained in the general case. Afinite dimension approxon& ,, of Ez must be introduced
and the eigenfunctiongey ..., e} } of Ep, associated with theV highest eigenvalues
AT > ... > A}, are the approximation df; . . ., ey }. This finite approximation is obtained
by using the Ritz-Galerkin method. We then consider a sulesiga C V' of finite dimension
n > 1, spanned by a familyap,, ..., } of independenk3-valued functiong+,, }, in V.

In practice, this family can be either a finite element bidsi$—23 associated with a finite
element mesh of domai or, for a particular case, any functional basis constructdtie

context of an analytical approach, for instance the sequefite structural normal modes of
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a homogeneous, simply supported rectangular plate witmstaot thickness. Let(w) € V

be the solution of Eq. (12). Its projection &f) is written as
Un(%,w) = > gal(w) o) - (23)
a=1

From Eq. (12), we deduce thgfw) = (¢1(w), ..., g,(w)) € C™ is the unique solution of

the linear equation

[An(w)]a(w) = n(w) F(w) (24)

in which symmetriqn xn) complex matri{A,, (w)] is such thafA, (w)]as = a(Ps, ¥, ;W)
and can be written as

[An(W)] = —w? ([M] + [Br(w)]) + iw [D(w)] + [K(w)] (25)

inwhich|[ M |, [D(w)] and[K (w)] are positive-definite symmetr{ea x n) real matrices such

that[ M ]ag = m($g,0,), [D(W)]as = d(s, b, ;w) @and[K(w)]ap = k(g P, ;w), and
[Br(w)]is asymmetri¢nxn) complex matrix such thaBBr (w)] s = br (g, ¥, ;w). Vector
Flw)=(F1(w),..., F,(w)) € C™is such that

N(w) Fa(w) = f(bg;w) (26)

The pressure field radiated by the structure is written as

pn(xv w) = w Z Zg(X, w) Qa(w> ) (27>

a=1
in which Z7! (X, w) = Znag(X, w){¥, - n}. Concerning the far field radiated by the structure,

we introduce the spherical coordinates
X=X(R,0,p) = (Rsiny cosf, Rsinp sinf, Rcosy) (28)

with ¢ € [0,7] andf € [0,2x]. The far field can then be characterized by the pressure

coefficientc™ (0, ¢, w) defined by

. ) Rein/cE
c (97 2 W) = REI—EOO 107 pn<X(R7 97 (P)7 w) . (29)
E-E

Substituting Eq. (27) in Eq. (29) yields

n

(0, p,w) = iwr (0, p,w)" Aw) = iw Y 100, 0,w) da(w) (30)

a=1
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in whichr™(0, ¢, w) = (r{*(0, ¢,w), ..., (0, p,w)) € C* and wherer, (6, ¢,w) is such
that

. ) Rein/cE .
ral0ypw) = m (— —m— ZaX(R00)w) (31)

A. Projection of the energy operator

ProjectionE g ,, of operatorfEg onV,, C H is written as

n

Epn = Z [En]a,@ (- 7¢5>H1|Ja ) (32)

a,B=1
in which [E,,] is a positive-definite symmetrie: x n) real matrix such that
2= [ feal@ldw . (33)

[en(w)] = %uﬂ [n(w)* Re {[To(w)]" [M][Ta(w)]} (34)

where[T,,(w)] is the symmetri¢n x n) complex matrix such that

B. Generalized symmetric eigenvalue problem

Each eigenfunctioe] such tha€g ,, € = )} € can be written as

L= Pib, (36)
a=1
Introducing vectoP”= (P}, ..., PY), itcan easily be seen that eigenvalg®, ..., A"’} and
the corresponding eigenvectd®!, ..., P"} are the solutions of the generalized symmetric
eigenvalue problem
[H]P=X\"[G]P (37)

inwhich[ G| and[ H | are positive-definite symmetriaxn) real matrices such tha@ | 5., =
(Vo ,g), and[H| = [G][E,][G]. EigenvectorgP',..., P"} form a basis ofk" and
verify the usual orthogonality conditions with respect @] and| H | and consequently, we
have(e? ,€2), = ((G]P",P" ). = duu.

C. Reduced model adapted to MF bandB
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Let N < n (generallyN <« n). Letu(w) € V be the solution of Eq. (12). The reduced
model adapted to MF bang is defined as the projectian (w) of u(w) on the subspace
VN c V, C V spanned by the eigenfunctiofs?, ..., €y} which correspond to th&v

highest eigenvalues! > \y > ... > A% of operatoiEz ,,. Projectionu’) (w) can be written

as N
uy (x,w) =Y rw)ex) (38)
inwhich0" (w) = (67(w), ..., 0% (w)) € C¥ is the solution of the linear equation
[AR (w)] 0" (w) = n(w) F*(w) (39)

where [A% (w)] is the symmetric(NV x N) complex matrix defined byAR (w)],., =
a(€, € ;w) and whereF"(w) = (F (w), ..., Fr(w)) € CV is such that)(w) F'(w) =

v v )

f(e2;w). Matrix [A% (w)] is invertible and we have
0" (W) = (W) [TH (W] F'w) ; [T¥W)]=[AxW)]™" . (40)

The pressure field radiated by the structure is written as

pr(%w) =iw Y Z,(%w) 0 (W) (41)

v=1

in which Z3, ,(X,w) = Zrad(X,w){€}- n}. For this reduced model, the pressure coefficient

defined by Eq. (29) and given by Eq. (30) is written as
(0, p,w) = iwr (0, p,0)" 0" (W) (42)

in which complex vector? (6, ¢, w) € C¥ is such that

. ) Rein/cE .
R0 = dim (T 2y .00 (43)
Let [ P] be the(n x V) real matrix whose columns are thé eigenvector§P!, ... PV}

corresponding to thé&/ highest eigenvalues! > ... > AR;. We then deduce that
qw) = [P]8"(w) (44)

(AR ()] =[P [An@)][P] (45)
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F'(w)=[P]"Fw) , (46)
r?](a(p,w) = [P]Trn(ev 907W> ) (47>

in which matrix[A,,(w)] is given by Eq. (25), vectdf(w) by Eq. (26) and vectar® (0, ¢, w)
by Eq. (31). Matrix[EY] corresponding tdE,,] for the reduced model is a positive-

semidefinite symmetritn x n) real matrix such that
B = [ e @lde . (18)
B

e )] =[Py @] [P]" (49)
in which [ (w)] is a positive-definite symmetrigV x N) real matrix such that

[en (w)] = %uﬂ [n(w)[* Re {[TF (@)]" IM] [TH ()]} (50)

where[M] =[P [ M ][ P].
D. Dominant eigensubspace and order of the reduced model

In this subsection, we assume tidtv) = F is independent of and consequentlyF™ is
also independent aof. Letu(w) be the solution of Eq. (12)4,,(w) its projection onV;, and
ulY (w) its projection onV,¥ C V,,. The energy ofi,, is such thatz(u,) = >\_, A2 |F7|?
and the energy ofiY is ep(ul) = S0 A7 |F7[2. We then have(u,) < A7 ||F" |2
and since the upper bound is effectively reached, the mariamix of 5 (u,,) is such that
Emax = Maxznecn €5(Uy) = AT || F™|2. We then deduce thét z(U,,) — ep(UY))/emax <
AR 1/AT. Since{\,}, is a decreasing sequence of positive numberns as +oo, if n is
sufficiently large, then there existé < n such that\_ , /AT < 1. Subspacé’ is called
the dominant eigensubspace of operd&er,, corresponding to théV highest eigenvalues
AT > ... > A% andN is called the order of the reduced model. In Sections VII att] We
present the graphs of the distribution of eigenvalhig$or two examples which clearly show

how N must be chosen.
V. CONSTRUCTION OF THE DOMINANT EIGENSUBSPACE

All the developments and details concerning the effectorestruction of the dominant eigen-
subspace are given in Ref. 9. In order to facilitate the ustdading of Sections VIl and VIII

and illustrate the extension necessary to take into acebamqresence of an external acoustic
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fluid, we summarize below the main results of the method. Edeiced model defined by
Egs. (38) to (50) requires calculation of eigenvectls. .., PY in R™ corresponding to the
N highest eigenvaluesd? > ... > A%, of the generalized symmetric eigenvalue problem
defined by Eq. (37). Since is large andN < n, the Lanczos method or the subspace
iteration methoéf-24—26 cana priori be used. The algebraic structure of maifi,] defined
by Eq. (33) shows that the use of the subspace iteration mellaws a very efficient solving
method to be constructed, avoiding the explicit calcutatid matrix [E,,]. Let m be the
dimension of the subspace used for the iterations suchNhat m < n (in practicé?,
m = min{2N , N 4+ 8}). Since the usual formulation of the subspace iteratiorhotkis
adapted to calculating the lowest eigenvalues, Eq. (37amsformed as follows. We have to
calculate theV lowest eigenvalues and associated eigenvectors of the efnoraigenvalue
problem defined by

[G][S]=[H][S][T] . (51)

in which [S] is an(n xm) real matrix and I"| a diagonal(m x m) real matrix such that
(ST [H][S]=[I]and[S]* [G][S] = [T']inwhich matricedT"| and[S] are such that
[A]=[I] 'and[P] =[S][T']"*/2 where[ A] is the(m xm) real diagonal matrix such
that theV highest eigenvalues ad = [A];; > ... > A% = [A]yny and wherd P is the
(nxm) real matrix whose firslV columns are eigenvectors, . . ., PV defining matrix| P].
If we examine the subspace iteration algorithm, it wouldsé#at calculation of matrixz,,|
is necessary. In fact, for each iteration of the algorithm,omly need to calculate gmn xm)

real matrix| W ] suchthaf W] = [E,] [ X ], in which[ X ] is a given(n x m) real matrix.
A. Direct procedure in the frequency domain

The direct procedure in the frequency domain consists icutating [E,,] using Egs. (33)
and (34), then calculatingl¥’ | each iteratioh. This method is inefficient because matrix
[E,,] has to be constructed explicitly. Two other solutions assented below.

B- Indirect procedure in the frequency domain

Since[ X | is a real matrix, it can easily be verified thd#” ] can be written a3 | =

[z Re {[Z(w)]} dw where[Z (w)] is an(n xm) complex matrix which is the solution of

[An(@)] Y (w)] = X(w) [X] (52)

[An@)] [ZW)] = [M][Y ()] (53)
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in which Y (w) is a function defined o such that,
(W) =~ n(w) L(w) - (54)

It is proved that this procedure is much more efficient than the previoes defined in
Section V A.

C. Procedure based on the use of the MF solving method in thentie domain

This method is based on the use of the MF solving metfbdnd requires factorization
of only one symmetrign x n) complex matrix. Consequently, much less core memory is
necessary for this procedure than for the indirect proeettuthe frequency domain (Section
V B) for which Nyeq factorizations are simultaneously present in the memohgre/Neeq

is the number of frequency points required for calculatibhe integral in Eq. (33). A
detailed analysis of this procedure is given in Ref. 9 anchoabe reproduced here. Let
Xo(t) be a function such thagy(t) = e~*5* x(t) in which x(t) = (1/27) [ ™' X(w) dw

is the inverse Fourier transform of functiqiiw) defined by Eq. (54). Therefore, the Fourier
transformyo(w) = [, e“* xo(t) dtisasquare integrable function Brsuch thaiy (w) = 0

if w ¢ By whereBO denotes the LF ban®, = [ —Aw/2, Aw/2]. Functiony(t) is the
LF signal associated with the MF narrow-band sigodl). Let [Mp], [Dg] and[K 5| be the
symmetrig(nxn) matrices independent of the frequency suchthgt] = [ M |+ [Br(wg)],
[Dp] = [D(wp)] and[Kg] = [K(wp)]. It can be provedthat[W | = [E,] [ X] can be
calculated by W | = 27 Re {[Zy(0)]} in which [Z(t)] is the solution of the following LF

equations in the time domain associated with the MF equsition

[Mp] [Yo()] + [Ds] [Yo()] + [K5] [Yo(D)] = xo(t) [X] (55)

[Mg] [Zo()] + [Dp] [Zo(t)] + (K] [Zo(t)] = [M][Yo(=0)] (56)

in which the symmetridn x n) complex matrice$D] and [K 5] are written agDp] =
[Dp] + 2iwp [M] and[Kp] = —w [M] + iwg [Dp] + [Kp]. It should be noted that
the Fourier transformg;(w)] and[Zo(w)] of [Yo(¢)] and[Zy(t)] respectively, are such that
[Yo(w)] = [Zo(w)] = [0] if w ¢ By. Thatis why Egs. (55) and (56) are called the LF
equations in the time domain associated with the MF equsitielated to MF band. The
associated LF Egs. (55) and (56) are solved using an uncomality stable implicit step-by-

step integration method such as the Newmark method or theowWilmethod?. Since Egs.
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(55) and (56) have the same differential operaldg] d2/dt2 + [Dg] d/dt + [K 5], only one
symmetric(nxn) complex matrix has to be factorized. The basic sampling sitep denoted
asr is given by Shannon’s theorem and consequently,2w /Aw. The integration time step
of the step-by-step integration method is then writtethas= 7/, wherep, > 1is an integer.
Since o and[Y;] are square integrable functions, for any 0, there exists an initial time
tr = —Ip x 7 wherely > 1 is an integer and a final timg- = Jy x 7 whereJy, > 1 is
another integer, such that

tr +oo tr
/ MWWﬁéﬂmﬁz,l/ manﬁSe/ Yol . (57)

—00 tr tr

in which ||[Yo(#)]]|? = tr{[Yo(#)]*[Yo(¢)]}. We have the following procedure.

Step 1 Construction of the sequend®,(i x At)] fori = —1I,...,J with [ = Iy xp
andJ = Jy x p by solving Eq. (55) fort €]t;, tr] with the initial conditiongYy(¢;)] =
[Yo(tr)] = [0].

Step 2 Construction of the sequeng#, (j x At)] for j = —J,...,0 by solving Eq. (56) for
t €] — tp, 0] with the initial conditiong Zo(—tr)] = [Zo(—tr)] = [0].

As explained in Ref. 9, this procedure can be much more dffitien the previous one.

VI TIME-STATIONARY RANDOM RESPONSE USING THE REDUCED MODEL

In this section, the structural-acoustic system is sulechitb a time-stationary second-order
centered random wall pressure figlg(x,¢),x € I',¢t € R} with values inR and we are
interested in the stationary response of the structum@listec system. The cross-correlation
function of random fielg is denoted asi, (x,y, 7) = E{p(X,t + 7) p(y,t)} in which E is

the mathematical expectation and is such that

Rp(x,y,T):/e"‘” S,(X,y,w)dw (58)
R

in which S, (x,y,w) is the cross-spectral density function which is written as
Sp(x7y7w> = |77(w)|23p(X,yaW> . (59>
A. Finite dimension approximation

Let{F.(t),t € R} be the stochastic process defined by
Folt) == [ px.8) Mty () d (60)
I
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Therefore thén x n) matrix-valued spectral density functi@s (w)] of stationary stochastic

proces§ = (F,...,[F,) indexed byR with values inR™ is such that

[Sr(w)]aﬁZ/Ffrln(w)\%p(x,y,w) NP (X) Ny (y) dsxdsy (61)

From Eq. (24), we deduce that tle x n) matrix-valued spectral density functi¢fy(w)]
of the second-order stationary stochastic prodegs),¢ € R} with values inR™ is such

thaf®—30
T

[Sq(@)] = [Tn (@) [Se ()] [Tu(w)] - (62)
Below, we assume thédtandy are fixed in0, 27| and|0, 7| respectively. The autocorrelation
functionR.~ (0, ;1) = E{c"(0, ¢, t+7) c"(0, p, t)} of the second-order stationary stochas-
tic process{c" (0, p,t),t € R} with values inR, corresponding to the quantity (¢, ¢, w)
defined by Eq. (30), is written as

ch(e,go;T):/eiWTScn(Q,ap;w) dw . (63)
R

Ilts power spectral density functid.. (6, ¢ ; w) > 0 is given by®—30

Sen (0,03 w) = w* ([T(@)]1™(0, 0,w)) " [SFW)[Tn(@)] (0, p0) . (64)

B. Reduced model

Using the reduced model defined in Section IV C, thexn) matrix-valued spectral density

function[Sy(w)] of the stationary stochastic procegs) = [ P]0"(t) is written as
[Sq(w)] = [P][Sgr (W) [P]" (65)
in which the(IV x N) matrix-valued spectral density functigfiy- (w)] of the reduced model

is written ag8—30
T

[Sg (W)] = [T§ (W) [Sn (W) [TF ()], (66)
in which the(N x N) matrix [Sy (w)] is such that
[Sn ()] = [P]"[Sr(@)][P] - (67)
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The autocorrelation functioR.» (6, ¢ ; 7) = E{c}(0, p,t + 7) cx (0, ¢, )} of the second-
order stationary stochastic process; (¢, ¢, t),t € R} with values inR, corresponding to
the quantitycy, (¢, ¢, w) defined by Eq. (42), is written as

Ren (0,;7) = / ei”TchZLV(H,(p;w) dw . (68)
R

Its power spectral density functidh. (6, ¢;w) > 0 is given by®—3°

Sey, (0,93 0) = W (TR W) TR (0, 0,w))" [Sn@NTFW)] R0 p,0) - (69)

VII. VALIDATION FOR A STRUCTURE COUPLED WITH A LIQUID

This first example concerns an inhomogeneous continuoustste immersed in a liquid

(water).
A. Description of the structural-acoustic system

The structure is a thin circular cylindrical shell refertedanr, 6, x5 coordinate system and
coupled with springs and dashpots as shownin Fig. 2. Théislheimogeneous and isotropic,
with lengthZL = 1.7 m, constant thickneds = 0.025 m, radiusa = 0.5 m, simply supported
at its ends located at; = 0 andxzs; = L, mass density = 7850 kg/m?, Young’s modulus
E = 2.1 x 101! N/m?, Poisson’s coefficient = 0.3, constant damping rate= 0.001. The
areasS of the shell surfacé&' is S = 2walL. The ring frequency of the shell is 1726 Hz. This
cylindrical shellis coupled with 16 dashpots and 16 sprangsg radially direction to the shell
and located at pointga, 6, 3 ;} on surfacd™. The j-th dashpot has a damping coefficient
dj =2 5317 1 refwret @nd thej-th spring has a stiffness coefficiett = 2 5§( p w2 in which

o = ph S is the total mass of the shefler = 0.001, wret = 27 x 3750 rad/s and where’’
andgf are dimensionless coefficients whose values are definedble TaWe assume that
the cylindrical shell is extended by two semi-infinite, dgylindrical baffles and is immersed
in an unbounded liquid with a constant mass densjty= 1000 kg/m? and speed of sound
cgp = 1500 m/s. The coincidence frequency of the shell is 9152 Hz (ke.= 19.2 with

k = w/cg). We consider the MF response of this structural-acougttesn on the narrow
MF bandB = 27 x [4300,4800] rad/s corresponding to tHe.00, 10.05] ka-band and we

assume that for alb in B,

n(w)| = 1. We are only interested in calculation of the symmetric

predominantly radial response of the shell. The excitasdhe time-stationary random wall
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pressurdp(x,t),x € I',t € R} introduced in Section VI, for which the cross-spectral dgns
function defined by Eq. (59) is such thaf(6, x3,0’, 25; w) = (aS)~16(0 — 0") §(x5 — %)

where/ is the Dirac delta function.
B. Description of the finite dimension approximation

The family,, ..., 4, introduced in Section IV is chosen as the fitssymmetric predom-
inantly radial modes of the associated conservative urledughell whose corresponding
eigenfrequencies ar < f» < ... < f,. Using Donnel-Mushtani’s theoty, the value
chosen fom is 409. It was deduced from the convergence study of the strueto@listic
response over the [500,7000] Hz frequency band correspgrtdithe[1.0, 14.7] ka-band.
We havef; = 268 Hz andf,, = 11979 Hz. The inner producfu, v),, introduced in Section
| C is defined by

(u,v), = /027r /OL u(@, xz3)-v(0,z3) adfdrs . (70)

The normalization of the shell modes is such that, forallve have(y,,,P3),, = S das-
Concerning the finite dimension approximation introduaedection 1V, matrice$ M | =
pl[I]and[G] = S[I]arediagonallI]beingthegnxn) unity matrix, and matricesD | and

[ K ] are independent of the frequency and are dense due to trenpeesf the dashpots and
springs. The lowest eigenfrequency of the associated oaatsee structure (shell coupled
with the springs) isf{ = 352 Hz (to be compared witlf; = 268 Hz). Complex matrix
[Br(w)] associated with the acoustic impedance boundary opersg¢er $ection | C) is
constructed explictly using the methodology developedumgér and Felt'. The intermodal
fluid couplings are neglected and consequenBy,(w)] is a diagonal complex matrix which
can be written as

~w? [Br(w)] = —w? [Mr(w)] + iw [Dr(w)] (71)

in which [Mr(w)] = Re [Br(w)] and[Dr(w)] = —w Sm [Br(w)]. Fig. 3 shows the graph

of function

~tr[Mp(w)] , (72)
and Fig. 4 shows the graph of function

1 1
g rDr)]) (73)

or(w)
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over the[400, 12000] Hz frequency band corresponding to fhes , 25.1] ka-band (in Figs.
3 and 4, the abscissas are expressedlan Complex vector™ (6, v, w) associated with
the calculation of the far field radiated by the structures(Rg. (30)) is obtained using a

stationary-phase approximatidn
C. Constructing the reference solution on a broad frequencyand

Concerning the vibration of the shell coupled with dashpspsings and external liquid, the
reference solution on th&00, 7000] Hz broad frequency band is obtained by constructing
the mappingv — trle,, (w)] using Eq. (34), with a sampling frequency step = 27 x4.33
rad/s. In Eq. (34)|T},(w)] is calculated using Eq. (35) in which matfiA,,(w)] is calculated

by Eq. (25). Fig. 5 shows the mapping— 10 xlog;,(tr[e,(w)]) over the2r x[500,7000]
rad/s broad frequency band corresponding to[th@, 14.7] ka-band. Concerning the far
field radiated by the structure in the external liquid, Fig6.and 7 show the mapping
w > 10xlogy o (L2 Sen (0, p;w)) over the[1.0, 14.7] ka-band, calculated by using Eq. (64),
for the normal and the oblique directions with respect tostiell defined by = 0, p = 7/2
andd = 0, p = w/4 respectively.

D. Constructing the reference solution on the narrow MF band

The reference solution on narrow MF balRd= 27 x [4300,4800] rad/s is constructed as
explained in Section VII C but using the frequency resolutda = Aw/Nfeq in which
Aw = 27 x 500 rad/s andNseq = 300. The graphs of function$0 x log(tr[e, (w)]),
10x1og;o(L™2 Sen (0, m/2;w)) and10 x log; (L2 Sen (0, 7/4;w)) (corresponding to Figs.
5, 6 and 7) of this reference solution on {Be)0 , 10.05] narrow MFka-band are used below
(see Figs. 9,10 and 11) to evaluate the accuracy of the respomstructed using the reduced

model.
E. Constructing the dominant eigensubspace

In order to validate the reduced model procedure for a straatoupled with an external
liquid, the direct procedure in the frequency domain désctiin Section V A is used to
construct the dominant eigensubspace of matrjy defined by Eq. (33). The approximation
[E,] ~ dw Z;ijq len (w;)]is used, inwhich the; terms are the sampling frequencies of band

B. The eigenvalueg? > A7 > ... > 0 and the corresponding eigenfuctiofe’, €7, ...}

of energy operatoE g ,, are calculated using Egs. (36) to (37). It should be notetithea
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procedure based on the use of the MF solving method in thedon®in, which avoids the
explicit calculation of matrixE,,| as explained in Section V C, has also been used to construct
the dominant eigensubspace of mati,]. The results obtained are quite similar but we
must limit the length of the present paper. We show the usedi a procedure in Section
VIII. Fig. 8 shows the graph of the functian — A7 for v € {1,2,...,50}. Thereis a
strong decrease in the eigenvalues which means there #hagtessibility of constructing an
efficient reduced model independent of the spatial exoitaidf the structural-acoustic system.

Fig. 8 shows that the ordéyY of the reduced model is abo2i for bandB.
F. Reduced model adapted to the narrow MF band

In this section, we present a comparison of the referenegisolconstructed in Section VII

D with the solution obtained by the reduced model constdiogng the results of Section
IV C in which eigenfunctiong€?, ..., €} } are those calculated in Section VII E. For the
three values 25, 30 and 40 of, Figs. 9, 10 and 11 show the comparison of functions
10 x log; o (trlen(w)]), 10 x1og (L2 Sen (0, 7/2;w)) @and 10 x logy g (L2 Sen (0, m/4; w))
(reference solution) with functioni) x log, o (tr[e) (w)]), 10 x1og;o(L™2 Sen (0, 7/2;w))
and 10 x log; (L2 Sen (0,7/4;w)) (reduced model) calculated for each value of order
using Egs. (49)-(50) and (66), versus dimensionless warepuka. It can be seen that the

reduced model of orde¥ = 25 yields a good approximation.

VIII. VALIDATION FOR A STRUCTURE COUPLED WITH A GAS

This second example concerns an inhomogeneous continmoctsise immersed in a gas (air).
A. Description of the structural-acoustic system

The structure is the thin circular cylindrical shell coupleith springs and dashpots defined in
Section VII A (see Fig. 2) with only two differences relatedhe constant thickness which is
h = 0.004 minstead of, = 0.025 m, and reference frequeneyss which iswres = 27 x 1000
rad/s instead afy; = 27 x 3750 rad/s. We assume that the cylindrical shellis extended by tw
semi-infinite, rigid cylindrical baffles and is immersed m@nbounded liquid with a constant
mass densityr = 1 kg/m® and speed of soungl; = 300 m/s. The coincidence frequency
of the shell is 2034 Hz (i.eka = 21.3 with k = w/cg). We consider the MF response of this
structural-acoustic system on the narrow MF b&ng 27 x [1580 , 1680] rad/s corresponding

to the[16.54 ,17.59] ka-band and we assume that for alin B, |n(w)| = 1. As in Section
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VII, we are only interested in the calculation of the symnegtredominantly radial response
of the shell. The excitation is the time-stationary randoail pressurg p(x, t),x € I';t € R}

introduced in Section VII
B. Description of the finite dimension approximation

The finite dimension approximation is constructed as erpl&in Section VII B. The value
chosen fom is 432. It was deduced from the convergence study of the strueto@lstic
response over the [100,1700] Hz frequency band correspgridithe[1.0, 17.8] ka-band.
We havef; = 109 Hz and f,, = 2499 Hz. The lowest eigenfrequency of the associated
conservative structure (shell coupled with the springg)is= 142 Hz (to be compared with

f1 = 109 Hz). Figs. 12 and 13 show the graphs of functions defined by EAf5 and (73)
respectively, over thi0 , 2500] Hz frequency band corresponding to {hés , 26.2] ka-band

(in Figs. 12 and 13, the abscissas are expresskd)in
C. Constructing the reference solution on a broad frequencyand

This construction is performed as explained in Section VIKBncerning the vibration of
the shell coupled with dashpots, springs and externaldigilie reference solution on the
[100, 1700] Hz broad frequency band is obtained by constructing the mgpp+— tre,, (w)]
using Eq. (34), with a sampling frequency step= 27 x 1.06 rad/s. In Eq. (34)[T),(w)] is
calculated using Eqg. (35) in which matiid,, (w)] is calculated by Eq. (25). Fig. 14 shows
the mappingv — 10 xlog,,(trle,,(w)]) over the2w x[100,1700] rad/s broad frequency band
corresponding to thg.0, 17.8] ka-band. Concerning the far field radiated by the structure in
the external liquid, Figs. 15 and 16 show the mapping 10xlog;, (L2 S (0, ¢;w)) over
the[1.0,17.8] ka-band, calculated by using Eq. (64), for the normal and thigo®directions
with respect to the shell defined By= 0, ¢ = 7/2 andf = 0, ¢ = 7 /4 respectively.

D. Constructing the reference solution on the narrow MF band

The reference solution on narrow MF baBd= 27 x [1580, 1680] rad/s is constructed as
explained in Section VIII C but using the frequency resalotbw = Aw/Nieq in Which
Aw = 271 x 100 rad/s andNfeq = 300. The graphs of function$0 x log,(tr[e, (w)]),
10x1og; (L2 Sen (0, m/2;w)) and10 x log, (L2 Sen (0, 7/4;w)) (corresponding to Figs.
14, 15 and 16) of this reference solution on {hé&54 , 17.59] narrow MFka-band are used
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below (see Figs. 20,21 and 22) to evaluate the accuracy oéfp@nse constructed using the

reduced model.
E. Constructing the dominant eigensubspace

Since the structure is coupled with a gas, two possibilitees be examined for constructing
the dominant eigensubspace of the energy operator relatemhtdB. The first one consists
in using the “exact” approach as was done in the first exantglegmted in Section VII. In this
case, the construction of matiix,,] is based on Egs. (33) to (35) in which matfix,, (w)]

is defined by Eq. (25). This means that eigenfunctifefs. . ., €} } of Ep ,, are constructed
for the energy operator of the structure coupled with therme fluid. Since the external
fluid is a gas, a second possibility is to constr{gt . . . , €}, } as the dominant eigensubspace
of the energy operator of the structure in a vacuum (not @ulplith the gas). In this case,
the procedure is exactly the same, except that matriXw)]| is not defined by Eq. (25) but

is written as
[An(w)] = —w? ([M] + [Br(w)]) + iw [D(w)] + [K(w)] . (74)

It should be noted that Eq. (74) is only used to constf&t. . ., €}, } but obviously not

to construct the reference solution (see Sections VIII C\ahidD) and the reduced model
(see Section VIII F) for which Eq. (25) is used. For the présxample, we analyzed the
two above possibilities and we obtained quite similar rsstdr the reduced model. We
present the results corresponding to the second approachysing Eq. (74) instead of Eq.
(25) to calculate(ey . . ., €% }. We also compared the procedures described in Section V A
with the procedure described in Section V C which avoids #pdi@t construction of matrix
[E,]. Below we present the results correponding to the procdsased on the use of the MF
solving method in the time domain (see Section V C). Figuretadivs the graph of function

v — A corresponding tdF,,] calculated using Eq. (74). There is a strong decrease in
the eigenvalues which means there exists the possibilitpo$tructing an efficient reduced
model independent of the spatial excitation of the stradtacoustic system. Figure 17 shows
that the orderV of the reduced model is abotft for bandB. The values of the parameters of
the procedure described in Section V C are as follows. Thepade iteration algorithm (see
Section V) is used withn = 48. Each iteration, matriXi'] = [E,,] [X] defined in Section

V is calculated using the MF solving method in the time dondescribed in Section V C,
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with the approximatiofM | ~ [ M | instead of M| = [ M | + [Br(wpg)] for this particular
example of a structure coupled with a gas. The Newmark syegtdp integration method is
used? with scheme parameters= 1/4 andd = 1/2. Functiony,(¢) is deduced from Eq.
(54) in which|n(w)| = 1if w € B. The parameters introduced in Step 1 and Step 2 of Section
V C for the time-solving procedure are= 6, I, = 4 andJ, = 18,1.e. I = 24 andJ = 108.
Figure 18 shows the graph of function- ||[Yy(i x At)]||? fori = —1I, ..., J and Figure 19
shows the graph of functiof — ||[Zo(j x At)]||* for j = —J,...,0, corresponding to the
last iteration of the subspace iteration algorithm (se@ $tand Step 2 described in Section
V C). These two figures show that the values of paraméeteasnd./, are correctly chosen (a

similar result is obtained for each iteration, and not owolythe last one).
F. Reduced model adapted to the narrow MF band

In this section, we compare the reference solution con®dua Section VIII D with
the solution obtained by the reduced model constructedgusia results of Section IV
C in which eigenfunctiondef, ..., e} } are those calculated in Section VIII E. For the
two values 35 and 40 ofV, Figs. 20, 21 and 22 show the comparison of functions
10 x log; o (trlen(w)]), 10 x1ogyg(L™2 Sen (0, 7/2;w)) @and 10 x logyq(L ™2 Sen (0, m/4; w))
(reference solution) with functionB) x log, o (tr[e;y (w)]), 10 x1og;o (L2 Sen (0, 7/2;w))

and 10 x log; (L ™2 Sen (0,7/4; w)) (reduced model) calculated for each value of ordler
using Egs. (49)-(50) and (66), versus dimensionless warepuka. It can be seen that the

reduced model of orde¥ = 40 yields a very good approximation.
IX. CONCLUSIONS

A theoretical approach is presented for constructing acedumodel in the MF range in
the area of structural acoustic for a general three-dino@asianisotropic, inhomogeneous,
viscoelastic bounded medium with an arbitrary geometryptaaiwith an external acoustic
fluid (gas or liquid). The boundary value problem formulatedhe frequency domain and
its variational formulation are presented. For a given MRdyahe energy operator of the
structure coupled or not with the acoustic fluid is a positiedinite symmetric operator which
has a countable set of decreasing positive eigenvalueseifibafunctions corresponding to
the highest eigenvalues (dominant eigensubspace) of #rgyenperator are an appropriate

functional basis of the admissible function space of theldiement field of the structure

J. Acoust. Soc. Am. 23 Christian Soize



coupled with the external acoustic fluid. This functionasisaallows a reduced model of
the structural-acoustic system to be constructed usingriteeGalerkin method. A finite
dimension approximation of the continuous case is intreduc a general context (using the
finite element method or not). For construction of the domirgagensubspace of the energy
operator, an efficient procedure based on the use of theacdgpration method is proposed.
It does not require explicit calculation of the energy opara\We then obtain an efficient
method for constructing a reduced model in the MF range. tlitiaah, it can easily be seen
that all the results presented can be extended straiglafdiywto a structure made of beams,
plates and shells. Analysis of the first example devoted tploag with an external acoustic
liquid (the complete analysis cannot be presented hereowsthat if the energy operator of
the structure in a vacuum is used to construct the functibasis adapted to the MF band,
then the order of the reduced model is much larger than ifleegy operator of the structure
coupled with the liquid is considered. This is due to the ‘&dithass effect” of the fluid (this
phenomenon is also encountered for the low-frequency réorgehich the normal modes
of the structure in a vacuum are used). Consequently, it ierafficient to use the energy
operator of the structure coupled with the external acodktid when the fluid is a liquid.
Conversely, if the external acoustic fluid is a gas, the se@@mple presented shows that
the energy operator of the structure in a vacuum can be usmmhtruct the functional basis
adapted to the MF band. Finally, the two examples preseiited that the reduced model

constructed yields good results.
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LEGENDS ACCOMPANYING EACH FIGURE

Fig. 1. Geometrical configuration of the structural-acmusystem.

Fig. 2. Finite length circular cylindrical shell coupledttvsprings and dashpots and immersed
in an acoustic fluid.

Fig. 3. Graph of functiorka — ur(ka) defined by Eq. (72) for the structure coupled with a
liquid.

Fig. 4. Graph of functiotka — or(ka) defined by Eq. (73) for the structure coupled with a
liquid.

Fig. 5. Reference solution of the dynamical response ofttiuetsire coupled with a liquid:
graph of functionka +— 10 xlog,,(tre, (ka)]).

Fig. 6. Reference solution of the far field radiated in thenmalrdirection by the structure
coupled with a liquid: graph of functioka — 10 x1og;(L™2 Sen (0, 7/2; w)).

Fig. 7. Reference solution of the far field radiated in anaep direction by the structure
coupled with a liquid: graph of functioka — 10 x1og;(L™2 Sen (0, 7/4;w)).

Fig. 8. Reference solution: graph of functiemr- A\’ showing the distribution of eigenvalues
Ay of energy operatoE z ,, of the structure coupled with a liquid.

Fig. 9. Reduced model of the dynamical response of the steicioupled with a liquid:
comparison between functidtu — 10 x log,,(tr[e, (ka)]) (reference solution (solid line))
and functionka — 10 x log,,(tr[eX (ka)]) (reduced model fotv = 25 (dashed line), for
N = 30 (dotted line) and forN = 40 (dashdot line)).

Fig. 10. Reduced model of the far field radiated in the norni&@ction by the structure
coupled with a liquid: comparison between functien — 10 x log; (L2 S (0, 7/2; w))
(reference solution (solid line)) and functién — 10xlog;o (L2 Scx (0, 7/2;w)) (reduced
model forN = 25 (dashed line), forV = 30 (dotted line) and forV = 40 (dashdot line)).

Fig. 11. Reduced model of the far field radiated in an obliquection by the structure
coupled with a liquid: comparison between functiom — 10 x log; (L2 Sen (0, 7/4; w))
(reference solution (solid line)) and functién — 10xlog;, (L2 Sen (0,7/4;w)) (reduced
model for N = 25 (dashed line), forV = 30 (dotted line) and forN = 40 (dashdot line)).

Fig. 12. Graph of functiota — ur(ka) defined by Eq. (72) for the structure coupled with

agas.
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Fig. 13. Graph of functioka — or(ka) defined by Eq. (73) for the structure coupled with

agas.

Fig. 14. Reference solution of the dynamical response o$tiheture coupled with a gas:

graph of functiorka — 10 xlog;, (tr[e,, (ka)]).

Fig. 15. Reference solution of the far field radiated in thewad direction by the structure

coupled with a gas: graph of functidm — 10 xlog;q(L 2 S (0, 7/2;w)).

Fig. 16. Reference solution of the far field radiated in anculd direction by the structure

coupled with a gas: graph of functidm, +— 10 x1log; (L2 Sen (0, 7/4;w)).

Fig. 17. Reference solution: graph of functier— \* showing the distribution of eigenval-

ues\? of energy operatoE i ,, of the structure in a vacuum (not coupled with the fluid).

Fig. 18. Graph of function — ||[Yy(i x At)]||? corresponding to the last iteration of the

subspace iteration algorithm.

Fig. 19. Graph of function — ||[Zo(j x At)]||* corresponding to the last iteration of the

subspace iteration algorithm.

Fig. 20. Reduced model of the dynamical response of thetateicoupled with a gas:
comparison between functidru — 10 x log,(trle,,(ka)]) (reference solution (solid line))
and functionka — 10 x log;,(tr[eX (ka)]) (reduced model foV = 25 (dashed line), for
N = 30 (dotted line) and forV = 40 (dashdot line)).

Fig. 21. Reduced model of the far field radiated in the norni&@ction by the structure
coupled with a gas: comparison between functien— 10 x log;o(L =2 Sen (0, 7/2; w))
(reference solution (solid line)) and functién — 10xlog;o(L ™2 Sen (0, 7/2; w)) (reduced

model forN = 25 (dashed line), forV = 30 (dotted line) and forV = 40 (dashdot line)).

Fig. 22. Reduced model of the far field radiated in an obliquection by the structure
coupled with a gas: comparison between functien— 10 x log;,(L ™2 Sen (0, 7/4; w))
(reference solution (solid line)) and functién — 10xlog;o(L ™2 Scx (0, 7/4; w)) (reduced
model for N = 25 (dashed line), forV = 30 (dotted line) and forN = 40 (dashdot line)).
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TABLE

Qj (deg) T3, (m) €jD

81.81
-81.81
138.33

-138.33

81.81
-81.81
138.33

-138.33
52
-52
118
-118
52
-52
118
-118

0.32
0.32
0.32
0.32
0.73
0.73
0.73
0.73
1.24
1.24
1.24
1.24
1.55
1.55
1.55
1.55

0

0

0.1
0.1
0

0

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

3

;
0.1
0.1
0.15
0.15
0.1
0.1
0.15
0.15
0.11
0.11
0.14
0.14
0.11
0.11
0.14
0.14

Table I. Values ofef andgf
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