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ABSTRACT

This paper presents a theoretical approach for constructing a reduced model in the medium-

frequency range in the area of structural acoustics for a general three-dimensional dissipative

structure made of an anisotropic, inhomogeneous, viscoelastic bounded medium coupled with

an external acoustic fluid. All the results presented can be used if the structure is made of

beams, plates and shells. The boundary value problem in the frequency domain and its vari-

ational formulation are presented. For a fixed medium-frequency band, an energy operator

related to the structural-acoustic system is introduced. This operator is symmetric positive

definite and has a countable set of positive eigenvalues. Itsdominant eigensubspace allows a

reduced model to be constructed using the Ritz-Galerkin method. A finite dimension approx-

imation of the three-dimensional continuous case is presented and an effective construction of

the dominant subspace using the subspace iteration method is developed. As an example, the

reduced model is used for constructing the time-stationaryrandom response of the structural-

acoustic system submitted to a random wall pressure field. Finally, the theory is validated

for a finite length circular cylindrical shell coupled with several dashpots and springs and

immersed in a gas (air) and in a liquid (water).

PACS numbers : 43.40 Gh

INTRODUCTION

This paper is the continuation of initial papers published by the author1,2 in the area of

modeling and associated solving methods for linear dissipative structural-acoustic systems

in the medium-frequency (MF) range. It is known3−6 that, for low-frequency (LF) dynamic

analysis in structural dynamics, reduced models are a very efficient tool for constructing the

J. Acoust. Soc. Am. 1 Christian Soize



solution. These techniques correspond to a Ritz-Galerkin reduction of the structural-dynamics

model using, for instance, the normal modes corresponding to the lowest eigenfrequencies of

the associated conservative structure and called modal reduction. The efficiency of this kind of

reduced model is due to the small number of generalized dynamical degrees of freedom used in

the representation and in addition, is obtained by solving awell-stated generalized symmetric

eigenvalue problem for which only the first eigenvalues and the corresponding eigenfunctions

have to be calculated. In addition, when such a reduced modelis obtained, responses to

deterministic or random excitations can be calculated for no significant additional numerical

cost, and the reduced model can be used directly for solving various structural-acoustic

problems in the LF range7,8. The fundamental problem related to the construction of a reduced

model in the MF range for general dissipative structural-acoustic systems has not yet been

solved. The author9 recently proposed an efficient solution for constructing such a reduced

model for general structural-dynamics systems (structures in a vacuum). Here, we present

an extension of this theory to the case of general structural-acoustic systems consisting of a

structure coupled with an external acoustic fluid (gas or liquid). Concerning the structure, these

theoretical developments are presented in the context of three-dimensional viscoelasticity for

an arbitrary domain geometry and for an anisotropic, inhomogeneous material. Extension of

the results presented to beams, plates and shells is straightforward. Concerning the external

acoustic fluid, the geometry of the fluid-structure interface is arbitrary. In Section I, we

present the boundary value problem to be solved in the frequency domain and we establish its

variational formulation. In Section II, we construct a functional basis adapted to the MF range.

To do so, we introduce an energy operator related to the dynamics of the structural-acoustic

system in an MF band. This operator is symmetric positive definite and has a countable set

of positive eigenvalues. The corresponding eigenfunctions form a complete family in the

set of admissible displacement fields of the structure. In Section III, the reduced model is

introduced using the Ritz-Galerkin projection of the variational formulation on the dominant

eigensubspace of the energy operator, spanned by the eigenfunctions which correspond to

the highest eigenvalues. In Section IV, we present the finitedimension approximation of

the three-dimensional continuous case allowing the effective calculation to be carried out for

the general case. In Section V, we give an efficient procedurefor constructing the dominant

subspace using the subspace iteration method. To illustrate the interest of such a reduced
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model, Section VI deals with the construction of the time-stationary random response of

structural-acoustic systems submitted to a random wall pressure field. Finally, the theory is

validated for a finite length circular cylindrical shell coupled with several dashpots and springs

and immersed in a gas (Section VII) and in a liquid (Section VIII). The method proposed can

also be used in the low-frequency range, but in this case there is no additional gain with respect

to the usual modal reduction method. Nevertheless, it should be noted that, for a structure in

a vacuum, if the structural damping tends to zero, then it canbe proved that the present MF

method and the usual modal BF method give the same reduced model in the low-frequency

range.

I. BOUNDARY VALUE PROBLEM AND ITS SOLUTION

A. Definition of the boundary value problem

We consider linear vibrations (formulated in the frequencydomainω) of a three-dimensional

structural-acoustic system around a static equilibrium configuration considered as a natural

state at rest (see Fig. 1). LetΩ be a bounded domain ofR3, occupied by the structure at static

equilibrium and made of viscoelastic material. Let∂Ω = Γ0 ∪Σ ∪ Γ be the boundary which

is assumed to be sufficiently smooth and such thatΓ0 ∩Σ ∩ Γ = ∅. Let n be its outward unit

normal. Letu(x, ω) = (u1(x, ω), u2(x, ω), u3(x, ω)) be the displacement field in each point

x = (x1, x2, x3) in Cartesian coordinates and at frequencyω. On partΓ0 of the boundary,

the structure is fixed(u = 0) whereas on partΣ ∪ Γ it is free. The structure is surrounded by

an external inviscid acoustic fluid (gas or liquid) occupying the unbounded three-dimensional

domainΩE whose boundary∂ΩE is Γ. Let cE be the constant speed of sound andρE be

the constant mass density of the external fluid at equilibrium. The pressure field and the

velocity potential in each pointx in ΩE and at frequencyω are denoted asp(x, ω) andψ(x, ω)

respectively. We introduce a narrow MF bandB such thatB = [ωB −∆ω/2 , ωB + ∆ω/2 ]

in which ωB is the center frequency and∆ω is the bandwidth such that∆ω/ωB ≪ 1 and

ωB > ∆ω/2. With B we associate interval̃B = [−ωB − ∆ω/2 ,−ωB + ∆ω/2 ]. The

structure is submitted to a square integrable body force field x 7→ η(ω) f(x, ω) from Ω intoC3 and a square integrable surface force fieldx 7→ η(ω) fΣ(x, ω) from Σ into C3, in which

η(ω) is a function fromR into C, such thatη(ω) = 0 if ω is not inB ∪B̃, continuous

on B, verifying |η(−ω)| = |η(ω)| and such that|η(ω)| 6= 0 for all ω in B. Introducing
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components(f1, f2, f3) and(fΣ,1, fΣ,2, fΣ,3) of f and fΣ respectively, the boundary value

problem is written as follows in terms ofu andψ (the convention for the Fourier transform

beingv(ω) =
∫R e−iωtv(t) dt),

−ω2ρ ui − σij,j = η fi in Ω , (1)

σijnj = η fΣ,i on Σ , (2)

σijnj = −p ni on Γ , (3)

ui = 0 on Γ0 , (4)

in which i = 1, 2, 3 and where the summation over indexj is used. Concerning the external

acoustic fluid, we have

p = −iω ρE ψ in ΩE ∪ Γ , (5)

∇
2ψ +

ω2

c2E
ψ = 0 in ΩE , (6)

∂ψ

∂n
= iω u·n on Γ , (7)

|ψ| = O(
1

R
) , |

∂ψ

∂R
+ i

ω

cE
ψ| = O(

1

R2
) as R = ‖x‖ → +∞ . (8)

In Eq. (1),ρ(x) > 0 is the mass density of the structure andσij,j =
∑3

j=1
∂σij/∂xj. For a

linear viscoelastic material, stress tensorσij is written as

σij = aijkh(x, ω) εkh(u) + bijkh(x, ω) εkh(iω u) , (9)

in which the summation over indicesk andh is used and whereεkh(u) = (∂uk/∂xh +

∂uh/∂xk)/2 is the linearized strain tensor. Coefficientsaijkh(x, ω) andbijkh(x, ω) are

real, depend onx andω, verify the usual properties of symmetry and positiveness10−12 and

are such thataijkh(x,−ω) = aijkh(x, ω) andbijkh(x,−ω) = bijkh(x, ω). Eq. (8) is the

outward Sommerfeld radiation condition at infinity and∂/∂R denotes the derivative in the

radial direction from the origin.

B. Acoustic impedance boundary operator and radiation impedance operator

For all realω 6= 0 and for a normal velocity fieldv = iω u ·n given onΓ, the exterior

Neumann problem related to the Helmholtz equation defined byEqs. (6) to (8) has a unique
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solution13 ψ. Denoting the values ofψ on surfaceΓ asψΓ, the corresponding pressure field

pΓ = −iω ρEψΓ onΓ can be written as

pΓ = ZΓ(ω){iω u·n} , (10)

in which ZΓ(ω) is the acoustic impedance boundary operator related to surfaceΓ. At any

pointx in unbounded domainΩE , pressurep(x, ω) can be written as

p(x, ω) = Zrad(x, ω){iω u·n} , (11)

in which Zrad(x, ω) is the radiation impedance operator. For simply shaped geometries

of Γ such as baffled rectangular or circular plates, baffled circular cylinder, etc, analytical

methods14 can be used for constructing operatorsZΓ(ω) andZrad(x, ω). For an arbitrary

shaped surfaceΓ, boundary element methods can be used. This numerical method must

be based on the use of integral equation techniques overcoming the mathematical difficulty

induced by the problem of spurious or irregular frequencies8,15−17.

C. Variational formulation

For the general methodology concerning the construction ofa variational formulation of a

boundary value problem, we refer the reader to Refs. 13, 18 and 19. LetH be the space of

all the square integrable functions onΩ with values inC3, equipped with the inner product

(u , v)
H

=
∫
Ω

u(x)·v(x) dx and the associated norm‖u‖
H

= (u , u)1/2
H

, in which z denotes

the conjugate of the complex numberz. LetV ⊂ H be the space of admissible displacement

fieldsu defined onΩ with values inC3 such thatu = 0 on Γ0 and such that∇uk ∈ H for

k = 1, 2, 3. The variational formulation of the boundary value problemin u defined by Eqs.

(1) to (9) can be expressed as follows. For allω in B ∪B̃, find u(ω) in V such that

a(u, v ;ω) = f(v ;ω) , ∀v ∈ V , (12)

in whichf(v ;ω) is defined by

f(v ;ω) = η(ω)

{∫

Σ

fΣ(x, ω)·v(x)ds(x) +

∫

Ω

f(x, ω)·v(x)dx
}

, (13)

and wherea(u, v ;ω) is written as

a(u, v ;ω) = −ω2
(
m(u, v) + bΓ(u, v ;ω)

)
+ iω d(u, v ;ω) + k(u, v ;ω) , (14)
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m(u, v) =

∫

Ω

ρ(x) u(x)·v(x)dx ,

d(u, v ;ω) =

∫

Ω

bijkh(x, ω) εkh(u) εij(v) dx ,

k(u, v ;ω) =

∫

Ω

aijkh(x, ω) εkh(u) εij(v) dx ,

in which the summation over indicesi, j, k andh is used. It is assumed thatd(u, v ;ω) and

k(u, v ;ω) are continuous functions on bandB with respect toω. Finally,bΓ(u, v ;ω) is such

that

−ω2 bΓ(u, v ;ω) = iω

∫

Γ

(v·n) ZΓ(ω){u·n} ds .

For allω in B ∪B̃, Eq. (12) has a unique solutionu(ω) in V .

II. CONSTRUCTION OF A FUNCTIONAL BASIS FOR THE REDUCED MODEL

In order to construct a functional basis adapted to MF bandB and useful for the Ritz-Galerkin

method, we begin by introducing the operator-valued frequency response function defined for

a special class of mechanical excitations. In a second step,we define the energy operator and

we construct the functional basis as its eigenfunctions.

A. Operator-valued frequency response function

Let us assumed thatfΣ = 0 and thatf is independent ofω. This assumption is only used for

constructing the functional basis. As soon as the reduced model is obtained, the response of

the mechanical system can be calculated for any deterministic and random excitations which

do not use this restrictive assumption (see Eq. (13), Sections III and IV). Then Eq. (13) yields

f(v ;ω) = η(ω) (f , v)
H

. It is proved1,2,9 that for allω fixed inB ∪B̃, Eq. (12) has a unique

solutionuf (ω) belonging toV ⊂ H which can be written as

uf (ω) = η(ω) T
H

(ω) f , (15)

whereT
H

(ω) is an operator inH. Solutionuf (ω) corresponds to the vibration induced by

excitationη(ω) f andT
H

(ω) is the operator-valued frequency response function.

B. Definition of an energy operator

The energyεB(uf ) of a structural vibration corresponding touf given by Eq. (15) is defined

as twice the value of the total kinetic energy of the structure, i.e. using the Plancherel formula,

εB(uf ) =
1

2π

∫

B∪B̃

ω2 (M u f (ω), uf(ω))
H
dω , (16)
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in which M is the mass operator inH such that(M u , v)
H

= m(u, v). Let uf (ω) =

η(ω) T
H

(ω) f andug(ω) = η(ω) T
H

(ω) g be the solutions corresponding to the vibrations

induced by excitationsη(ω) f and η(ω) g respectively, wheref and g are inH and are

independent ofω. The energy operatorEB relative to bandB is defined by

(EB f , g)
H

=
1

2π

∫

B∪B̃

ω2 (M u f (ω), ug(ω))
H
dω . (17)

We then deduce thatεB(uf ) = (EB f , f)
H

. It should be noted that operatorEB depends onB

andη but does not depend on spatial partsf andg of the excitations. In addition, this operator

depends on the external acoustic fluid due to the coupling operator. In the present context,

operatorEB is only used to calculate a functional basis for constructing a reduced model of

the structure coupled with the external acoustic fluid. In Section VII which is devoted to the

coupling with an external liquid, we will see that the coupling operator must be kept for the

calculation ofEB . A contrario, the coupling operator can be omitted for the calculation of

EB in the case of a coupling with a gas as shown in Section VIII.

C. Properties of the energy operator

Energy operatorEB is a positive-definite symmetric operator inH whose range space is a

subspace ofV and which can be written as

EB =
1

π

∫

B

ω2 |η(ω)|2 ℜe {T
H

(ω)∗ M T
H

(ω)} dω , (18)

in whichℜe denotes the real part and whereT
H

(ω)∗ is the adjoint ofT
H

(ω). Consequently,

operatorEB has a countable set of decreasing positive eigenvalues withfinite multiplicity,

possibly excepting zero,λ1 ≥ λ2 ≥ . . . → 0, in which theλν terms are the repeated

eigenvalues ofEB . The corresponding eigenfunctions{eν}ν≥1 such that

EB eν = λν eν (19)

are functionseν(x) from Ω into R3 and form a complete family in admissible spaceV ⊂ H,

orthonormal for the inner product ofH. This fundamental result allows a reduced model to

be constructed in the MF range. We then have(eν , eν′)
H

= δνν′ . Finally, the eigenvalues

are such that
∑+∞

ν=1
λν < +∞ (one says thatEB is a trace operator20,21) and its trace norm

denoted as trEB is written as

tr EB =

+∞∑

ν=1

λν < +∞ . (20)
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The proof of these results is a straightforward extension ofthe proof established by the author9

for the case of a three-dimensional viscoelastic structurein a vacuum.

III. CONSTRUCTION OF A REDUCED MODEL IN THE MF RANGE

The reduced model adapted to MF bandB is obtained using the Ritz-Galerkin projection of

the variational formulation defined by Eq. (12) on the subspaceV N of V spanned by the

eigenfunctions{e1, . . . , eN} corresponding to theN highest eigenvalues{λ1, . . . , λN} of

energy operatorEB . Letu(ω) ∈ V be the solution of Eq. (12) and letuN (ω) be its projection

onV N ,

uN (x, ω) =

N∑

ν=1

θν(ω) eν(x) , (21)

in which θν(ω) ∈ C. From Eq. (12), we deduce that, for allω in B ∪B̃, �(ω) =

(θ1(ω), . . . , θN (ω)) ∈ CN is the unique solution of the linear equation

[AN (ω)] �(ω) = η(ω) F(ω) , (22)

in which [AN (ω)] is the symmetric(N ×N) complex matrix defined by[AN (ω)]νν′ =

a(eν′ , eν ;ω) and whereF(ω) = (F1(ω), . . . ,FN (ω)) ∈ CN is such thatη(ω)Fν(ω) =

f(eν ;ω). Eqs. (21) and (22) constitute the reduced model in MF bandB of the structural-

acoustic dynamical system described by Eqs. (1) to (9). For all ω in B ∪B̃, matrix [AN(ω)]

is invertible and the solution of Eq. (22) is written as�(ω) = η(ω) [TN(ω)] F(ω) in which

[TN (ω)] = [AN (ω)]−1. For allω in B ∪B̃, uN (ω) → u(ω) in V asN → +∞.

IV. FINITE DIMENSION APPROXIMATION

An explicit construction of eigenfunctions{e1, . . . , eN} of energy operatorEB cannot be

obtained in the general case. A finite dimension approximationEB,n of EB must be introduced

and the eigenfunctions{en
1 . . . , e

n
N} of EB,n associated with theN highest eigenvalues

λn
1 ≥ . . . ≥ λn

N , are the approximation of{e1 . . . , eN}. This finite approximation is obtained

by using the Ritz-Galerkin method. We then consider a subspaceVn ⊂ V of finite dimension

n ≥ 1, spanned by a family{�1, . . . ,�n} of independentR3-valued functions{�α}α in V .

In practice, this family can be either a finite element basis13,22−23 associated with a finite

element mesh of domainΩ or, for a particular case, any functional basis constructedin the

context of an analytical approach, for instance the sequence of the structural normal modes of
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a homogeneous, simply supported rectangular plate with a constant thickness. Letu(ω) ∈ V

be the solution of Eq. (12). Its projection onVn is written as

un(x, ω) =
n∑

α=1

qα(ω)�α(x) . (23)

From Eq. (12), we deduce thatq(ω) = (q1(ω), . . . , qn(ω)) ∈ Cn is the unique solution of

the linear equation

[An(ω)] q(ω) = η(ω) F(ω) , (24)

in which symmetric(n×n) complex matrix[An(ω)] is such that[An(ω)]αβ = a(�β ,�α ;ω)

and can be written as

[An(ω)] = −ω2 ([M ] + [BΓ(ω)]) + iω [D(ω)] + [K(ω)] , (25)

in which [M ], [D(ω)] and[K(ω)] are positive-definite symmetric(n×n) real matrices such

that [M ]αβ = m(�β,�α), [D(ω)]αβ = d(�β,�α ;ω) and[K(ω)]αβ = k(�β ,�α ;ω), and

[BΓ(ω)] is a symmetric(n×n) complex matrix such that[BΓ(ω)]αβ = bΓ(�β,�α ;ω). Vector

F(ω) = (F1(ω), . . . , Fn(ω)) ∈ Cn is such that

η(ω)Fα(ω) = f(�α ;ω) . (26)

The pressure field radiated by the structure is written as

pn(x, ω) = iω
n∑

α=1

Zn
α(x, ω) qα(ω) , (27)

in whichZn
α(x, ω) = Zrad(x, ω){�α · n}. Concerning the far field radiated by the structure,

we introduce the spherical coordinates

x = x(R, θ, ϕ) = (R sinϕ cos θ, R sinϕ sin θ, R cosϕ) , (28)

with ϕ ∈ [0, π] and θ ∈ [0, 2π]. The far field can then be characterized by the pressure

coefficientcn(θ, ϕ, ω) defined by

cn(θ, ϕ, ω) = lim
R→+∞

{
ReiωR/cE

ρEc
2
E

pn(x(R, θ, ϕ), ω)

}
. (29)

Substituting Eq. (27) in Eq. (29) yields

cn(θ, ϕ, ω) = iω rn(θ, ϕ, ω)T q(ω) = iω

n∑

α=1

rn
α(θ, ϕ, ω) qα(ω) , (30)
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in which rn(θ, ϕ, ω) = (rn
1 (θ, ϕ, ω), . . . , rn

n(θ, ϕ, ω)) ∈ Cn and whererα(θ, ϕ, ω) is such

that

rn
α(θ, ϕ, ω) = lim

R→+∞

{
ReiωR/cE

ρEc
2
E

Zn
α(x(R, θ, ϕ), ω)

}
. (31)

A. Projection of the energy operator

ProjectionEB,n of operatorEB onVn ⊂ H is written as

EB,n =
n∑

α,β=1

[En]αβ ( . ,�β)
H
�α , (32)

in which [En] is a positive-definite symmetric(n×n) real matrix such that

[En] =

∫

B

[en(ω)] dω , (33)

[en(ω)] =
1

π
ω2 |η(ω)|2 ℜe {[Tn(ω)]∗ [M ] [Tn(ω)]} , (34)

where[Tn(ω)] is the symmetric(n×n) complex matrix such that

[Tn(ω)] = [An(ω)]−1 , [Tn(ω)]∗ = [Tn(ω)] . (35)

B. Generalized symmetric eigenvalue problem

Each eigenfunctionen
ν such thatEB,n en

ν = λn
ν en

ν can be written as

en
ν =

n∑

α=1

P ν
α �α . (36)

Introducing vectorPν=(P ν
1 , . . . , P

ν
n ), it can easily be seen that eigenvalues{λn

1 , . . . , λ
n
n} and

the corresponding eigenvectors{P1, . . . ,Pn} are the solutions of the generalized symmetric

eigenvalue problem

[H ] P = λn [G ] P , (37)

in which[G ] and[H ] are positive-definite symmetric(n×n) real matrices such that[G ]βα =

(�α ,�β)
H

and [H ] = [G ] [En] [G ]. Eigenvectors{P1, . . . ,Pn} form a basis ofRn and

verify the usual orthogonality conditions with respect to[G ] and[H ] and consequently, we

have(en
ν , e

n
ν′)H = ([G ] Pν,Pν′

)Rn = δνν′ .

C. Reduced model adapted to MF bandB
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Let N < n (generallyN ≪ n). Let u(ω) ∈ V be the solution of Eq. (12). The reduced

model adapted to MF bandB is defined as the projectionuN
n (ω) of u(ω) on the subspace

V N
n ⊂ Vn ⊂ V spanned by the eigenfunctions{en

1 , . . . , e
n
N} which correspond to theN

highest eigenvaluesλn
1 ≥ λn

2 ≥ . . . ≥ λn
N of operatorEB,n. ProjectionuN

n (ω) can be written

as

uN
n (x, ω) =

N∑

ν=1

θn
ν (ω) en

ν (x) , (38)

in which�n(ω) = (θn
1 (ω), . . . , θn

N (ω)) ∈ CN is the solution of the linear equation

[An
N (ω)] �n(ω) = η(ω) F

n(ω) , (39)

where [An
N (ω)] is the symmetric(N ×N) complex matrix defined by[An

N (ω)]νν′ =

a(en
ν′ , en

ν ;ω) and whereFn(ω) = (Fn
1 (ω), . . . ,Fn

N(ω)) ∈ CN is such thatη(ω)Fn
ν (ω) =

f(en
ν ;ω). Matrix [An

N (ω)] is invertible and we have�n(ω) = η(ω) [T n
N (ω)] Fn(ω) ; [T n

N (ω)] = [An
N (ω)]−1 . (40)

The pressure field radiated by the structure is written as

pN
n (x, ω) = iω

N∑

ν=1

Zn
N,ν(x, ω) θn

ν (ω) , (41)

in whichZn
N,ν(x, ω) = Zrad(x, ω){en

ν · n}. For this reduced model, the pressure coefficient

defined by Eq. (29) and given by Eq. (30) is written as

cnN (θ, ϕ, ω) = iω rn
N (θ, ϕ, ω)T �n(ω) , (42)

in which complex vectorrn
N (θ, ϕ, ω) ∈ CN is such that

rn
N,ν(θ, ϕ, ω) = lim

R→+∞

{
ReiωR/cE

ρEc
2
E

Zn
N,ν(x(R, θ, ϕ), ω)

}
. (43)

Let [P ] be the(n×N) real matrix whose columns are theN eigenvectors{P1, . . . ,PN}

corresponding to theN highest eigenvaluesλn
1 ≥ . . . ≥ λn

N . We then deduce that

q(ω) = [P ] �n(ω) , (44)

[An
N(ω)] = [P ]T [An(ω)] [P ] , (45)
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F
n(ω) = [P ]T F(ω) , (46)

rn
N (θ, ϕ, ω) = [P ]T rn(θ, ϕ, ω) , (47)

in which matrix[An(ω)] is given by Eq. (25), vectorF(ω) by Eq. (26) and vectorrn(θ, ϕ, ω)

by Eq. (31). Matrix [EN
n ] corresponding to[En] for the reduced model is a positive-

semidefinite symmetric(n×n) real matrix such that

[EN
n ] =

∫

B

[eN
n (ω)] dω , (48)

[eN
n (ω)] = [P ] [εN

n (ω)] [P ]T , (49)

in which [εN
n (ω)] is a positive-definite symmetric(N×N) real matrix such that

[εN
n (ω)] =

1

π
ω2 |η(ω)|2 ℜe {[T n

N (ω)]∗ [M] [T n
N (ω)]} , (50)

where[M] = [P ]T [M ] [P ].

D. Dominant eigensubspace and order of the reduced model

In this subsection, we assume thatF(ω) = F is independent ofω and consequently,Fn is

also independent ofω. Let u(ω) be the solution of Eq. (12),un(ω) its projection onVn and

uN
n (ω) its projection onV N

n ⊂ Vn. The energy ofun is such thatεB(un) =
∑n

ν=1
λn

ν |Fn
ν |

2

and the energy ofuN
n is εB(uN

n ) =
∑N

ν=1
λn

ν |Fn
ν |

2. We then haveεB(un) ≤ λn
1 ‖Fn‖2

and since the upper bound is effectively reached, the maximum εmax of εB(un) is such that

εmax = maxFn∈Cn εB(un) = λn
1 ‖Fn‖2. We then deduce that(εB(un) − εB(uN

n ))/εmax ≤

λn
N+1/λ

n
1 . Since{λν}ν is a decreasing sequence of positive numbers asν → +∞, if n is

sufficiently large, then there existsN < n such thatλn
N+1/λ

n
1 ≪ 1. SubspaceV N

n is called

the dominant eigensubspace of operatorEB,n corresponding to theN highest eigenvalues

λn
1 ≥ . . . ≥ λn

N andN is called the order of the reduced model. In Sections VII and VIII, we

present the graphs of the distribution of eigenvaluesλn
ν for two examples which clearly show

howN must be chosen.

V. CONSTRUCTION OF THE DOMINANT EIGENSUBSPACE

All the developments and details concerning the effective construction of the dominant eigen-

subspace are given in Ref. 9. In order to facilitate the understanding of Sections VII and VIII

and illustrate the extension necessary to take into accountthe presence of an external acoustic
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fluid, we summarize below the main results of the method. The reduced model defined by

Eqs. (38) to (50) requires calculation of eigenvectorsP1, . . . ,PN in Rn corresponding to the

N highest eigenvaluesλn
1 ≥ . . . ≥ λn

N of the generalized symmetric eigenvalue problem

defined by Eq. (37). Sincen is large andN ≪ n, the Lanczos method or the subspace

iteration method22,24−26 cana priori be used. The algebraic structure of matrix[En] defined

by Eq. (33) shows that the use of the subspace iteration method allows a very efficient solving

method to be constructed, avoiding the explicit calculation of matrix [En]. Let m be the

dimension of the subspace used for the iterations such thatN < m ≪ n (in practice22,

m = min{2N ,N + 8}). Since the usual formulation of the subspace iteration method is

adapted to calculating the lowest eigenvalues, Eq. (37) is transformed as follows. We have to

calculate theN lowest eigenvalues and associated eigenvectors of the symmetric eigenvalue

problem defined by

[G ] [S ] = [H ] [S ] [ Γ ] , (51)

in which [S ] is an (n×m) real matrix and[ Γ ] a diagonal(m×m) real matrix such that

[S ]T [H ] [S ] = [ I ] and[S ]T [G ] [S ] = [ Γ ] in which matrices[ Γ ] and[S ] are such that

[ Λ ] = [ Γ ]−1 and[ P̃ ] = [S ] [ Γ ]−1/2, where[ Λ ] is the(m×m) real diagonal matrix such

that theN highest eigenvalues areλn
1 = [ Λ ]11 ≥ . . . ≥ λn

N = [ Λ ]NN and where[ P̃ ] is the

(n×m) real matrix whose firstN columns are eigenvectorsP1, . . . ,PN defining matrix[P ].

If we examine the subspace iteration algorithm, it would seem that calculation of matrix[En]

is necessary. In fact, for each iteration of the algorithm, we only need to calculate an(n×m)

real matrix[W ] such that[W ] = [En] [X ], in which [X ] is a given(n×m) real matrix.

A. Direct procedure in the frequency domain

The direct procedure in the frequency domain consists in calculating [En] using Eqs. (33)

and (34), then calculating[W ] each iteration9. This method is inefficient because matrix

[En] has to be constructed explicitly. Two other solutions are presented below.

B- Indirect procedure in the frequency domain

Since [X ] is a real matrix, it can easily be verified that[W ] can be written as[W ] =
∫

B
ℜe

{
[Ẑ(ω)]

}
dω where[Ẑ(ω)] is an(n×m) complex matrix which is the solution of

[An(ω)] [Ŷ (ω)] = χ̂(ω) [X ] , (52)

[An(ω)] [Ẑ(ω)] = [M ] [Ŷ (ω)] , (53)
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in which χ̂(ω) is a function defined onR such that,

χ̂(ω) =
1

π
ω2 |η(ω)|2 1B(ω) . (54)

It is proved9 that this procedure is much more efficient than the previous one defined in

Section V A.

C. Procedure based on the use of the MF solving method in the time domain

This method is based on the use of the MF solving method2,27 and requires factorization

of only one symmetric(n×n) complex matrix. Consequently, much less core memory is

necessary for this procedure than for the indirect procedure in the frequency domain (Section

V B) for which Nfreq factorizations are simultaneously present in the memory, whereNfreq

is the number of frequency points required for calculation of the integral in Eq. (33). A

detailed analysis of this procedure is given in Ref. 9 and cannot be reproduced here. Let

χ0(t) be a function such thatχ0(t) = e−iωBt χ(t) in whichχ(t) = (1/2π)
∫
B
eiωt χ̂(ω) dω

is the inverse Fourier transform of function̂χ(ω) defined by Eq. (54). Therefore, the Fourier

transformχ̂0(ω) =
∫R e−iωt χ0(t) dt is a square integrable function onR such that̂χ0(ω) = 0

if ω /∈ B0 whereB0 denotes the LF bandB0 = [−∆ω/2 ,∆ω/2 ]. Functionχ0(t) is the

LF signal associated with the MF narrow-band signalχ(t). Let [MB], [DB ] and[KB] be the

symmetric(n×n) matrices independent of the frequency such that[MB] = [M ]+[BΓ(ωB)],

[DB ] = [D(ωB)] and [KB] = [K(ωB)]. It can be proved9 that [W ] = [En] [X ] can be

calculated by[W ] = 2πℜe {[Z0(0)]} in which [Z0(t)] is the solution of the following LF

equations in the time domain associated with the MF equations,

[MB] [Ÿ0(t)] + [D̃B ] [Ẏ0(t)] + [K̃B] [Y0(t)] = χ0(t) [X ] , (55)

[MB] [Z̈0(t)] + [D̃B ] [Ż0(t)] + [K̃B] [Z0(t)] = [M ] [Y0(−t)] , (56)

in which the symmetric(n×n) complex matrices[D̃B] and [K̃B] are written as[D̃B] =

[DB ] + 2 i ωB [M ] and [K̃B] = −ω2
B [M ] + i ωB [DB] + [KB]. It should be noted that

the Fourier transforms[Ŷ0(ω)] and[Ẑ0(ω)] of [Y0(t)] and[Z0(t)] respectively, are such that

[Ŷ0(ω)] = [Ẑ0(ω)] = [ 0 ] if ω /∈ B0. That is why Eqs. (55) and (56) are called the LF

equations in the time domain associated with the MF equations related to MF bandB. The

associated LF Eqs. (55) and (56) are solved using an unconditionally stable implicit step-by-

step integration method such as the Newmark method or the Wilsonθ method22. Since Eqs.

J. Acoust. Soc. Am. 14 Christian Soize



(55) and (56) have the same differential operator[MB] d2/dt2 +[D̃B ] d/dt+[K̃B], only one

symmetric(n×n) complex matrix has to be factorized. The basic sampling timestep denoted

asτ is given by Shannon’s theorem and consequently,τ = 2π/∆ω. The integration time step

of the step-by-step integration method is then written as∆t = τ/µwhereµ > 1 is an integer.

Sinceχ0 and[Y0] are square integrable functions, for anyε > 0, there exists an initial time

tI = −I0 × τ whereI0 > 1 is an integer and a final timetF = J0 × τ whereJ0 > 1 is

another integer, such that
∫ tI

−∞

|χ0(t)|
2 dt ≤ ε‖χ0‖

2
L2 ,

∫ +∞

tF

‖[Y0(t)]‖
2 dt ≤ ε

∫ tF

tI

‖[Y0(t)]‖
2 dt , (57)

in which‖[Y0(t)]‖
2 = tr{[Y0(t)]

∗[Y0(t)]}. We have the following procedure.

Step 1. Construction of the sequence[Y0(i×∆t)] for i = −I, . . . , J with I = I0×µ

andJ = J0×µ by solving Eq. (55) fort ∈] tI , tF ] with the initial conditions[Y0(tI)] =

[Ẏ0(tI)] = [ 0 ].

Step 2. Construction of the sequence[Z0(j×∆t)] for j = −J, . . . , 0 by solving Eq. (56) for

t ∈] − tF , 0 ] with the initial conditions[Z0(−tF )] = [Ż0(−tF )] = [ 0 ].

As explained in Ref. 9, this procedure can be much more efficient than the previous one.

VI TIME-STATIONARY RANDOM RESPONSE USING THE REDUCED MODEL

In this section, the structural-acoustic system is submitted to a time-stationary second-order

centered random wall pressure field{p(x, t), x ∈ Γ, t ∈ R} with values inR and we are

interested in the stationary response of the structural-acoustic system. The cross-correlation

function of random fieldp is denoted asRp(x, y, τ) = E{p(x, t+ τ) p(y, t)} in which E is

the mathematical expectation and is such that

Rp(x, y, τ) =

∫R eiωτ Sp(x, y, ω) dω , (58)

in whichSp(x, y, ω) is the cross-spectral density function which is written as

Sp(x, y, ω) = |η(ω)|2 sp(x, y, ω) . (59)

A. Finite dimension approximation

Let {Fα(t), t ∈ R} be the stochastic process defined byFα(t) = −

∫

Γ

p(x, t) nx·�α(x) dsx . (60)
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Therefore the(n×n) matrix-valued spectral density function[SF(ω)] of stationary stochastic

processF = (F1, . . . ,Fn) indexed byR with values inRn is such that

[SF(ω)]αβ =

∫

Γ

∫

Γ

|η(ω)|2sp(x, y, ω) nx·�α(x) ny·�α(y) dsx dsy . (61)

From Eq. (24), we deduce that the(n×n) matrix-valued spectral density function[Sq(ω)]

of the second-order stationary stochastic process{q(t), t ∈ R} with values inRn is such

that28−30

[Sq(ω)] = [Tn(ω)] [SF(ω)] [Tn(ω)]
T

. (62)

Below, we assume thatθ andϕ are fixed in[0, 2π] and[0, π] respectively. The autocorrelation

functionRcn(θ, ϕ ; τ) = E{cn(θ, ϕ, t+τ) cn(θ, ϕ, t)}of the second-order stationary stochas-

tic process{cn(θ, ϕ, t), t ∈ R} with values inR, corresponding to the quantitycn(θ, ϕ, ω)

defined by Eq. (30), is written as

Rcn(θ, ϕ ; τ) =

∫R eiωτScn(θ, ϕ ;ω) dω . (63)

Its power spectral density functionScn(θ, ϕ ;ω) ≥ 0 is given by28−30

Scn(θ, ϕ ;ω) = ω2 ([Tn(ω)] rn(θ, ϕ, ω))
T

[SF(ω)][Tn(ω)] rn(θ, ϕ, ω) . (64)

B. Reduced model

Using the reduced model defined in Section IV C, the(n×n) matrix-valued spectral density

function[Sq(ω)] of the stationary stochastic processq(t) = [P ] �n(t) is written as

[Sq(ω)] = [P ] [S�n(ω)] [P ]T , (65)

in which the(N ×N) matrix-valued spectral density function[S�n(ω)] of the reduced model

is written as28−30

[S�n(ω)] = [T n
N (ω)] [SN(ω)] [T n

N (ω)]
T

, (66)

in which the(N ×N) matrix [SN (ω)] is such that

[SN (ω)] = [P ]T [SF(ω)] [P ] . (67)
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The autocorrelation functionRcn

N
(θ, ϕ ; τ) = E{cnN (θ, ϕ, t+ τ) cnN (θ, ϕ, t)} of the second-

order stationary stochastic process{cnN (θ, ϕ, t), t ∈ R} with values inR, corresponding to

the quantitycnN (θ, ϕ, ω) defined by Eq. (42), is written as

Rcn

N
(θ, ϕ ; τ) =

∫R eiωτScn

N
(θ, ϕ ;ω) dω . (68)

Its power spectral density functionScn

N
(θ, ϕ ;ω) ≥ 0 is given by28−30

Scn

N
(θ, ϕ ;ω) = ω2 ([T n

N (ω)] rn
N(θ, ϕ, ω))

T
[SN (ω)][T n

N (ω)] rn
N(θ, ϕ, ω) . (69)

VII. VALIDATION FOR A STRUCTURE COUPLED WITH A LIQUID

This first example concerns an inhomogeneous continuous structure immersed in a liquid

(water).

A. Description of the structural-acoustic system

The structure is a thin circular cylindrical shell referredto anr, θ, x3 coordinate system and

coupled with springs and dashpots as shown in Fig. 2. The shell is homogeneous and isotropic,

with lengthL = 1.7 m, constant thicknessh = 0.025 m, radiusa = 0.5 m, simply supported

at its ends located atx3 = 0 andx3 = L, mass densityρ = 7850 kg/m3, Young’s modulus

E = 2.1 × 1011 N/m2, Poisson’s coefficientν = 0.3, constant damping rateξ = 0.001. The

areaS of the shell surfaceΓ is S = 2πaL. The ring frequency of the shell is 1726 Hz. This

cylindrical shell is coupled with 16 dashpots and 16 springsacting radially direction to the shell

and located at points{a, θj, x3,j} on surfaceΓ. Thej-th dashpot has a damping coefficient

dj = 2 εD
j µ ξrefωref and thej-th spring has a stiffness coefficientkj = 2 εK

j µω2
ref in which

µ = ρ hS is the total mass of the shell,ξref = 0.001, ωref = 2π × 3750 rad/s and whereεD
j

andεK
j are dimensionless coefficients whose values are defined in Table I. We assume that

the cylindrical shell is extended by two semi-infinite, rigid cylindrical baffles and is immersed

in an unbounded liquid with a constant mass densityρE = 1000 kg/m3 and speed of sound

cE = 1500 m/s. The coincidence frequency of the shell is 9152 Hz (i.e.ka = 19.2 with

k = ω/cE). We consider the MF response of this structural-acoustic system on the narrow

MF bandB = 2π × [4300 , 4800] rad/s corresponding to the[9.00 , 10.05] ka-band and we

assume that for allω inB, |η(ω)| = 1. We are only interested in calculation of the symmetric

predominantly radial response of the shell. The excitationis the time-stationary random wall
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pressure{p(x, t), x ∈ Γ, t ∈ R} introduced in Section VI, for which the cross-spectral density

function defined by Eq. (59) is such thatsp(θ, x3, θ
′, x′3;ω) = (aS)−1δ(θ − θ′) δ(x3 − x′3)

whereδ is the Dirac delta function.

B. Description of the finite dimension approximation

The family�1, . . . ,�n introduced in Section IV is chosen as the firstn symmetric predom-

inantly radial modes of the associated conservative uncoupled shell whose corresponding

eigenfrequencies aref1 < f2 < . . . < fn. Using Donnel-Mushtani’s theory31, the value

chosen forn is 409. It was deduced from the convergence study of the structural-acoustic

response over the [500,7000] Hz frequency band corresponding to the[1.0 , 14.7] ka-band.

We havef1 = 268 Hz andfn = 11979 Hz. The inner product(u , v)
H

introduced in Section

I C is defined by

(u , v)
H

=

∫ 2π

0

∫ L

0

u(θ, x3)·v(θ, x3) a dθ dx3 . (70)

The normalization of the shell modes is such that, for allα, we have(�α,�β)
H

= S δαβ .

Concerning the finite dimension approximation introduced in Section IV, matrices[M ] =

µ [ I ] and[G ] = S [ I ] are diagonal,[ I ] being the(n×n) unity matrix, and matrices[D ] and

[K ] are independent of the frequency and are dense due to the presence of the dashpots and

springs. The lowest eigenfrequency of the associated conservative structure (shell coupled

with the springs) isfS
1 = 352 Hz (to be compared withf1 = 268 Hz). Complex matrix

[BΓ(ω)] associated with the acoustic impedance boundary operator (see Section I C) is

constructed explictly using the methodology developed by Junger and Feit14. The intermodal

fluid couplings are neglected and consequently,[BΓ(ω)] is a diagonal complex matrix which

can be written as

−ω2 [BΓ(ω)] = −ω2 [MΓ(ω)] + iω [DΓ(ω)] , (71)

in which [MΓ(ω)] = ℜe [BΓ(ω)] and[DΓ(ω)] = −ωℑm [BΓ(ω)]. Fig. 3 shows the graph

of function

µΓ(ω) =
1

aρ
E
S

1

n
tr [MΓ(ω)] , (72)

and Fig. 4 shows the graph of function

σΓ(ω)
1

ρ
E
c

E
S

1

n
tr [DΓ(ω)] , (73)
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over the[400 , 12000] Hz frequency band corresponding to the[0.8 , 25.1] ka-band (in Figs.

3 and 4, the abscissas are expressed inka). Complex vectorrn(θ, ϕ, ω) associated with

the calculation of the far field radiated by the structure (see Eq. (30)) is obtained using a

stationary-phase approximation14.

C. Constructing the reference solution on a broad frequencyband

Concerning the vibration of the shell coupled with dashpots, springs and external liquid, the

reference solution on the[500 , 7000] Hz broad frequency band is obtained by constructing

the mappingω 7→ tr[en(ω)] using Eq. (34), with a sampling frequency stepδω = 2π×4.33

rad/s. In Eq. (34),[Tn(ω)] is calculated using Eq. (35) in which matrix[An(ω)] is calculated

by Eq. (25). Fig. 5 shows the mappingω 7→ 10×log10(tr[en(ω)]) over the2π×[500,7000]

rad/s broad frequency band corresponding to the[1.0 , 14.7] ka-band. Concerning the far

field radiated by the structure in the external liquid, Figs.6 and 7 show the mapping

ω 7→ 10×log10(L
−2 Scn(θ, ϕ;ω)) over the[1.0 , 14.7] ka-band, calculated by using Eq. (64),

for the normal and the oblique directions with respect to theshell defined byθ = 0, ϕ = π/2

andθ = 0, ϕ = π/4 respectively.

D. Constructing the reference solution on the narrow MF band

The reference solution on narrow MF bandB = 2π × [4300 , 4800] rad/s is constructed as

explained in Section VII C but using the frequency resolution δω = ∆ω/Nfreq in which

∆ω = 2π × 500 rad/s andNfreq = 300. The graphs of functions10× log10(tr[en(ω)]),

10×log10(L
−2 Scn(0, π/2;ω)) and10×log10(L

−2 Scn(0, π/4;ω)) (corresponding to Figs.

5, 6 and 7) of this reference solution on the[9.00 , 10.05] narrow MFka-band are used below

(see Figs. 9,10 and 11) to evaluate the accuracy of the response constructed using the reduced

model.

E. Constructing the dominant eigensubspace

In order to validate the reduced model procedure for a structure coupled with an external

liquid, the direct procedure in the frequency domain described in Section V A is used to

construct the dominant eigensubspace of matrix[En] defined by Eq. (33). The approximation

[En] ≃ δω
∑Nfreq

j=1 [en(ωj)] is used, in which theωj terms are the sampling frequencies of band

B. The eigenvaluesλn
1 ≥ λn

2 ≥ . . . > 0 and the corresponding eigenfuctions{en
1 , e

n
2 , . . .}

of energy operatorEB,n are calculated using Eqs. (36) to (37). It should be noted that the
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procedure based on the use of the MF solving method in the timedomain, which avoids the

explicit calculation of matrix[En] as explained in Section V C, has also been used to construct

the dominant eigensubspace of matrix[En]. The results obtained are quite similar but we

must limit the length of the present paper. We show the use of such a procedure in Section

VIII. Fig. 8 shows the graph of the functionν 7→ λn
ν for ν ∈ {1, 2, . . . , 50}. There is a

strong decrease in the eigenvalues which means there existsthe possibility of constructing an

efficient reduced model independent of the spatial excitation of the structural-acoustic system.

Fig. 8 shows that the orderN of the reduced model is about25 for bandB.

F. Reduced model adapted to the narrow MF band

In this section, we present a comparison of the reference solution constructed in Section VII

D with the solution obtained by the reduced model constructed using the results of Section

IV C in which eigenfunctions{en
1 , . . . , e

n
N} are those calculated in Section VII E. For the

three values 25, 30 and 40 ofN , Figs. 9, 10 and 11 show the comparison of functions

10× log10(tr[en(ω)]), 10× log10(L
−2 Scn(0, π/2;ω)) and10× log10(L

−2 Scn(0, π/4;ω))

(reference solution) with functions10× log10(tr[e
N
n (ω)]), 10× log10(L

−2 Scn

N
(0, π/2;ω))

and10× log10(L
−2 Scn

N
(0, π/4;ω)) (reduced model) calculated for each value of orderN

using Eqs. (49)-(50) and (66), versus dimensionless wave numberka. It can be seen that the

reduced model of orderN = 25 yields a good approximation.

VIII. VALIDATION FOR A STRUCTURE COUPLED WITH A GAS

This second example concerns an inhomogeneous continuous structure immersed in a gas (air).

A. Description of the structural-acoustic system

The structure is the thin circular cylindrical shell coupled with springs and dashpots defined in

Section VII A (see Fig. 2) with only two differences related to the constant thickness which is

h = 0.004 m instead ofh = 0.025 m, and reference frequencyωref which isωref = 2π×1000

rad/s instead ofωref = 2π×3750 rad/s. We assume that the cylindrical shell is extended by two

semi-infinite, rigid cylindrical baffles and is immersed in an unbounded liquid with a constant

mass densityρE = 1 kg/m3 and speed of soundcE = 300 m/s. The coincidence frequency

of the shell is 2034 Hz (i.e.ka = 21.3 with k = ω/cE). We consider the MF response of this

structural-acoustic system on the narrow MF bandB = 2π×[1580 , 1680] rad/s corresponding

to the[16.54 , 17.59] ka-band and we assume that for allω in B, |η(ω)| = 1. As in Section

J. Acoust. Soc. Am. 20 Christian Soize



VII, we are only interested in the calculation of the symmetric predominantly radial response

of the shell. The excitation is the time-stationary random wall pressure{p(x, t), x ∈ Γ, t ∈ R}
introduced in Section VII

B. Description of the finite dimension approximation

The finite dimension approximation is constructed as explained in Section VII B. The value

chosen forn is 432. It was deduced from the convergence study of the structural-acoustic

response over the [100,1700] Hz frequency band corresponding to the[1.0 , 17.8] ka-band.

We havef1 = 109 Hz andfn = 2499 Hz. The lowest eigenfrequency of the associated

conservative structure (shell coupled with the springs) isfS
1 = 142 Hz (to be compared with

f1 = 109 Hz). Figs. 12 and 13 show the graphs of functions defined by Eqs. (72) and (73)

respectively, over the[50 , 2500] Hz frequency band corresponding to the[0.5 , 26.2] ka-band

(in Figs. 12 and 13, the abscissas are expressed inka).

C. Constructing the reference solution on a broad frequencyband

This construction is performed as explained in Section VII C. Concerning the vibration of

the shell coupled with dashpots, springs and external liquid, the reference solution on the

[100 , 1700] Hz broad frequency band is obtained by constructing the mappingω 7→ tr[en(ω)]

using Eq. (34), with a sampling frequency stepδω = 2π×1.06 rad/s. In Eq. (34),[Tn(ω)] is

calculated using Eq. (35) in which matrix[An(ω)] is calculated by Eq. (25). Fig. 14 shows

the mappingω 7→ 10×log10(tr[en(ω)]) over the2π×[100,1700] rad/s broad frequency band

corresponding to the[1.0 , 17.8] ka-band. Concerning the far field radiated by the structure in

the external liquid, Figs. 15 and 16 show the mappingω 7→ 10×log10(L
−2 Scn(θ, ϕ;ω)) over

the[1.0 , 17.8]ka-band, calculated by using Eq. (64), for the normal and the oblique directions

with respect to the shell defined byθ = 0, ϕ = π/2 andθ = 0, ϕ = π/4 respectively.

D. Constructing the reference solution on the narrow MF band

The reference solution on narrow MF bandB = 2π × [1580 , 1680] rad/s is constructed as

explained in Section VIII C but using the frequency resolution δω = ∆ω/Nfreq in which

∆ω = 2π × 100 rad/s andNfreq = 300. The graphs of functions10× log10(tr[en(ω)]),

10×log10(L
−2 Scn(0, π/2;ω)) and10×log10(L

−2 Scn(0, π/4;ω)) (corresponding to Figs.

14, 15 and 16) of this reference solution on the[16.54 , 17.59] narrow MFka-band are used
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below (see Figs. 20,21 and 22) to evaluate the accuracy of theresponse constructed using the

reduced model.

E. Constructing the dominant eigensubspace

Since the structure is coupled with a gas, two possibilitiescan be examined for constructing

the dominant eigensubspace of the energy operator related to bandB. The first one consists

in using the “exact” approach as was done in the first example presented in Section VII. In this

case, the construction of matrix[En] is based on Eqs. (33) to (35) in which matrix[An(ω)]

is defined by Eq. (25). This means that eigenfunctions{en
1 . . . , e

n
N} of EB,n are constructed

for the energy operator of the structure coupled with the external fluid. Since the external

fluid is a gas, a second possibility is to construct{en
1 . . . , e

n
N} as the dominant eigensubspace

of the energy operator of the structure in a vacuum (not coupled with the gas). In this case,

the procedure is exactly the same, except that matrix[An(ω)] is not defined by Eq. (25) but

is written as

[An(ω)] ≃ −ω2 ([M ] + [BΓ(ω)]) + iω [D(ω)] + [K(ω)] . (74)

It should be noted that Eq. (74) is only used to construct{en
1 . . . , e

n
N} but obviously not

to construct the reference solution (see Sections VIII C andVIII D) and the reduced model

(see Section VIII F) for which Eq. (25) is used. For the present example, we analyzed the

two above possibilities and we obtained quite similar results for the reduced model. We

present the results corresponding to the second approach, i.e. using Eq. (74) instead of Eq.

(25) to calculate{en
1 . . . , e

n
N}. We also compared the procedures described in Section V A

with the procedure described in Section V C which avoids the explicit construction of matrix

[En]. Below we present the results correponding to the procedurebased on the use of the MF

solving method in the time domain (see Section V C). Figure 17shows the graph of function

ν 7→ λn
ν corresponding to[En] calculated using Eq. (74). There is a strong decrease in

the eigenvalues which means there exists the possibility ofconstructing an efficient reduced

model independent of the spatial excitation of the structural-acoustic system. Figure 17 shows

that the orderN of the reduced model is about40 for bandB. The values of the parameters of

the procedure described in Section V C are as follows. The subspace iteration algorithm (see

Section V) is used withm = 48. Each iteration, matrix[W ] = [En] [X ] defined in Section

V is calculated using the MF solving method in the time domaindescribed in Section V C,
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with the approximation[MB] ≃ [M ] instead of[MB] = [M ]+ [BΓ(ωB)] for this particular

example of a structure coupled with a gas. The Newmark step-by-step integration method is

used22 with scheme parametersα = 1/4 andδ = 1/2. Functionχ0(t) is deduced from Eq.

(54) in which|η(ω)| = 1 if ω ∈ B. The parameters introduced in Step 1 and Step 2 of Section

V C for the time-solving procedure areµ = 6, I0 = 4 andJ0 = 18, i.e. I = 24 andJ = 108.

Figure 18 shows the graph of functioni 7→ ‖[Y0(i×∆t)]‖2 for i = −I, . . . , J and Figure 19

shows the graph of functionj 7→ ‖[Z0(j×∆t)]‖2 for j = −J, . . . , 0, corresponding to the

last iteration of the subspace iteration algorithm (see Step 1 and Step 2 described in Section

V C). These two figures show that the values of parametersI0 andJ0 are correctly chosen (a

similar result is obtained for each iteration, and not only for the last one).

F. Reduced model adapted to the narrow MF band

In this section, we compare the reference solution constructed in Section VIII D with

the solution obtained by the reduced model constructed using the results of Section IV

C in which eigenfunctions{en
1 , . . . , e

n
N} are those calculated in Section VIII E. For the

two values 35 and 40 ofN , Figs. 20, 21 and 22 show the comparison of functions

10× log10(tr[en(ω)]), 10× log10(L
−2 Scn(0, π/2;ω)) and10× log10(L

−2 Scn(0, π/4;ω))

(reference solution) with functions10× log10(tr[e
N
n (ω)]), 10× log10(L

−2 Scn

N
(0, π/2;ω))

and10× log10(L
−2 Scn

N
(0, π/4;ω)) (reduced model) calculated for each value of orderN

using Eqs. (49)-(50) and (66), versus dimensionless wave numberka. It can be seen that the

reduced model of orderN = 40 yields a very good approximation.

IX. CONCLUSIONS

A theoretical approach is presented for constructing a reduced model in the MF range in

the area of structural acoustic for a general three-dimensional anisotropic, inhomogeneous,

viscoelastic bounded medium with an arbitrary geometry coupled with an external acoustic

fluid (gas or liquid). The boundary value problem formulatedin the frequency domain and

its variational formulation are presented. For a given MF band, the energy operator of the

structure coupled or not with the acoustic fluid is a positive-definite symmetric operator which

has a countable set of decreasing positive eigenvalues. Theeigenfunctions corresponding to

the highest eigenvalues (dominant eigensubspace) of the energy operator are an appropriate

functional basis of the admissible function space of the displacement field of the structure
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coupled with the external acoustic fluid. This functional basis allows a reduced model of

the structural-acoustic system to be constructed using theRitz-Galerkin method. A finite

dimension approximation of the continuous case is introduced in a general context (using the

finite element method or not). For construction of the dominant eigensubspace of the energy

operator, an efficient procedure based on the use of the subspace iteration method is proposed.

It does not require explicit calculation of the energy operator. We then obtain an efficient

method for constructing a reduced model in the MF range. In addition, it can easily be seen

that all the results presented can be extended straightforwardly to a structure made of beams,

plates and shells. Analysis of the first example devoted to coupling with an external acoustic

liquid (the complete analysis cannot be presented herein) shows that if the energy operator of

the structure in a vacuum is used to construct the functionalbasis adapted to the MF band,

then the order of the reduced model is much larger than if the energy operator of the structure

coupled with the liquid is considered. This is due to the “added mass effect” of the fluid (this

phenomenon is also encountered for the low-frequency rangefor which the normal modes

of the structure in a vacuum are used). Consequently, it is more efficient to use the energy

operator of the structure coupled with the external acoustic fluid when the fluid is a liquid.

Conversely, if the external acoustic fluid is a gas, the second example presented shows that

the energy operator of the structure in a vacuum can be used toconstruct the functional basis

adapted to the MF band. Finally, the two examples presented show that the reduced model

constructed yields good results.
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LEGENDS ACCOMPANYING EACH FIGURE

Fig. 1. Geometrical configuration of the structural-acoustic system.

Fig. 2. Finite length circular cylindrical shell coupled with springs and dashpots and immersed

in an acoustic fluid.

Fig. 3. Graph of functionka 7→ µΓ(ka) defined by Eq. (72) for the structure coupled with a

liquid.

Fig. 4. Graph of functionka 7→ σΓ(ka) defined by Eq. (73) for the structure coupled with a

liquid.

Fig. 5. Reference solution of the dynamical response of the structure coupled with a liquid:

graph of functionka 7→ 10×log10(tr[en(ka)]).

Fig. 6. Reference solution of the far field radiated in the normal direction by the structure

coupled with a liquid: graph of functionka 7→ 10×log10(L
−2 Scn(0, π/2;ω)).

Fig. 7. Reference solution of the far field radiated in an oblique direction by the structure

coupled with a liquid: graph of functionka 7→ 10×log10(L
−2 Scn(0, π/4;ω)).

Fig. 8. Reference solution: graph of functionν 7→ λn
ν showing the distribution of eigenvalues

λn
ν of energy operatorEB,n of the structure coupled with a liquid.

Fig. 9. Reduced model of the dynamical response of the structure coupled with a liquid:

comparison between functionka 7→ 10× log10(tr[en(ka)]) (reference solution (solid line))

and functionka 7→ 10× log10(tr[e
N
n (ka)]) (reduced model forN = 25 (dashed line), for

N = 30 (dotted line) and forN = 40 (dashdot line)).

Fig. 10. Reduced model of the far field radiated in the normal direction by the structure

coupled with a liquid: comparison between functionka 7→ 10×log10(L
−2 Scn(0, π/2;ω))

(reference solution (solid line)) and functionka 7→ 10×log10(L
−2 Scn

N
(0, π/2;ω)) (reduced

model forN = 25 (dashed line), forN = 30 (dotted line) and forN = 40 (dashdot line)).

Fig. 11. Reduced model of the far field radiated in an oblique direction by the structure

coupled with a liquid: comparison between functionka 7→ 10×log10(L
−2 Scn(0, π/4;ω))

(reference solution (solid line)) and functionka 7→ 10×log10(L
−2 Scn

N
(0, π/4;ω)) (reduced

model forN = 25 (dashed line), forN = 30 (dotted line) and forN = 40 (dashdot line)).

Fig. 12. Graph of functionka 7→ µΓ(ka) defined by Eq. (72) for the structure coupled with

a gas.
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Fig. 13. Graph of functionka 7→ σΓ(ka) defined by Eq. (73) for the structure coupled with

a gas.

Fig. 14. Reference solution of the dynamical response of thestructure coupled with a gas:

graph of functionka 7→ 10×log10(tr[en(ka)]).

Fig. 15. Reference solution of the far field radiated in the normal direction by the structure

coupled with a gas: graph of functionka 7→ 10×log10(L
−2 Scn(0, π/2;ω)).

Fig. 16. Reference solution of the far field radiated in an oblique direction by the structure

coupled with a gas: graph of functionka 7→ 10×log10(L
−2 Scn(0, π/4;ω)).

Fig. 17. Reference solution: graph of functionν 7→ λn
ν showing the distribution of eigenval-

uesλn
ν of energy operatorEB,n of the structure in a vacuum (not coupled with the fluid).

Fig. 18. Graph of functioni 7→ ‖[Y0(i×∆t)]‖2 corresponding to the last iteration of the

subspace iteration algorithm.

Fig. 19. Graph of functionj 7→ ‖[Z0(j×∆t)]‖2 corresponding to the last iteration of the

subspace iteration algorithm.

Fig. 20. Reduced model of the dynamical response of the structure coupled with a gas:

comparison between functionka 7→ 10× log10(tr[en(ka)]) (reference solution (solid line))

and functionka 7→ 10× log10(tr[e
N
n (ka)]) (reduced model forN = 25 (dashed line), for

N = 30 (dotted line) and forN = 40 (dashdot line)).

Fig. 21. Reduced model of the far field radiated in the normal direction by the structure

coupled with a gas: comparison between functionka 7→ 10× log10(L
−2 Scn(0, π/2;ω))

(reference solution (solid line)) and functionka 7→ 10×log10(L
−2 Scn

N
(0, π/2;ω)) (reduced

model forN = 25 (dashed line), forN = 30 (dotted line) and forN = 40 (dashdot line)).

Fig. 22. Reduced model of the far field radiated in an oblique direction by the structure

coupled with a gas: comparison between functionka 7→ 10× log10(L
−2 Scn(0, π/4;ω))

(reference solution (solid line)) and functionka 7→ 10×log10(L
−2 Scn

N
(0, π/4;ω)) (reduced

model forN = 25 (dashed line), forN = 30 (dotted line) and forN = 40 (dashdot line)).
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TABLE

θj (deg) x3,j (m) εD
j εK

j

81.81 0.32 0 0.1

-81.81 0.32 0 0.1

138.33 0.32 0.1 0.15

-138.33 0.32 0.1 0.15

81.81 0.73 0 0.1

-81.81 0.73 0 0.1

138.33 0.73 0.1 0.15

-138.33 0.73 0.1 0.15

52 1.24 0.1 0.11

-52 1.24 0.1 0.11

118 1.24 0.1 0.14

-118 1.24 0.1 0.14

52 1.55 0.1 0.11

-52 1.55 0.1 0.11

118 1.55 0.1 0.14

-118 1.55 0.1 0.14

Table I. Values ofεD
j andεK

j
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