
HAL Id: hal-00765757
https://hal.science/hal-00765757

Submitted on 16 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Methodology to Derive a Valid Scenario of an
Interactive Storytelling

Kim Dung Dang, Ronan Champagnat, Michel Augeraud

To cite this version:
Kim Dung Dang, Ronan Champagnat, Michel Augeraud. A Methodology to Derive a Valid Scenario
of an Interactive Storytelling. 8th International Conference on Advances in Computer Entertainment
Technology - ACE 2011, Nov 2011, Portugal. pp.ACM. �hal-00765757�

https://hal.science/hal-00765757
https://hal.archives-ouvertes.fr

A Methodology to Derive a Valid Scenario
of an Interactive Storytelling

Kim Dung Dang
University of La Rochelle - L3i

Avenue Michel Crépeau
17042 La Rochelle, France

(+33) (0)5 46 45 82 62

kim_dung.dang@univ-lr.fr

Ronan Champagnat
University of La Rochelle - L3i

Avenue Michel Crépeau
17042 La Rochelle, France

(+33) (0)5 46 45 82 62

ronan.champagnat@univ-lr.fr

Michel Augeraud
University of La Rochelle - L3i

Avenue Michel Crépeau
17042 La Rochelle, France

(+33) (0)5 46 45 82 62

michel.augeraud@univ-lr.fr

ABSTRACT

In previous works [3, 4], we showed how to use Linear Logic to
model an Interactive Storytelling (IS). Proceeding from the
achieved results, this paper introduces a methodology for authors
to derive a valid scenario of an IS. In the paper, we will explain
the implementation of the methodology via a detailed presentation
of the steps in the process of IS modeling and illustrate those with
a concrete example.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques –
computer-aided software engineering (CASE), user interfaces,

state diagrams.

General Terms

Management, Design, Experimentation, Human Factors,
Verification.

Keywords

Game, IS, modeling, Linear Logic, model derivation, validation.

1. INTRODUCTION
Researches on IS, in general, are divided into two major families:
scenario-driven approach (discourse point of view) and emergent
narrative theory (character point of view) [6]. The first set of
families [10, 11, 14, 9] aims to guarantee that the story
development is coherent and leads to author’s desired effects. And
hence when a player’s action deviates from the pre-computed
story plan, the system either replans (gets the story back on track),
or makes the player’s action have no effect on the story progress.
As a consequence, the player cannot direct the story unfolding in
a considerable way. On the opposite, the emergent narrative
theory [1, 2, 13, 12] gives complete freedom to the player, who
may deeply influence, through her/his actions, the evolution of the
virtual world where s/he has been immersed. This means that the
story will emerge from the player’s interaction with the game, and
the unfolding of the story is not based on any specific structure.

However, its foremost limit is the deriving quality, in terms of
consistency and pertinence, which highly depends on the player
and therefore cannot be guaranteed.

In previous works [3, 4], we showed how to use Linear Logic to
model an IS thanks to which the strong points of both the
discourse point of view and the character point of view are
combined. In addition, in order to apply this approach to creating
interactive video games, we have developed a system assuring a
set of objectives [5]: the player does not feel constrained by the
game but s/he can determine its evolution; the virtual world must
provide a coherent environment that is appropriate for player’s
actions; the progress of the game has to respect a structure of
discourse (a common structure of a discourse is made of
introduction; stating problems; solving them step by step;
conclusion) which has been pre-defined by an expert of the
domain (author/designer). To this purpose, its architecture is
composed of three components: Linear Logic model, IS controller
and IS rendering (see Figure 1). The IS rendering builds in
advance all the necessary interfaces (scenes) as well as directs the
“rendering process” of the game (which interacts immediately
with the player). The IS controller aims to manage the unfolding
of the game and to ask the IS rendering to show suitable interfaces
(scenes) for the game at each step, by taking into account the
propositions of the Linear Logic model and player’s action
choices (transmitted to the IS controller via the IS rendering). The
Linear Logic model stores a sequent that models the situation of
the game at each moment (it is updated after each step). The
automatic reasoning of the sequent (the automatic sequent proof)
assists directly the IS controller in managing the game unfolding.

Figure 1. Architecture of the system.

The works described in this paper present a methodology for
authors to create and validate the Linear Logic sequent mentioned
above at the initial moment (i.e. it models the initial situation of
the game, determines its scenario and is the input of the Linear

Logic model component). In other words, the goal of the paper is
to propose a methodology that allows authors to derive a valid
scenario of an IS. Indeed, we have developed a tool which is an
implementation of the foregoing methodology by a model driven
approach to help authors derive a valid scenario even when they
do not have any knowledge of Linear Logic. It is composed of two
components: Editor of scenario and Analysis module.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Full presentation, ACE’2011 – Lisbon, Portugal.
Copyright 2011 ACM 978-1-4503-0827-4/11/11…$10.00.

• The editor of scenario is a graphical editor using a scenario
metamodel thanks to which authors can model an IS as
simply as possible: give a set of states, of player’s action
choices and of outcomes, specify associations between these
elements via a set of events/actions together with their
preconditions and effects.

• Based on the result received from the editor of scenario, the
analysis module builds automatically (1) a reduced schema
of discourses which shows an overall view on the generated
scenario and thereby helps authors validate it, and (2) a
Linear Logic sequent which is the input of the Linear Logic

model component via two model transformations.

The paper begins with a brief introduction to Linear Logic. Then
we gives the methodology to derive a valid scenario of an IS
regarding both the discourse point of view and the character point
of view. After that, we explain the implementation of this
methodology by a detailed presentation of the steps in the process
of IS modeling and illustrate those with a concrete example (these
are also the main contribution of the paper).

However, above all, we define some important notions that are
used in our approach:

• A story (a game) is a set of entities, of events/actions and of
constraints that solves a set of problems, describes an
evolution concerning a set of characters and/or of objects. It
consists in starting from an initial situation, then in solving
the given set of problems in order to reach a final situation
that corresponds with one of satisfactory endings of author’s
goals.

• A discourse is an ordered sequence of events/actions that is
a possible unfolding of a story. Therefore a same story can
generate various discourses. This consists in scheduling the
events/actions corresponding with the story.

• A scenario is a set of all the possible discourses for a story.
If we change anything in the story then we will receive a
new scenario.

2. BRIEF INTRODUCTION TO LINEAR

LOGIC
Linear Logic is an executable formal model that has been
introduced by Girard [7] as a “closer logic genre” than Classical
Logic, where the Contraction and Weakening rules are
“forbidden”. In addition, it also considers atoms and formulas as
resources that are consumed and/or produced. As a result, in
Linear Logic, two instances of an atom (or of a formula) are
different from one instance. Unlike Classical Logic, Linear Logic
is not applied to determine whether an assertion is true or not, but
it is employed to represent the validity of how resources are used
when proving an assertion. In other words, we are interested in
writing the proof and in analyzing the choices made during this
phase. Those make Linear Logic well suited to modeling systems
with resource sharing, to controlling processes, as well as to
automatically reasoning on the logic of discourse, in particular
when it embeds concepts of high relevance to storytelling, such as
causality.

In order to model an IS, within the framework of this paper, we do
not employ all the features of Linear Logic, but just the following
connectives:

• �: linear implication (imply), expresses the possibility of

deduction. Example: “1$ � 1kg strawberries” means that
we can give 1$ to buy 1kg strawberries.

• ⊗: multiplicative conjunction (times), expresses a set of

“synchronous” resources. Example: “1$ � 1kg strawberries

⊗ 1kg tomatoes” means that we can give 1$ to buy 1kg
strawberries and 1kg tomatoes.

• &: additive conjunction (with), expresses an external choice
to the system (for instance coming from a player) if it is in

the left part of the sequent. Example: “1$ � tea & 1$ �
coffee” means that we (the player) can choose tea or coffee
when we give 1$ to an automatic machine.

• ⊕: additive disjunction (plus), expresses an internal choice
to the system (for instance coming from an IS controller) if

it is in the left part of the sequent. Example: “1$ � tea ⊕ 1$

� 1$” means that it is the automatic machine which decides
it will give us tea or return to us 1$ depending on the
availability of tea in the machine, if this formula is in the

left part of the sequent. If the connective ⊕ is in the right
part of the sequent, it is only used to connect distinct
consequents. For example, if the right part of a sequent is

“tea ⊕ coffee”, this means that if the sequent is provable,
then from the left part of the sequent, we can receive either
tea or coffee.

A sequent is an expression Γ � �, where Γ and � are sequences of

atoms and/or of formulas; � (turnstile) is used to separate its left
(antecedents/available resources) and right

(consequents/conclusions) parts. For example, “A ⊗ (A � B) �

B” (or “A, A � B � B”) means the possibility to produce a copy
of “B” by consuming the available resources “A” and “A � B”

(we can substitute the connective ⊗ between two atoms, between
two formulas, or between an atom and a formula in the left part of
a sequent by the comma “,” to be briefer). From the left part of a
sequent, we may lead to many valid conclusions/consequents, and
at the same time, a proof (how to reach a conclusion/consequent)
is not unique, meaning that there exist many ways of reaching a
same conclusion/consequent. Proving a Linear Logic sequent
consists in rewriting the sequent, by making a substitution of one
of its formulas at each step until the left part is identical to one
consequent in the right part of the sequent. Thus for a same
sequent, there may be several successful proofs, as well as several
unsuccessful ones. As a result, the proof strategy becomes crucial
in using Linear Logic to reason on the logic of discourse and on
the resource allocation mechanisms for a story.

3. LINEAR LOGIC MODEL TO IS
This section describes how to model an IS by means of Linear
Logic. First we give a model to represent the IS, it has been
inspired from the Greimas’ analysis [8] where an event/action
(which modifies the state of something) is expressed by an
abstract formula, namely, the narrative program. We have based
our model on (player and non-player) characters’ states, states of
the story, player’s action choices and outcomes as well as
associations between those elements thanks to a set of
events/actions. This model has offered a metamodel to develop
the foregoing editor of scenario, its details are as follows:

• Player and non-player characters are modeled by atoms. An
atom corresponds to a state of a character considering a

certain point of view. Therefore a character at a moment can
be modeled by various atoms which constitute the
character’s situation at that moment and are put in a state
vector corresponding with the character. Thus, the size and
the component of the state vector of a character may vary
during the unfolding of the story. Similarly, the states of the
story are also modeled as atoms. These atoms represent the
discourse point of view (author’s desired effects) in the
modeling process. In the list of states (of the characters and
of the story), we have to show which ones are available at
the initial moment of the IS.

• Player’s action choices are expressed by inputs. This means
that the player decides her/his occurrence in the unfolding
of the story by entering the inputs. These inputs are modeled
as atoms and will become available after being entered into
the story by the player.

• An outcome (goal/conclusion/consequent) of the story is an
author’s desired ending. It corresponds to a state, or a set of
states.

• An event/action may modify the situation of a (or some)
character(s) and/or the states of the story. In the model, we
are only interested in when (under which conditions) an
event/action takes place (Precondition of the event/action)
and in the received result after the event/action is executed
(Effect of the event/action).

Then we transform this model into a sequent by applying the
notions of Linear Logic accordingly (the transformation will be
described in detail in the following):

• The right part of the sequent only includes the outcomes of

the story which are connected by the connective ⊕.

• The available states at the initial moment of the IS
correspond to the available atoms in the left part of the
sequent.

• A multiplicative conjunction formula expresses a set of
“synchronous” elements (state, input, event/action). For
example, the states that constitute an outcome are connected

between them by the connective ⊗.

• An additive conjunction (disjunction) formula in the left
part of the sequent represents choices of the player (the IS
controller) in the progress of the story.

• An event/action is similar to the working of the connective

�, and so it is linked to a linear implication formula.

We can find that: (1) as a proof expresses the steps to reach a
consequent of a sequent (may be successful or unsuccessful), it is
equivalent to a discourse which is an ordered sequence of
events/actions that is a possible unfolding of a story; (2) from a
sequent, we are able to build all the ways of writing proofs,
therefore it corresponds to a scenario which is a set of all the
possible discourses for a story.

Thus, the created sequent determines a scenario of the IS and has
to be validated before it is used as the input of the Linear Logic

model component (see more Figure 1). To do this, we have given
the concept of reduced schema of discourses (that is explained in
the next section) which allows verifying whether or not the
corresponding scenario leads to satisfactory endings of author’s
goals.

4. PROCESS OF IS MODELING
The previous section gives a methodology to derive a valid
scenario of an IS. This section introduces the implementation of
the methodology via a detailed explanation of the steps in the
modeling process thanks to which, authors can produce a Linear
Logic sequent that represents a valid scenario of the IS. In order
to help authors do those even when they do not have any
knowledge of Linear Logic, we have developed a tool that is an
implementation of the foregoing methodology where Linear Logic
is “implicit” for authors. More concretely, the objective of the tool
is to facilitate and optimize the modeling process via a model
driven approach so that authors do not have to manipulate directly
Linear Logic. Figure 2 presents briefly the modeling process of an
IS using this tool. In the beginning, the author employs the editor
of scenario to describe the story by creating the diagrams/lists of
states, inputs, outcomes and events/actions. From these lists, the
analysis module executes automatically two tasks:

Figure 2. Modeling process of an IS (built according to the

BPMN – Business Process Modeling Notation standard [16]).

• Firstly, it builds the reduced schema of discourses to help
the author validate the generated scenario. Indeed, thanks to
the reduced schema, s/he can verify if the scenario is
satisfactory, if not, the author remodels the story in order to
create a scenario that is the most appropriate for her/his
desired goals (this process may be iterated if necessary).

• Secondly, the analysis module executes two model
transformations to create in turn two Linear Logic sequents:
the first represents the scenario corresponding with the
produced lists of states, inputs, outcomes and events/actions
(it is based on a metamodel that is intermediate to transform
into the second); the second is the input of the Linear Logic

model component (see more Figure 1), it assists the IS
controller in managing the unfolding of the story via its
automatic reasoning, as a result, it is based on a metamodel
that is close to the sequent proof.

In the following, we will explain the implementation of the
methodology via a detailed presentation of the steps in the process
of IS modeling that has been briefly described above, as well as
illustrate those with a concrete example. It is an extract of an
educational game which warns of domestic electrical accidents
(DEA game) whose objective consists in causing an electric shock
for the player [4]. At first, the game designer (author) anticipates
that the player, from an initial position, will go to the kitchen,
where the IS controller will start the strategy of causing the
electric shock for her/him, via appliances there such as a fridge, a

microwave oven, an electric cooker,… However, besides the
possibility of going to the kitchen, the player may have other
choices, for instance, staying at the initial position to work or
going to the bathroom. What will happen?

4.1 Scenario Metamodel

Figure 3. Scenario metamodel.

Figure 3 gives the metamodel which allows modeling the
scenarios of an IS. Each instance of a class (State, Input,
Outcome, EventAction) is distinguished by a Name (obligatory), it
may be presented more concretely by a Description (not
obligatory). A scenario is composed of four lists of states, inputs,
outcomes and events/actions. The states have an attribute to show
whether or not it is an initial available state of the story
(IsInitalAvailableState = True/False, its default value is False).
An Outcome is composed of one or some State(s). An
EventAction includes a Precondition and an Effect which contain
one or some State(s); if the EventAction is executed by a player’s
choice then its Precondition has to have an Input.

In order to facilitate the authors’ work, we have built the editor of
scenario as a graphical editor, thereby they can describe an IS by
simple “pull and drop” manipulations. To do this, we have chosen
GMF (Graphical Modeling Framework) [15] because it provides a
generative component and runtime infrastructure for developing
graphical editors. As a consequence, we have created a GMF
project where the metamodel in Figure 3 is employed as a domain
model (ecore model).

Now, let us see, as an example, how to describe the DEA game by
means of this editor of scenario. Very simple – just build
graphically (pull and drop accordingly the available elements in
the editor) one after another four diagrams corresponding to four
lists of states, inputs, outcomes and events/actions:

• States (of the game and of the player)

Name

IsInitial

Available

State

Description

Gi True
Game’s state: The game is at the initial
state (this is an initial available state)

Gk False
Game’s state: The IS controller starts the
strategy of causing the electric shock for
the player in the kitchen

Gr False
Game’s state: The game reaches the goal
(the player has got the electric shock)

Pi True
Player’s state: The player is at the initial
state (this is an initial available state)

Pw False
Player’s state: The player works at the
initial position

Pk False Player’s state: The player is in the kitchen

Pb False
Player’s state: The player is in the
bathroom

Pe False
Player’s state: The player has got the
electric shock

We can find that the game has two initial available states: Gi
and Pi.

• Inputs of the player (her/his action choices)

Name Description

Iw The player decides to work at the initial position

Ik The player decides to go to the kitchen

Ib The player decides to go to the bathroom

• Outcomes of the game: As the game’s objective is to cause
an electric shock for the player, it only has one outcome O
including two states Pe and Gr, this means that the game’s
ending satisfies the author’s desired goal if and only if the
player’s state is Pe and the game’s state is Gr (endings with
other states do not satisfy the author’s desired goal).

Name Description

O The player gets the electric shock Pe, Gr

• Events/actions of the game

Name Description
Pre

condition
Effect

EA01
The player decides to work at the
initial position by choosing Iw

Pi, Iw Pw

EA02
The player decides to go from
the initial position to the kitchen
by choosing Ik

Pi, Ik Pk

EA03
The player decides to go from
the initial position to the
bathroom by choosing Ib

Pi, Ib Pb

EA04

The IS controller starts the
strategy of causing the electric
shock for the player in the
kitchen

Pk, Gi Pk, Gk

EA05
The player gets the electric
shock

Pk, Gk Pe, Gr

Let us consider the event/action EA01: Precondition
contains one state Pi and one input Iw, Effect contains one
state Pw. Therefore its meaning is: EA01 is executed if and
only if the player is at the initial state (Pi) and s/he decides
to work at the initial position by choosing Iw; the
event/action’s effect is that the player’s state becomes Pw
(s/he works at the initial position). The explanation for the
other events/actions is similar.

After building graphically four diagrams corresponding to four
lists of states, inputs, outcomes and events/actions thanks to the
editor of scenario (Figure 4 is the diagram corresponding to the
list of events/actions), we receive four XML files which express
these lists (Figure 5 is the XML file representing the list of states).

Figure 4. Diagram corresponding to the list of events/actions.

Figure 5. XML file representing the list of states.

4.2 Validation of Scenario Using the Reduced

Schema of Discourses
The scenario validation problem, within the framework of this
paper, is how to create a scenario that leads to satisfactory endings
of author’s goals (or how to guarantee that all the choices of the
player or of the IS controller during the game unfolding lead to
satisfactory endings of author’s goals). To do this, after the author
models the story by the editor of scenario, the analysis module
builds automatically the reduced schema of discourses
corresponding with the generated scenario, thanks to which the
author can verify if it is satisfactory. If not, s/he remodels the story
(eliminates and/or modifies the branches (paths) which do not
direct toward successful endings) in order to receive the most
pertinent scenario for her/his desired goals (this process may be
iterated if necessary). The schema is called “reduced” because it
does not contain symmetric discourses in the scenario (two
discourses are symmetric if they are composed of a set of
events/actions but the execution order of these events/actions is

different, for instances, three discourses “EA01 → EA02 →

EA03”, “EA02 → EA01 → EA03” and “EA02 → EA03 →
EA01” are symmetric). Each branch (path) of the reduced schema
corresponds to one possibility of choice in the scenario (either the
player’s choice or the IS controller’s choice). Thus we will
receive all the paths (branches) leading to unsuccessful and/or
successful endings of the goal of the story.

Figure 6. Reduced schema of discourses before the validation.

Let us return to the DEA game and see if the current scenario
satisfies the game’s goal (cause an electric shock for the player).

From four XML files representing four lists of states, inputs,
outcomes and events/actions, we receive the reduced schema of
discourses given in Figure 6 (it is automatically built by the
analysis module) where: the first node including two states Gi and
Pi corresponds with the initial situation of the game; each next
node (with its states) corresponds with the effect of the execution
of an event/action (an arc) which either needs or does not need an
input.

We can see that there are two paths which lead to the
unsatisfactory endings of the goal of the game (if the player
decides to work at the initial position or to go from the initial
position to the bathroom). Therefore we have two possibilities:

• either remove the actions of the player causing the
unsatisfactory endings (EA01 - Working at the initial
position and EA03 - Going to the bathroom), but that may
restrict the player’s freedom, so we do not choose this
possibility;

• or enrich the contents of the plot:

o if the player decides to work at the initial position,
then the IS controller will ask him to go to the kitchen
(for example, a non-player character asks him to take
an apple in the fridge);

o if the player decides to go to the bathroom, then the IS
controller will start the strategy of causing the electric
shock for him there (by tools such as a hair-dryer, a
light bulb,…).

Thus we remodel the DEA game thanks to the editor of scenario
(modify the corresponding diagrams) as follows (two lists of
inputs and outcomes are unchanging):

• Add two new states to the list of states

Name

IsInitial

Available

State

Description

Ga False
Game’s state: The IS controller asks the
player (who is working at the initial
position) to go to the kitchen

Gb False
Game’s state: The IS controller starts the
strategy of causing the electric shock for
the player in the bathroom

• Modify the list of events/actions (Figure 7 is the diagram in
the editor of scenario corresponding to the new list of
events/actions)

Figure 7. Diagram corresponding to the new list of events/actions.

Name Description
Pre

condition
Effect

EA01
The player decides to work at
the initial position by choosing
Iw

Pi, Iw Pw

EA02
The player decides to go from
the initial position to the kitchen
by choosing Ik

Pi, Ik Pk

EA03
The player decides to go from
the initial position to the
bathroom by choosing Ib

Pi, Ib Pb

EA04
The IS controller asks the player
(who is working at the initial
position) to go to the kitchen

Pw, Gi Pw, Ga

EA05

The player (who is working at
the initial position) goes to the
kitchen according to the request
of the IS controller

Pw, Ga Pk, Ga

EA06

The IS controller starts the
strategy of causing the electric
shock for the player in the
kitchen (the player has decided
to go from the initial position to
the kitchen by choosing Ik)

Pk, Gi Pk, Gk

EA07

The IS controller starts the
strategy of causing the electric
shock for the player in the
kitchen (the player has gone to
the kitchen according to the
request of the IS controller)

Pk, Ga Pk, Gk

EA08

The IS controller starts the
strategy of causing the electric
shock for the player in the
bathroom

Pb, Gi Pb, Gb

EA09
The player gets the electric
shock in the kitchen

Pk, Gk Pe, Gr

EA10
The player gets the electric
shock in the bathroom

Pb, Gb Pe, Gr

Figure 8. Reduced schema of discourses after the validation.

As a consequence, we receive the new reduced schema of
discourses given in Figure 8. We can notice that all the paths lead
to the satisfactory ending of the goal of the game (which means
the player always gets the electric shock in any case), and at the
same time her/his freedom is also guaranteed.

4.3 Creation of the Linear Logic Sequents by

the Model Transformations

After modeling the story thanks to the editor of scenario (and
validating the generated scenario if necessary), from the received
result (four XML files representing four lists of states, inputs,
outcomes and events/actions), the analysis module executes two
model transformations to create in turn two Linear Logic
sequents: the first expresses directly the scenario corresponding
with those produced files (it is based on a metamodel that is
intermediate to transform into the second); the second is the input
of the Linear Logic model component (see more Figure 1), it
assists the IS controller in managing the unfolding of the story via
its automatic reasoning, as a result, it is based on a metamodel
that is close to the sequent proof. The following sections describe
in detail these metamodels.

4.3.1 Intermediate Metamodel

Figure 9. Intermediate metamodel.

The intermediate metamodel is given in Figure 9 where the states,
the inputs, the outcomes and the events/actions are similar to the
ones created by the editor of scenario. A sequent (corresponding
to a scenario) is composed of initial available states, expressions
and outcomes. An expression is either a TimesExpression or a
WithExpression or a PlusExpression or an EventAction, it may
also contain other expressions.

• A TimesExpression is an expression whose components are

connected by the connective ⊗. If the execution of an
event/action is decided by a player’s choice (enter an input),
then there is a TimesExpression between the input and the
event/action. Besides, a TimesExpression also represents the
“succession” of the expressions (execute the expressions
one after another). For instance, in the DEA game, we have

Iw ⊗ EA01 ⊗ EA04 ⊗ EA05 ⊗ EA07 ⊗ EA09 which
means that the player decides to execute the event/action
EA01 by choosing Iw, then the events/actions EA04, EA05,
EA07 and EA09 are continued to execute.

• A WithExpression (PlusExpression) is an expression whose

components are connected by the connective & (⊕) which
expresses a choice between these components. If the states
in the preconditions of two events/actions are the same, then
either the player or the IS controller will decide which
event/action will be executed. If it is the player’s decision
(there are inputs in the events/actions), then these two
events/actions (with their succession expressions if any) are
connected by a WithExpression; on the contrary (there is not
any input in the events/actions), these two events/actions
(with their succession expressions if any) are connected by a
PlusExpression. For instance, in the DEA game, as all the
preconditions of the three events/actions EA01, EA02 and
EA03 contain the state Pi as well as there are the inputs in
these events/actions (Iw, Ik, Ib), we uses a WithExpression

to connect three TimesExpressions (Iw ⊗ EA01 ⊗ EA04 ⊗

EA05 ⊗ EA07 ⊗ EA09 & Ik ⊗ EA02 ⊗ EA06 ⊗ EA09 &

Ib ⊗ EA03 ⊗ EA08 ⊗ EA10).

Thus, the Linear Logic sequent representing directly the scenario
of the DEA game and created automatically by the analysis
module (thanks to the model transformation from the four lists of

states, inputs, outcomes and events/actions) is: Gi, Pi, Iw ⊗ EA01

⊗ EA04 ⊗ EA05 ⊗ EA07 ⊗ EA09 & Ik ⊗ EA02 ⊗ EA06 ⊗

EA09 & Ib ⊗ EA03 ⊗ EA08 ⊗ EA10 � O (hidden the contents of
the events/actions and of the outcome). It is expressed by the
reduced XML code segment given in Figure 10.

Figure 10. Sequent based on the intermediate metamodel.

4.3.2 Metamodel Used for the Sequent Proof

Figure 11. Metamodel used for the sequent proof.

As the aim of the Linear Logic sequent, in our approach, is to
assist the IS controller in managing the unfolding of the story via
its automatic reasoning, the analysis module continues to
transform the sequent based on the intermediate metamodel into
the sequent based on the metamodel that is close to the sequent
proof. Figure 11 describes in detail this metamodel where a

sequent is composed of two parts (separated by �): Left part and
Right part.

• The LeftPart includes atoms and/or formulas. The atoms in
the left part represent the available states at each step in the
sequent proof process (at the first step, they are the initial
available states), so their Name attribute stores the states’
name accordingly. The formulas in the left part are
distinguished by their order number. Each formula
corresponds with an Expression that is a “direct child” of
the sequent (for instance, the WithExpression is a “direct
child” of the sequent given in Figure 10, but the three
TimesExpressions are not because they are three children of

the WithExpression). A formula is composed of at least
three elements, the element’s order number expresses its
position in the formula. In the left part, there are seven types
of element:

o Type = “Open Parenthesis”, Name = “(”,
EventActionName = “”, ParenthesisLevel is the level
of the parenthesis;

o Type = “Close Parenthesis”, Name = “)”,
EventActionName = “”, ParenthesisLevel is the level
of the parenthesis: The transformation from an
Expression into a formula, in several cases, needs be
added some parentheses to ensure the meaning of the

Expression, for instance, in the DEA game, Iw ⊗

EA01 is transformed into Iw ⊗ (Pi ⊗ Iw � Pw);

o Type = “Additive Conjunction”, Name = “with”,
ParenthesisLevel = “0”, EventActionName = “”:
These elements are added between the components of
an WithExpression;

o Type = “Additive Disjunction”, Name = “plus”,
ParenthesisLevel = “0”, EventActionName = “”:
These elements are added between the components of
a PlusExpression;

o Type = “Multiplicative Conjunction”, Name =
“times”, ParenthesisLevel = “0”, EventActionName =
“”: These elements are added between the components
of a TimesExpression, or between the components
(state, input) in the Precondition and between the
states in the Effect of an event/action;

o Type = “Linear Implication”, Name = “imply”,
ParenthesisLevel = “0”: This element is added
between the Precondition and the Effect of an
event/action (as a consequence, an event/action only

has a unique format: A1 ⊗ A2 ⊗ … ⊗ An � B1 ⊗ B2

⊗ … ⊗ Bm), its EventActionName attribute stores the
name of that event/action in the game;

o Type = “Atom”, ParenthesisLevel = “0”,
EventActionName = “”: These elements represent the
states or the inputs in the Expressions, so their Name
attribute is the states’ name or the inputs’ name
accordingly.

• The RightPart only includes either one atom or one
formula. If the scenario (sequent) only has one outcome and
this outcome only contains one state, then the right part only
includes one atom which corresponds to this state, so its
Name attribute stores the state’s name. In other cases (the
scenario has one outcome but this outcome contains some
states, or the scenario has several outcomes), the right part
includes one formula (so its Order attribute = “1”). This
formula is composed of at least three elements, the
element’s order number expresses its position in the
formula. In the right part, there are three types of element:

o Type = “Atom”, ParenthesisLevel = “0”,
EventActionName = “”: These elements represent the
states in the outcome(s), so their Name attribute stores
the states’ name;

o Type = “Multiplicative Conjunction”, Name =
“times”, ParenthesisLevel = “0”, EventActionName =

“”: These elements are added between the states of
one outcome;

o Type = “Additive Disjunction”, Name = “plus”,
ParenthesisLevel = “0”, EventActionName = “”: If
there are several outcomes, then these elements are
added between them.

Figure 12. Sequent based on the metamodel

that is close to the sequent proof.

Finally, as an example, Figure 12 gives the reduced XML code
segment which represents the Linear Logic sequent
(corresponding with the DEA game) based on the metamodel that
is close to the sequent proof. This Linear Logic sequent assists the
IS controller in managing the unfolding of the game via its
reasoning and is automatically created by the analysis module
(thanks to the model transformation from the sequent based on the
intermediate metamodel).

5. CONCLUSION
In the paper, we have presented the methodology for authors to
derive a valid scenario of an IS (even when they do not have any
knowledge of Linear Logic). We have explained the
implementation of the methodology via a detailed presentation of
the steps in the process of IS modeling and illustrated those with
the DEA game. Concerning future works to ameliorate the Linear
Logic approach for IS modeling, in addition to ensuring that the
received scenario leads to satisfactory endings of author’s goals, it
will be validated on two aspects:

• Firstly, does the scenario follow exactly the structure of
discourse that has been pre-defined by the author?

• Secondly, is the scenario “ludic”? In [3], we have proposed
a new class of properties (impartiality, complexity,
concurrence) which allows estimating the relevance of a
scenario, and as a result, we will have to quantify theses
properties for each game as well as test them by Linear
Logic. Thus, we may evaluate the scenario’s quality and
hence show an “interesting scenario” for a game.

6. ACKNOWLEDGMENTS
This work has been funded (in part) by the European Commission
under grant agreement IRIS (FP7-ICT-231824).

7. REFERENCES
[1] Aylett, R. 1999. Narrative in Virtual Environments –

Towards Emergent Narrative. In Proceedings of the AAAI

Symposium on Narrative Intelligence. AAAI Press, Menlo
Park, 83-86.

[2] Cavazza, M., Charles, F., and Mead, S.J. 2002. Character-
based Interactive Storytelling. In IEEE Intelligent Systems,

special issue on AI in Interactive Entertainment, 17-24.

[3] Champagnat, R., Prigent, A., and Estraillier, P. 2005.
Scenario building based on formal methods and adaptative
execution. In: ISAGA 2005 - International Simulation and
Gaming Association, Atlanta, USA.

[4] Dang, K. D., Champagnat, R., and Augeraud, M. 2010.
Modeling of Interactive Storytelling and Validation of
Scenario by Means of Linear Logic. In: Aylett, R. et al. (eds.)
ICIDS 2010. LNCS, vol. 6432, 153-164.

[5] Dang, K. D., Champagnat, R., and Augeraud, M. 2011.
Interactive Storytelling Control for Video Games: an
Approach Based on a Linear Logic Model. Internal report
L3i-2011-001, L3i laboratory, University of La Rochelle
(may be offered if necessary).

[6] Delmas, G., Champagnat, R., and Augeraud, M. 2009. From
Tabletop RPG to Interactive Storytelling: Definition of a
Story Manager for Videogames. In: Iurgel, I.A., Zagalo, N.,
Petta, P. (eds.) ICIDS 2009. LNCS, vol. 5915, 121-126.

[7] Girard, J.-Y. 1987. Linear Logic. Theoretical Computer

Science 50(1), 1-101.

[8] Hebert, L. 2006. Tools for Text and Image Analysis: An
Introduction to Applied Semiotics. Texto! (last accessed
05/28/2011), http://www.revue-texto.net/1996-
2007/Parutions/Livres-E/Hebert_AS/Hebert_Tools.html.

[9] Magerko, B. 2005. Story Representation and Interactive
Drama. In 1st Artificial Intelligence and Interactive Digital

Entertainment Conference. Los Angeles, California.

[10] Mateas, M. 2002. Interactive Drama, Art, and Artificial
Intelligence. PhD Thesis, School of Computer Science,
Carnegie Mellon University.

[11] Riedl, M.O. 2004. Narrative Generation: Balancing Plot and
Character. PhD Thesis, Department of Computer Science,
North Carolina State University.

[12] Si, M., Marsella, S.C., and Pynadath, D.V. 2009. Directorial
Control in a Decision-Theoretic Framework for Interactive
Narrative. In: Iurgel, I.A., Zagalo, N., Petta, P. (eds.) ICIDS
2009. LNCS, vol. 5915, 221-233.

[13] Szilas, N. 2003. IDtension: a Narrative Engine for Interactive
Drama. TIDSE. LNCS 3105. Darmstadt, Germany, 183-203.

[14] Young, R.M., Riedl, M.O., Brandy, M., Martin, J., and
Saretto, C.J. 2004. An Architecture for Integrating Plan-
Based Behavior Generation with Interactive Game
Environments. Journal of Game Development, 51-70.

[15] Graphical Modeling Framework (last accessed 05/28/2011),
http://wiki.eclipse.org/Graphical_Modeling_Framework.

[16] Object Management Group/Business Process Management
Initiative (last accessed 05/28/2011), http://www.bpmn.org.

