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In this paper, we investigate the time decay behavior to Lions weak solution of 2D incompressible inhomogeneous Navier-Stokes equations.

Introduction

The main purpose of this paper is to investigate the decay estimates for the global solutions of the following two-dimensional incompressible inhomogeneous Navier-Stokes equations with viscous coefficient depending on the density (1.1)

   ∂ t ρ + div(ρu) = 0, (t, x) ∈ R + × R 2 , ∂ t (ρu) + div(ρu ⊗ u) -div(µ(ρ)M(u)) + ∇Π = 0, div u = 0,
where ρ, u = (u 1 , u 2 ) stand for the density and velocity of the fluid respectively, M(u) = ∇u+∇ T u, Π is a scalar pressure function, and in general, the viscosity coefficient µ(ρ) is a smooth positive function on [0, ∞). Such system describes a fluid which is obtained by mixing two immiscible fluids that are incompressible and that have different densities. It may also describe a fluid containing a melted substance. One may check [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] for the detailed derivation.

When µ(ρ) is independent of ρ, i.e. µ is a positive constant, and the initial density has a positive lower bound, Ladyženskaja and Solonnikov [START_REF] Ladyženskaja | The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. (Russian) Boundary value problems of mathematical physics, and related questions of the theory of functions, 8[END_REF] first addressed the question of unique solvability of (1.1). More precisely, they considered the system (1.1) in a bounded domain Ω with homogeneous Dirichlet boundary condition for u. Under the assumption that u 0 ∈ W 2-2 p ,p (Ω) (p > d) is divergence free and vanishes on ∂Ω and that ρ 0 ∈ C 1 (Ω) is bounded away from zero, then they [START_REF] Ladyženskaja | The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. (Russian) Boundary value problems of mathematical physics, and related questions of the theory of functions, 8[END_REF] proved

• Global well-posedness in dimension d = 2;

• Local well-posedness in dimension d = 3. If in addition u 0 is small in W 2-2 p ,p (Ω), then global well-posedness holds true. Danchin [START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF] proved similar well-posedness result of (1.1) in the whole space case and the initial data in the almost critical spaces. In particular, in two dimension, he proved the global well-posedness of (1.1) provided the initial data (ρ 0 , u 0 ) satisfying ρ 0 -1 ∈ H 1+α (R 2 ), ρ 0 ≥ m > 0, and u 0 ∈ H β (R 2 ) for any α ∈ (0, 1) and β ∈ (0, 1].

In general, Lions [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] (see also the references therein) proved the global existence of weak solutions to (1.1) with finite energy. Yet the uniqueness and regularities of such weak solutions are big open questions even in two space dimensions. Except under the additional assumptions that (1.2) µ(ρ 0 ) -1 L ∞ (T 2 ) ≤ ε and u 0 ∈ H 1 (T 2 ), Date: 20/Nov/2012.
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Desjardins [START_REF] Desjardins | Regularity results for two-dimensional flows of multiphase viscous fluids[END_REF] proved the following theorem.

Theorem 1.1. Let ρ 0 ∈ L ∞ (T 2 ) and div u 0 = 0. Then there exists ε > 0 such that under the assumption (1.2), Lions weak solutions ( [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF]) to (1.1) satisfy the following regularity properties hold for all T > 0 :

(1) u ∈ L ∞ ((0, T ); H 1 (T 2 )) and √ ρ∂ t u ∈ L 2 ((0, T ) × T 2 ),

(2) ρ and µ(ρ) ∈ L ∞ ((0, T ) × T 2 ) ∩ C([0, T ]; L p (T 2 )) for all p ∈ [1, ∞), (3) ∇(Π -R i R j (µM(u) ij )) and ∇(P ⊗ Q(µM(u) ij )) ∈ L 2 ((0, T ) × T 2 ), (4) Π may be renormalized in such a way that for some universal constant C 0 > 0, Π and ∇u ∈ L 2 ((0, T ); L p (T 2 )) for all p ∈ [4, p * ), where

1 p * = 2C 0 µ(ρ 0 ) -1 L ∞ .
In which, we denote R as the Riesz transform: R = ∇△ -1 2 . Q = ∇△ -1 div and P = I -Q respectively denote the projection on the space of curl-free and divergence-free vector fields.

In order to investigate the global well-posedness of thus solutions, we first need to study the global-in-time type estimates. However, because of the difficulties of the continuity equation in (1.1) being of hyperbolic nature and the estimate of the diffusion term in the momentum equation, we shall first study the time decay of the solutions, which is very much motivated by [START_REF] Gui | Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity[END_REF][START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF][START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF].

Theorem 1.2. For 1 < p < 2, let u 0 ∈ L p (R 2 ) ∩ H 1 (R 2 ), ρ 0 -1 ∈ L 2 (R 2 ) and ρ 0 ∈ L ∞ (R 2
) with a positive lower bound. We assume that (ρ, u, ∇p) is a given Lions weak solution of (1.1) with initial data (ρ 0 , u 0 ). Denote µ(1) = µ 0 , then under the assumption

(1.3) µ(ρ) -µ 0 L ∞ (R + ;L ∞ (R 2 )) ≤ ε 0 ,
for a small constant ε 0 , there exists a constant C 1 which depends on ρ 0 -1 L 2 , u 0 L p and u 0 H 1 such that there hold

(1.4) u(t) 2 L 2 ≤ C 1 (t + e) -2β(p) , ∇u(t) 2 L 2 ≤ C 1 (t + e) -1-2β(p)+ε , (1.5) 
∞ 0 u t L 2 + P div µ(ρ)M(u) L 2 + Q div µ(ρ)M(u) -∇Π L 2 dt ≤ C 1 , (1.6) ∞ 0 (t+e) 1+2β(p)-ε u t L 2 + P div µ(ρ)M(u) L 2 + Q div µ(ρ)M(u) -∇Π L 2 2 dt ≤ C 1 , with β(p) = 1 2 ( 2 p -1)
and any ε > 0.

Remark 1.1. The first estimate of (1.4) coincides with the L 2 -norm decay result in [START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF][START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF] for the weak solutions of the two-dimensional classical Navier-Stokes system, and also coincides with the result in [START_REF] Gui | Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity[END_REF] for (1.1). When µ(ρ) be a constant, we can get optimal decay of ∇u 2 L 2 with the order -1 -2β(p), see [START_REF] Huang | Decay estimate for global solutions of 2-D inhomogeneous Navier-Stokes equations[END_REF]. Notice the main ingredients of the proof in [START_REF] Huang | Decay estimate for global solutions of 2-D inhomogeneous Navier-Stokes equations[END_REF][START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF][START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF] are the usual energy estimates and the phase space analysis. In our case, due to the additional difficulties mentioned above, we not only need to apply phase space analysis, but also need more explicit energy estimates, see Proposition 3.1 below. We note also that the 3D case with constant viscosity was studied in [START_REF] Abidi | On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations[END_REF]. Using energy estimates with weight in time and the Fourier splitting method of Schonbek [START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF] we can generalize this decay in time estimates to the 3D case with variable viscosity.

Motivated by Proposition 3.1, we have a more general result. Indeed, using interpolation argument we obtain a similar decay rate of the solution, under a weaker assumption on the initial volocity.

Theorem 1.3. For 1 < p < 2 and 0 < α < 1, let u 0 ∈ L p (R 2 ) ∩ H α (R 2 ), ρ 0 -1 ∈ L 2 (R 2 ) and ρ 0 ∈ L ∞ (R 2
) with a positive lower bound. We assume that (ρ, u, ∇p) is a given Lions weak solution of (1.1) with initial data (ρ 0 , u 0 ). Then under the assumption (1.3), there exists a constant C α which depends on ρ 0 -1 L 2 , u 0 L p and u 0 H α such that there hold

(1.7) u(t) 2 L 2 ≤ C α (t + e) -2β(p) , ∇u(t) 2 L 2 ≤ C α (t + e) -1-2β(p)+ε , (1.8) ∞ 0 u t L 2 + P div µ(ρ)M(u) L 2 + Q div µ(ρ)M(u) -∇Π L 2 dt ≤ C α , (1.9) 
∞ 0 t 1-r (t + e) r+2β(p)-ε u t L 2 + P div µ(ρ)M(u) L 2 + Q div µ(ρ)M(u) -∇Π L 2 2 dt ≤ C α ,
with any ε > 0 and 0 < r < α.

Remark 1.2. We note also that the 3D case with constant viscosity was studied in [START_REF] Abidi | On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations[END_REF]. Using energy estimates with weight in time and the Fourier splitting method of Schonbek [START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF] we can generalize this decay in time estimates to the 3D case with variable viscosity.

In the second part of this paper, we investigate the regularity propagation of transport equation. We consider the transport equation:

(1.10)    ∂ t ρ + u∇ρ = 0, (t, x) ∈ R + × R 2 , div u = 0, ρ| t=0 = ρ 0 .
In the case of u ∈ L 1 (Lip), for any small positive regularity, it is well known that

ρ(t) B ε p,r ≤ ρ 0 B ε p,r exp( u L 1 t (Lip)
). And if the regularity index is 0, follows from [START_REF] Vishik | Hydrodynamics in Besov spaces[END_REF], we have

ρ(t) B 0 p,r ≤ C ρ 0 B 0 p,r (1 + u L 1 t (Lip)
). We want to know how it changes from zero regularity to positive regularity. So we define a Besov space with logarithms regularity B η ln ∞,1 , which is just between zero regularity and positive regularity, see Definition 2.2 and Remark 2.1 below. So we gain a polynomial relation between the velocity and the density, which is the case between exponential and linear cases.

According these two results, we give an application about global existence to solutions of (1.1).

Theorem 1.4.

For 1 < p < 4 3 , let u 0 ∈ L p (R 2 ) ∩ H 1 (R 2 ). Let ρ 0 -1 ∈ B 1+ε 2,1 (R 2 )
for any ε > 0, and ρ 0 ∈ L ∞ (R 2 ) with positive lower bound. Then there exist positive constant η > 1 and C 0 , c 0 such that if

(1.11) µ(ρ 0 ) -µ 0 B (η+1) ln ∞,1 (1 + µ 0 )G(ρ 0 , u 0 ) µ 0 η+1 exp (η + 1) exp(C 0 u 0 4 L 2 ) ≤ c 0 µ 0 , where G(ρ 0 , u 0 ) = G 1 exp(G 2 ), G 1 = ρ 0 -1 L 2 + ρ 0 -1 7 L 2 + u 0 L p + u 0 7 L p + u 0 H 1 + u 0 7 L p u 0 7 H 1 + (1 + ρ 0 -1 7 L 2 ) u 0 14 H 1 , G 2 = u 0 4 L p + u 0 4 H 1 + ρ 0 -1 4 L 2 + u 0 4 L p u 0 4 H 1 + (1 + ρ 0 -1 4 L 2 ) u 0 8 H 1 , (1.12) 
(1.1) has a global solution (ρ, u)

such that ρ -1 ∈ L ∞ ((0, T ); B 1+ ε 2 2,1 (R 2 
)) for any T > 0, and ∇u ∈ L 1 (R + ; B 0 ∞,2 ).

Remark 1.3. We don't mention the result of uniqueness, and this is well known in [START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF].

The organization of the paper. In the second section, we collect some basic facts on Littlewood-Paley theory and integral inequalities, which have been used throughout this paper. In Section 3, we shall present the proof of Theorem 1.2. In Section 4, we shall prove Theorem 1.3. In Section 5, we give an application of Theorem 1.2. Let us complete this section by the notations we shall use in this context: Notation. For a b, we mean that there is a uniform constant C, which may be different on different lines, such that a ≤ Cb. a ≈ b means that there is two positive uniform constant c, C such that cb ≤ a ≤ Cb. We shall denote by (c j,r ) j∈N to be a generic element of ℓ r (N) so that c j,r ≥ 0 and j∈N c r j,r = 1.

Preliminaries

First, we are going to recall some facts on the Littlewood-Paley Theory, one may check [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] for

details. Let B def = {ξ ∈ R 2 , |ξ| ≤ 4 3 } and C def = {ξ ∈ R 2 , 3 4 ≤ |ξ| ≤ 8 3 }. Let χ ∈ C ∞ c (B) and ϕ ∈ C ∞ c (C) which satisfy χ(ξ) + j≥0 ϕ(2 -j ξ) = 1, ξ ∈ R 2 , we denote h def = F -1 ϕ and h def = F -1 χ.
Then the Littlewood-Paley operators ∆ j and S j can be defined as follows

∆ j f def = ϕ(2 -j D)f = 2 2j R 2 h(2 j y)f (x -y) dy, for j ≥ 0, S j f def = χ(2 -j D)f = -1≤k≤j-1 ∆ k f = 2 2j R 2 h(2 j y)f (x -y) dy, (2.1) ∆ -1 f def = S -1 f, S -2 f = 0.
With the introduction of ∆ j and S j , we define two norm which will be used throughout of our work.

Definition 2.1. Let s ∈ R and 1 ≤ p, r ≤ ∞. The inhomogeneous Besov space B s p,r consists of all tempered distributions u such that

u B s p,r def = (2 js ∆ j u L p ) j≥-1 ℓ r < ∞. Definition 2.2. Let η > 0. The logarithms inhomogeneous Besov space B η ln ∞,1 consists of all tem- pered distributions u such that u B η ln ∞,1 def = j≥-1 (2 + j) η ∆ j u L ∞ < ∞. Remark 2.1. One may see that for any positive ε and η, B ε ∞,1 ⊂ B η ln ∞,1 ⊂ B 0 ∞,1 .
Let us recall the following lemmas from [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF].

Lemma 2.1 (Bernstein's inequality). Let 1 ≤ p ≤ q ≤ ∞. Assume that f ∈ L p , then there exists a positive constant C independent of f, j such that supp f ⊂ {|ξ| 2 j } ⇒ ∂ α f L q ≤ C2 j|α|+2j( 1 p -1 q ) f L p , supp f ⊂ {|ξ| ≈ 2 j } ⇒ f L p ≤ C2 -j|α| ∂ α f L p .
Lemma 2.2. Let φ be a smooth function supported in the annulus {ξ ∈ R 2 : |ξ| ≈ 1}. Then, there exist two positive constants c and C depending only on φ such that for any 1 ≤ p ≤ ∞ and λ > 0, we have

φ(λ -1 D)e t∆ f L p ≤ Ce -ctλ 2 φ(λ -1 D)f L p .
In what follows, we will constantly use Bony's decomposition

(2.2) uv = T u v + T v u + R(u, v)
where

T u v = j≥-1 S j-1 u∆ j v and R(u, v) = j≥-1 ∆ j u ∆j v,
where ∆j = 1 i=-1 ∆ j+i . Also, we need some calculus inequalities which can be found in [START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF].

Lemma 2.3. Let m ∈ R + , 0 ≤ α < 1 and β > 0. Then (1) 
t 0 (s + e) -1 ln(s + e) -m ds ≤ 1 m-1 for m > 1, (2) there is some γ m > 0 such that t 0 (s + e) -1-β ln(s + e) m ds ≤ γ m β -(m+1) , (3) 
there is some γ m,α > 0 such that, for all t > 0, t 0 (s + e) -α ln(s + e) -m ds ≤ γ m,α (t + e) 1-α ln(t + e) -m . Finally, we need the integral form of Gronwall's inequality, which is well known. Proposition 2.1. Let f, g, h be positive functions defined on R + , and h(t

) ∈ L 1 loc . If f (t) ≤ g(t) + t 0 h(s)f (s) ds,
then following estimate holds:

(2.3) f (t) ≤ g(t) + t 0 h(s)g(s) exp( t s h(τ ) dτ ) ds.

The Proof of Theorem 1.2

In this section, we will prove Theorem 1.2. First, we have some energy estimates.

Proposition 3.1. Let v ∈ L ∞ (R + ; L 2 ) ∩ L 2 (R + ; Ḣ1 ), div v = 0. Assume that u 0 ∈ H 1 (R 2 ) and ρ 0 ∈ L ∞ (R 2 )
with positive lower bound. f (t) be a positive second-order differentiable function satisfies f ′ (t) ≥ 0 and f ′′ (t) ≥ 0. (ρ, u) be the global weak solution of the linear system:

(3.1)        ∂ t ρ + v∇ρ = 0, ρ∂ t u + ρv∇u -div(µ(ρ)M(u)) + ∇Π = 0, div u = 0, (ρ, u)| t=0 = (ρ 0 , u 0 ).
Then under the assumption (1.3), we have the following estimates:

sup 0<t<∞ f (t) R 2 µ(ρ)|∇u| 2 (t) dx + ∞ 0 f (t) R 2 | √ ρu t | 2 + | P div µ(ρ)M(u) | 2 + | Q div µ(ρ)M(u) -∇Π| 2 dxdt ≤ C(f (0) ∇u 0 2 L 2 + ∞ 0 f ′ (t) R 2 µ(ρ)|∇u| 2 dxdt) exp{C(1 + v 2 L ∞ (L 2 ) ) ∇v 2 L 2 (L 2 ) }, (3.2) (3.3) sup 0<t<∞ f ′ (t) R 2 ρ|u| 2 (t) dx+ ∞ 0 f ′ (t) R 2 µ(ρ)|∇u| 2 dxdt ≤ C(f ′ (0) u 0 2 L 2 + ∞ 0 f ′′ (t) R 2 ρ|u| 2 dxdt).
Proof. First, we follow the line of the proof of Theorem 1.1, see [START_REF] Desjardins | Regularity results for two-dimensional flows of multiphase viscous fluids[END_REF]. By taking L 2 inner product of the momentum equation of (3.1) with f (t)u t and using integration by parts, we deduce that

f (t) R 2 | √ ρu t | 2 dx + f (t) R 2 (ρv∇u) • u t dx + f (t) R 2 µ(ρ)∇u : ∇u t dx = 0. Note that f (t) R 2 µ(ρ)∇u : ∇u t dx = 1 2 ∂ t [f (t) R 2 µ(ρ)|∇u| 2 dx] - 1 2 f ′ (t) R 2 µ(ρ)|∇u| 2 dx - 1 2 f (t) R 2 ∂ t µ(ρ)|∇u| 2 dx,
and from the derivation of (29) in [START_REF] Desjardins | Regularity results for two-dimensional flows of multiphase viscous fluids[END_REF] that

- R 2 ∂ t µ(ρ)|∇u| 2 dx = R 2 div(µ(ρ)v)|∇u| 2 dx = R 2 (v∇)u • div(µ(ρ)M(u)) dx + R 2 µ(ρ)tr(∇v∇uM(u)) dx = R 2 (v∇)u • (ρu t + ρv∇u + ∇Π) dx + R 2 µ(ρ)tr(∇v∇uM(u)) dx, we have d dt [f (t) R 2 µ(ρ)|∇u| 2 dx] + f (t) R 2 | √ ρu t | 2 dx f ′ (t) R 2 µ(ρ)|∇u| 2 dx + f (t) R 2 | √ ρv∇u| 2 dx +f (t) R 2 µ(ρ)|∇v||∇u| 2 dx + f (t) R 2 Π∂ i v j ∂ j u i dx .
Recall that -µ 0 △u = div (µ(ρ)µ 0 )M(u) -div µ(ρ)M(u) , so that we have

µ 0 ∂ i u j = R i P j R (µ(ρ) -µ 0 )M(u) -R i P j R µ(ρ)M(u) .
Estimating it in the L 4 (R 2 ) and using the Gagliardo-Nirenberg inequality, we can write

∇u L 4 P ⊗ Q (µ(ρ) -µ 0 )M(u) L 4 + P ⊗ Q µ(ρ)M(u) L 4 µ(ρ) -µ 0 L ∞ (R + ;L ∞ ) ∇u L 4 + P ⊗ Q µ(ρ)M(u) 1 2 L 2 ∇ P ⊗ Q µ(ρ)M(u) 1 2 L 2
Finally, using (1.3) and the conservation of the momentum, we obtain that

(3.4) ∇u L 4 ∇u 1 2
L 2 P(ρu t + ρv∇u)

1 2 L 2 , Now letting (-△) -1
2 R operate on the equation of momentum, we get that

Π = R i R j µ(ρ)(∂ i u j + ∂ j u i ) + (-△) -1 2 R(ρu t + ρv∇u). It follows that Π -R i R j (µ(ρ)M(u)) BM O ∇(Π -R i R j (µ(ρ)M(u))) L 2 ρu t + ρv∇u L 2 .
We obtain that

R 2 Π∂ i v j ∂ j u i dx ≤ ∇v L 2 ∇u 2 L 4 + Π -R i R j (µ(ρ)M(u)) BM O ∂ i v j ∂ j u i H 1 ≤ ∇v L 2 ∇u L 2 ρu t + ρv∇u L 2 , so that f (t) R 2 Π∂ i u j ∂ j u i dx ≤ C ε f (t) ∇v 2 L 2 ∇u 2 L 2 + εf (t)( √ ρu t 2 L 2 + v∇u 2 L 2 ). f (t) R 2 µ(ρ)|∇v||∇u| 2 dx ≤ Cf (t) ∇v L 2 ∇u 2 L 4 ≤ C ε f (t) ∇v 2 L 2 ∇u 2 L 2 + εf (t)( √ ρu t 2 L 2 + v∇u 2 L 2 ). Also v∇u 2 L 2 ≤ v 2 L 4 ∇u 2 L 4 ≤ v L 2 ∇v L 2 ∇u L 2 ρu t + ρv∇u L 2 , f (t) R 2 | √ ρv∇u| 2 dx ≤ C ε f (t) v 2 L 2 ∇v 2 L 2 ∇u 2 L 2 + εf (t) √ ρu t 2 L 2 .
Consequently,

d dt [f (t) R 2 µ(ρ)|∇u| 2 dx] + f (t) R 2 | √ ρu t | 2 dx f ′ (t) µ(ρ)|∇u| 2 dx + f (t) ∇u 2 L 2 ∇v 2 L 2 (1 + v 2 L 2 ). (3.5)
Second, we act the Leray projector P on the momentum equation of (3.1) to get that

P div µ(ρ)M(u) = P(ρu t + ρv∇u), Q div µ(ρ)M(u) -∇Π = Q(ρu t + ρv∇u).
Along with (3.5), we have

d dt [f (t) R 2 µ(ρ)|∇u| 2 dx] +f (t) R 2 | √ ρu t | 2 + | P div µ(ρ)M(u) | 2 + | Q div µ(ρ)M(u) -∇Π| 2 dx ≤ C(f ′ (t) R 2 µ(ρ)|∇u| 2 dx + f (t) ∇u 2 L 2 ∇v 2 L 2 (1 + v 2 L 2 )). Note that v ∈ L ∞ (L 2 ) ∩ L 2 ( Ḣ1 ), so that ∞ 0 (1 + v 2 L 2 ) ∇v 2 L 2 dt ≤ (1 + v 2 L ∞ (L 2 ) ) ∇v 2 L 2 (L 2 ) ,
and (3.2) holds.

The same strategy can be held for f ′ (t)u, we have

1 2 d dt [f ′ (t) R 2 | √ ρu| 2 dx] + f ′ (t) R 2 µ(ρ)|∇u| 2 dx = 1 2 f ′′ (t) R 2 | √ ρu| 2 dx, so that sup 0<t<∞ f ′ (t) R 2 ρ|u| 2 (t) dx+ ∞ 0 f ′ (t) R 2 µ(ρ)|∇u| 2 dxdt ≤ C(f ′ (0) u 0 2 L 2 + ∞ 0 f ′′ (t) R 2 ρ|u| 2 dxdt).
According these two energy estimates, letting v = u, we can prove Theorem 1.2. More precisely, we have the following theorem.

Theorem 3.1. Under the assumption of Theorem 1.2, (1.4), (1.5) and (1.6) hold. More precisely, we have

(3.6) u(t) 2 L 2 (K + K 7 ) exp(K 2 )(t + e) -2β(p) , ∇u(t) 2 L 2 (K + K 7 ) exp(K 2 )(t + e) -1-2β(p)+ε , (3.7) ∞ 0 u t L 2 + P div µ(ρ)M(u) L 2 + Q div µ(ρ)M(u) -∇Π L 2 dt √ K + K, (3.8) ∞ 0 (t+e) 1+2β(p)-ε u t L 2 + P div µ(ρ)M(u) L 2 + Q div µ(ρ)M(u) -∇Π L 2 2 dt (K+K 7 ) exp(K 2 ),
where

(3.9) K = u 0 2 L p + u 0 2 H 1 + ρ 0 -1 2 L 2 + u 0 2 L p u 0 2 H 1 +(1+ ρ 0 -1 2 L 2 ) u 0 4 H 1 exp{C u 0 4 L 2 }.
Proof. We get the standard energy estimate to (1.1) that . We rewrite the momentum equation of (1.1) as

d dt √ ρu(t) 2 L 2 + ∇u(t)
u(t) = e µ 0 t△ u 0 + t 0 e µ 0 (t-s)△ P div (µ(ρ) -µ 0 )M(u) + (1 -ρ)u t -ρu∇u (s) ds.
Taking Fourier transform with respect to x variables leads to

|û(t, ξ)| e -µ 0 t|ξ| 2 | û0 (ξ)| + t 0 e -µ 0 (t-s)|ξ| 2 |ξ||F x (µ(ρ) -µ 0 )M(u) | + |F x (1 -ρ)u t -ρu∇u | ds, which implies that S(t) |û(t, ξ)| 2 dξ S(t) e -2µ 0 t|ξ| 2 |û 0 (ξ)| 2 dξ + g 4 (t)( t 0 F x (µ(ρ) -µ 0 )M(u) L ∞ ξ ds) 2 +g 2 (t)( t 0 F x (1 -ρ)u t -ρu∇u L ∞ ξ ds) 2 . (3.11)
Note that u 0 ∈ L p for 1 < p < 2, one has (3.12)

S(t) e -2µ 0 t|ξ| 2 | û0 (ξ)| 2 dξ ( S(t) e -2µ 0 qt|ξ| 2 dξ) 1 q û0 (ξ) 2 L p ′ u 0 2 L p (1 + t) -2β(p) , where 1 q = 2 p -1, 1 p + 1 p ′ = 1. Note that u ∈ L ∞ (L 2 ) ∩ L 2 ( Ḣ1 ) and u t ∈ L 2 (L 2 ), we have ( t 0 F x (µ(ρ) -µ 0 )M(u) L ∞ ξ ds) 2 ≤ ( t 0 (µ(ρ) -µ 0 )M(u) L 1 ds) 2 ≤ µ(ρ) -µ 0 2 L ∞ t (L 2 ) ( t 0 ∇u L 2 ds) 2 ≤ C ρ 0 -1 2 L 2 u 0 2 L 2 (1 + t), ( t 0 F x (1 -ρ)u t L ∞ ξ ds) 2 ≤ 1 -ρ 2 L ∞ t (L 2 ) ( t 0 u t L 2 ds) 2 ≤ C ρ 0 -1 2 L 2 ∇u 0 2 L 2 (1 + t), ( t 0 F x ρu∇u L ∞ ξ ds) 2 ≤ ρu 2 L ∞ t (L 2 ) ( t 0 ∇u L 2 ds) 2 ≤ C u 0 4 L 2 (1 + t).
Then we deduce from (3.10) to (3.12) that

d dt √ ρu(t) 2 L 2 + g 2 (t) √ ρu(t) 2 L 2 g 2 (t) u 0 2 L p (1 + t) -2β(p) + g 6 (t) ρ 0 -1 2 L 2 u 0 2 L 2 (1 + t) +g 4 (t)( ρ 0 -1 2 L 2 ∇u 0 2 L 2 + u 0 4 L 2 )(1 + t) g 2 (t) u 0 2 L p (1 + t) -2β(p) + g 4 (t)( ρ 0 -1 2 L 2 u 0 2 H 1 + u 0 4 L 2 )(1 + t). Taking g 2 (t) = 2 (e+t) ln(e+t)
, then e t 0 g 2 (s) ds = ln 2 (t + e) and ln 2 (t + e) u(t) 2

L 2 u 0 2 L 2 + t 0 [ u 0 2 L p ln(s + e) (s + e) 1+2β(p) + ( ρ 0 -1 2 L 2 u 0 2 H 1 + u 0 4 L 2 )(s + e) -1 ] ds u 0 2 L p + (1 + ρ 0 -1 2 L 2 ) u 0 2 H 1 + u 0 4 L 2 ln(t + e), which gives (3.13) u(t) 2 L 2 u 0 2 L p + (1 + ρ 0 -1 2 L 2 ) u 0 2 H 1 + u 0 4 L 2 ln -1 (t + e
). Now we improve the estimate (3.13).

We choose f (t) = t + e in (3.2), then we have

sup 0<t<∞ (t + e) ∇u(t) 2 L 2 + ∞ 0 (t + e) u t 2 L 2 dt ≤ C u 0 2 H 1 exp{C u 0 4 L 2 }, so that ( t 0 F x (1 -ρ)u t L ∞ ξ ds) 2 ≤ 1 -ρ 2 L ∞ t (L 2 ) ( t 0 u t L 2 ds) 2 ≤ C ρ 0 -1 2 L 2 t 0 (s + e) u t 2 L 2 ds t 0 (s + e) -1 ds ≤ C ρ 0 -1 2 L 2 u 0 2 H 1 exp{C u 0 4 L 2 } ln(t + e). ( t 0 F x ρu∇u L ∞ ξ ds) 2 ≤ ( t 0 u(s) L 2 ∇u(s) L 2 ds) 2 ≤ C u 0 2 L p + (1 + ρ 0 -1 2 L 2 ) u 0 2 H 1 u 0 2 H 1 exp{C u 0 4 L 2 }(t + e) ln -1 (t + e).
We plug these estimate into (3.11) and take g 2 (t) = 

(K + K 2 ) ln -4 (t + e).
We choose

f ′ (t) = ln 2 (t + e) in (3.3), then sup 0<t<∞ ln 2 (t + e) u(t) 2 L 2 + ∞ 0 ln 2 (t + e) ∇u 2 L 2 dt ≤ C( u 0 2 L 2 + ∞ 0 (t + e) -1 ln(t + e) u(t) 2 L 2 dt) ≤ C( u 0 2 L 2 + (K + K 2 ) ∞ 0 (t + e) -1 ln -3 (t + e) dt) K + K 2 .
Finally, we take f (t) = (t + e) ln 

L 2 } K + K 2 .
Consequently, we obtain

( ∞ 0 u t L 2 dt) 2 ≤ ( ∞ 0 (t + e) ln 2 (t + e) u t 2 
L 2 dt)( ∞ 0 (t + e) -1 ln -2 (t + e) dt) K + K 2 .
Which is the same for P div µ(ρ)M(u) , Q div µ(ρ)M(u) -∇Π ∈ L 1 (R + ; L 2 ), and gives (3.7). Moreover

∞ 0 u∇u L 2 dt ≤ ∞ 0 u L 2 ∇u 2 L 2 + u t L 2 dt √ K + K, and 
( t 0 u L 2 ∇u L 2 ds) 2 ≤ ( t 0 ln -2 (s + e) u 2 L 2 ds)( t 0 ln 2 (s + e) ∇u 2 L 2 ds) (K + K 2 ) t 0 ln -2 (s + e) u 2 L 2 ds.
Substituting these estimates into (3.11), noting that 2β(p) ∈ (0, 1), and taking g 2 (t) = α t+e with any positive α ∈ (2β(p), 1), then we get

(t + e) α u(t) 2 L 2 u 0 2 L 2 + (K + K 2 ) t 0 (s + e) α-2 s 0 ln -2 (τ + e) u(τ ) 2 L 2 dτ ds + K t 0 (s + e) α-1-2β(p) ds + (K 2 + K 3 ) t 0 (s + e) α-2 ds (K + K 3 )(t + e) α-2β(p) + (K + K 2 ) t 0 (s + e) α-2 s 0 ln -2 (τ + e) u(τ ) 2 L 2 dτ ds.
For t ≥ 1, we define

y(t) def = t t-1 (s + e) α u(s) 2 L 2 ds, Y (t) 
def = max{y(s) : 1 ≤ s ≤ t},

I(t) def = t 0 ln -2 (s + e) u(s) 2 L 2 ds.
Then recall that α < 1, one has

I(t) = t-[t] 0 ln -2 (s + e) u(s) 2 L 2 ds + t t-[t] ln -2 (s + e) u(s) 2 L 2 ds K + [t]-1 j=0 t-j t-j-1 u(s) 2 L 2 (s + e) α (s + e) -α ln -2 (s + e) ds K + Y (t) [t]-1 j=0 (t -j) -α ln -2 (t -j) K + Y (t)(t + e) 1-α ln -2 (t + e), (3.17) 
from which, we infer that

y(t) (K + K 3 )(t + e) α-2β(p) + (K + K 2 ) t 0 (s + e) -1 ln -2 (s + e)Y (s) ds.
Then, applying Gronwall's inequality (2.3), we have

Y (t) (K + K 3 )(t + e) α-2β(p) + (K 2 + K 5 ) t 0 (s + e) α-2β(p)-1 ln -2 (s + e) exp{(K + K 2 ) t s (τ + e) -1 ln -2 (τ + e) dτ } ds (K + K 3 )(t + e) α-2β(p) + (K 2 + K 5 ) exp(K 2 ) t 0 (s + e) α-2β(p)-1 ln -2 (s + e) ds (K + K 5 ) exp(K 2 )(t + e) α-2β(p) .
(3.18) Plunging (3.18) into (3.17) gives rise to I(t) (K + K 5 ) exp(K 2 )(t + e) 1-2β(p) ln -2 (t + e), we obtain

(t + e) α u(t) 2 L 2 (K + K 3 )(t + e) α-2β(p) + (K 2 + K 7 ) exp(K 2 ) t 0 (s + e) α-2β(p)-1 ln -2 (s + e) ds (K + K 7 ) exp(K 2 )(t + e) α-2β(p) ,
which gives the first inequality of (3.6).

Go back to (3.3), we choose f ′′ (t) such that

∞ 0 f ′′ (t) u(t) 2 L 2 dt is finite.
For example, we let f ′′ (t) = (t + e) -1+2β(p)-ε for any ε > 0, (or f ′′ (t) = (t + e) -1+2β(p) ln -α (t + e) for any α > 1,) then f (t) = (t + e) 1+2β(p)-ε . Finally, we get (3.8) and the second inequality of (3.6).

The Proof of Theorem 1.3

The proof of Theorem 1.3 is very similar to Theorem 1.2. We should estimate every term in terms of u 0 H α instead of u 0 H 1 . First, we choose f (t) = t + e and t in (3.2), get that sup

0<t<∞ (t + e) ∇u(t) 2 L 2 + ∞ 0 (t + e) u t 2 L 2 dt ≤ C u 0 2 H 1 exp{C(1 + v 2 L ∞ (L 2 ) ) ∇v 2 L 2 (L 2 ) }, and 
sup 0<t<∞ t ∇u(t) 2 L 2 + ∞ 0 t u t 2 L 2 dt ≤ C u 0 2 L 2 exp{C(1 + v 2 L ∞ (L 2 ) ) ∇v 2 L 2 (L 2 ) }.
By interpolation, and let v = u, we get that (4.1) sup

0<t<∞ (t + e) α t 1-α ∇u(t) 2 L 2 + ∞ 0 (t + e) α t 1-α u t 2 L 2 dt ≤ C u 0 2 H α exp{C u 0 4 L 2 }.
So that

( t 0 F x (1 -ρ)u t L ∞ ξ ds) 2 ≤ 1 -ρ 2 L ∞ t (L 2 ) ( t 0 u t L 2 ds) 2 ≤ C ρ 0 -1 2 L 2 t 0 s 1-α (s + e) α u t 2 L 2 ds t 0 s α-1 (s + e) -α ds ≤ C α t α , ( t 0 F x (µ(ρ) -µ 0 )M(u) L ∞ ξ ds) 2 ≤ ( t 0 (µ(ρ) -µ 0 )M(u) L 1 ds) 2 ≤ µ(ρ) -µ 0 2 L ∞ t (L 2 ) ( t 0 ∇u L 2 ds) 2 ≤ C ρ 0 -1 2 L 2 u 0 2 L 2 (1 + t), ( t 0 F x ρu∇u L ∞ ξ ds) 2 ≤ ρu 2 L ∞ t (L 2 ) ( t 0 ∇u L 2 ds) 2 ≤ C u 0 4 L 2 (1 + t).
From which, we can deduce that 

d dt √ ρu(t) 2 L 2 + g 2 (t) √ ρu(t) 2 L 2 ≤ C α g 2 (t)(1 + t) -2β(p) +
( t 0 F x ρu∇u L ∞ ξ ds) 2 ≤ C( t 0 u L 2 ∇u L 2 ds) 2 ≤ C α ( t 0 s α-1 2 (s + e) -α 2 ln -1 2 (s + e) ds) 2 ≤ C α 1 + (t + e) ln -1 (t + e) ≤ C α (t + e) ln -1 (t + e).
We take g 2 (t) = And for 0 < t < 1, it is obvious, so that

(4.3) u(t) 2 L 2 ≤ C α ln -2 (t + e), and 
∞ 0 (t + e) -1 u 2 L 2 dt ≤ C α ∞ 0 (t + e) -1 ln -2 (t + e) dt ≤ C α .
We choose f ′ (t) = ln(t + e) in (3.3), then get

sup 0<t<∞ ln(t + e) u(t) 2 L 2 + ∞ 0 ln(t + e) ∇u 2 L 2 dt ≤ C u 0 2 L 2 + ∞ 0 (t + e) -1 u 2 L 2 dt ≤ C α .
Consequently, for any 0 < r < α, we take f (t) = t 

(t + e) u(t) 2 L 2 + ∞ 0 ln 2 (t + e) ∇u 2 L 2 dt ≤ C( u 0 2 L 2 + ∞ 0 (t + e) -1 ln(t + e) u(t) 2 L 2 dt) ≤ C α (1 + 1 0 (t + e) -1 dt + ∞ 1 (t + e) -1 ln -3 (t + e) dt) ≤ C α .
Finally, we take f (t) = t 

∞ 0 u t L 2 dt) 2 ≤ ( ∞ 0 t 1-r (t + e) r ln 2 (t + e) u t 2 L 2 dt)( ∞ 0 t r-1 (t + e) -r ln -2 (t + e) dt) ≤ C α .
Which is the same for P div µ(ρ)M(u) , Q div µ(ρ)M(u) -∇Π ∈ L 1 (R + ; L 2 ), and gives (1.8).

Then follow the same line to the proof of Theorem 1.2, we get the first inequality of (1.7). We choose

f ′ (t) = (t + e) 2β-ε in (3.3), obtain that sup 0<t<∞ (t + e) 2β-ε u(t) 2 L 2 + ∞ 0 (t + e) 2β-ε ∇u 2 L 2 dt ≤ C u 0 2 L 2 + ∞ 0 (t + e) -1+2β-ε u 2 L 2 dt ≤ C α . Then taking f (t) = t 1-r (t + e) r+2β-ε in (3.2), we deduce that sup 0<t<∞ t 1-r (t + e) r+2β-ε ∇u(t) 2 L 2 + ∞ 0 t 1-r (t + e) r+2β-ε u t 2 L 2 dt ≤ C ∞ 0 (t + e) 2β-ε ( t t + e ) 1-r + ( t + e t ) r ] ∇u 2 L 2 dt exp{C u 0 4 L 2 } ≤ C α ,
which implies (1.9) and the second inequality of (1.7). This completes the proof of Theorem 1.3.

Application: Global existence of (1.1)

First we present a polynomial relation between the velocity and the density, which is the case between exponential and linear cases. In general, we consider the case of non-Lipschitz velocity, the loss of regularity will occur. With the non-Lipschitz velocity and logarithms regular density, we have the following proposition.

Proposition 5.1. For η > 0, let ρ 0 ∈ B (η+1) ln ∞,1 and ∇u ∈ L 1 (R + ; B 0 ∞,2 ). Then we have ρ ∈ L ∞ ((0, ∞); B η ln ∞,1
), and

(5.1) ρ(t) B η ln ∞,1 ≤ C ρ 0 B (η+1) ln ∞,1 ( t 0 ∇u B 0 ∞,2 dτ ) η+1 , for any t > 0.
Proof. First, we observe the continuity equation as follow: ρ = j≥-1 ρ j , where ρ j satisfies (5.2) ∂ t ρ j + u • ∇ρ j = 0, ρ j | t=0 = ∆ j ρ 0 .

Then we have

ρ j (t) B 1 4 ∞,∞ ≤ C ρ j (0) B 1 2
∞,∞ exp{C t 0 ∇u B 0 ∞2 dτ }, so that ∆ q ρ j (t) L ∞ ≤ C2 -1 2 ( q 2 -j) ∆ j ρ 0 L ∞ F (u), where F (u) = exp{C t 0 ∇u B 0 ∞2 dτ }. If q 2j > N, for a positive inter number N will be fixed later, we obtain that q j< q 2 -N ∆ q ρ j (t) L ∞ (2 + q) η ≤ CF (u)

q (2 + q) η j< q 2 -N 2 -1 2 ( q 2 -j) ∆ j ρ 0 L ∞ = CF (u) j 2 1 2 j ∆ j ρ 0 L ∞ q>2(N +j) (2 + q) η 2 -q 4 ≤ CF (u) j 2 1 2 j ∆ j ρ 0 L ∞ 2 -1 2 (N +j) (2 + 2(N + j)) η ≤ CF (u)2 -N 2 j ∆ j ρ 0 L ∞ (1 + N + j) η ≤ C2 -N 2 N η ρ 0 B η ln ∞,1
F (u).

On the other hand, we have

ρ j (t) B -3 4 ∞,∞ ≤ C ρ j (0) B -1 2 ∞,∞ F (u), which implies that ∆ q ρ j (t) L ∞ ≤ C2 -1 2 (j- 3q 
2 ) ∆ j ρ 0 L ∞ F (u). If j -3q 2 > N, then we obtain q j> 3q 2 +N ∆ q ρ j (t) L ∞ (2 + q) η ≤ CF (u) j 2 -1 2 j ∆ j ρ 0 L ∞ q< 2 3 (j-N )

(2 + q) η 2 3q 4

≤ CF (u)

j 2 -1 2 j ∆ j ρ 0 L ∞ 2 1 2 (j-N ) (2 + 2 3 (j -N )) η ≤ C2 -N 2 N η ρ 0 B η ln ∞,1
F (u).

Note that ∆ q ρ j (t) L ∞ ≤ ρ j (t) L ∞ ≤ ∆ j ρ 0 L ∞ , for q 2 -N ≤ j ≤ 3q 2 + N, we get that q q 2 -N ≤j≤ 3q 2 +N ∆ q ρ j (t) L ∞ (2 + q) η ≤ j ∆ j ρ 0 L ∞ 2 3 (j-N )≤q≤2(j+N )

(2 + q) η ≤ C j ∆ j ρ 0 L ∞ (2 + 2(j + N )) η+1 -(2 + 2 3 (j -N )) η+1 η + 1 ≤ CN η+1 ρ 0 B (η+1) ln ∞,1
.

Finally, we obtain that

ρ(t) B η ln ∞,1 ≤ q j (2 + q) η ∆ q ρ j (t) L ∞ ≤ CN η 2 -N 2 ρ 0 B η ln ∞,1 F (u) + CN η+1 ρ 0 B (η+1) ln ∞,1 ≤ CN η+1 ρ 0 B (η+1) ln ∞,1 (1 + 2 -N 2 F (u)),
where we use ρ 0 B η ln

∞,1 ≤ ρ 0 B (η+1) ln ∞,1
. We choose 2 

(5.3) ab B 0 ∞,2 ≤ C a B η ln ∞,1 b B 0 ∞,2 .
Proof. We use Bony's decomposition that ab = T a b + T b a + R(a, b).

For the first term, we have

∆ j T a b L ∞ ≤ |j-q|≤N S q-1 a L ∞ ∆ q b L ∞ ≤ b B 0 ∞,2 |j-q|≤N c q,2 k≤q-2 ∆ k a L ∞ ≤ a B η ln ∞,1 b B 0 ∞,2 |j-q|≤N c q,2 k≤q-2 c k,1 (2 + k) -η c j,2 a B η ln ∞,1 b B 0 ∞,2 ,
where we use η > 1.

To deal with T b a, one has

∆ j T b a L ∞ ≤ |j-q|≤N ∆ q a L ∞ -1≤k≤q-2 ∆ k b L ∞ ≤ a B η ln ∞,1 b B 0 ∞,2 |j-q|≤N (2 + q) -η √ q a B η ln ∞,1 b B 0 ∞,2 |j-q|≤N (2 + q) -(η-1 2 ) c j,2 a B η ln ∞,1 b B 0 ∞,2 ,
where we use again η > 1 so that q≥-1 (2 + q) -(2η-1) < ∞.

  g 6 (t)(1 + t) + g 4 (t)(1 + t) + g 4 (t)t α ≤ C α g 2 (t)(1 + t) -2β(p) + g 4 (t)(1 + t) + g 4 (t)t α .

	Taking g 2 (t) =	2 (e+t) ln(e+t) , then e	t 0 g 2 (s) ds = ln 2 (t + e) and
		ln 2 (t + e) u(t) 2 L 2			
		≤ C u 0	2 L 2 + C α	0	t	[	ln(s + e) (s + e) 1+2β(p) +	1 s + e	+	1 (s + e) 2-α ] ds
		≤ C α ln(t + e),					
	which gives								
	(4.2)			u(t) 2 L 2 ≤ C α ln -1 (t + e).
	Now, for t > 1, we have							

  1-r (t + e) r ln(t + e) in (3.2), obtain that≤ C α 1 + (t + e) ln -3 (t + e) ≤ C α (t + e) ln -3 (t + e),

	sup 0<t<∞	t 1-r (t + e) r ln(t + e) ∇u(t) 2 L 2 +	0	∞	t 1-r (t + e) r ln(t + e) u t	2 L 2 dt
	≤ C		0	∞	(	t t + e	) 1-r + ln(t + e) (	t t + e	) 1-r + (	t + e t	) r ∇u 2 L 2 dt exp{C u 0	4 L 2 }.
	Using (4.1), we get that		
									0	1	t -r ∇u(t) 2 L 2 dt ≤ C α	0	1	t α-r-1 (t + e) -α dt ≤ C α ,
	which implies										
	(4.4)											∇u(t) 2 L 2 ≤ C α t r-1 (t + e) -r ln -1 (t + e).
	Combining (4.3) and (4.4), for any t > 1, we get the revised estimates,
	(	0	t	u L 2 ∇u L 2 ds) 2
	≤ C α (	0	1	s	r-1 2 (s + e) -r 2 ln -1 2 (s + e) ds) 2 + C α (	1	t	s	r-1 2 (s + e) -r 2 ln -3 2 (s + e) ds) 2
			(							
	For t > 1, taking g 2 (t) =	5 (t+e) ln(t+e) , then e	t 0 g 2 (s) ds = ln 5 (t + e) and
				ln 5 (t + e) u(t) 2 L 2
	≤ C u 0	2 L 2 + C α	0	t	[	ln 4 (s + e) (s + e) 1+2β(p) +	ln 3 (s + e) ln ln(t + e) (s + e) 2	+	1 s + e	] ds
	≤ C α ln(t + e),
	from which, we obtain			
	(4.5) L 2 ≤ C We choose f ′ (t) = ln 2 (t + e) in (3.3), then u(t) 2
												sup	ln 2
											0<t<∞

t 0 1ρ L 2 u t L 2 ds) 2 ≤ C α ( t 0 s 1-r (s + e) r ln(s + e) u t 2 L 2 ds)( t 0 s r-1 (s + e) -r ln -1 (s + e) ds)

≤ C α ln ln(t + e) . α ln -4 (t + e).

  1-r (t + e) r ln 2 (t + e) in (3.2) to get that sup 0<t<∞ t 1-r (t + e) r ln 2 (t + e) ∇u(t) 2 L 2 +

							0	∞	t 1-r (t + e) r ln 2 (t + e) u t	2 L 2 dt
	≤ C	0	∞	ln(t + e)(	t t + e	) 1-r + ln 2 (t + e)[(	t t + e	) 1-r + (	t + e t	) r ] ∇u 2 L 2 dt exp{C u 0	4 L 2 }
	≤ C α .									
	Consequently, we obtain							
				(							

  -N 2 F (u) ∼ 1, i.e. N ∼ Now, we present the product law with logarithms Besov space and the usual Besov space. Proposition 5.2. Let η > 1, and a ∈ B η ln ∞,1 , b ∈ B 0 ∞,2 . Then ab ∈ B 0 ∞,2 , and

						t 0 ∇u B 0 ∞2 dτ, then
	ρ(t) B η ln ∞,1	≤ C ρ 0 B (η+1) ln ∞,1	(	0	t	∇u B 0 ∞2 dτ ) η+1 .

For the last term, we obtain that j≥-1

q≥-1

q≥-1

.

By summing up the above estimates, we get (5.3).

Now we are at the position to proof Theorem 1.4.

Proof. We rewrite the momentum equation of (1.1) as

from which, we get

Now we can estimate ∇u in the norm of

and recall (5.3), we obtain that

Let c 1 be a small enough positive constant, which will be determined later on, we denote

Then for any t ≤ T , the assumption (1.3) holds and

Note that p < 4 3 , we can find some positive ε such that 1 2 + 2β(p) -2ε > 1. Then using interpolation (3.4), and decay estimates (3.6), (3.8), we obtain that

2 ) exp(K 2 ). Combining (3.7), we get that

Recall the definition of K and G(ρ 0 , u 0 ), we deduce that (5.5)

as long as C 0 is sufficiently large and c 0 small enough in (1.11). This contradicts with (5.4) and it in turn shows that T = ∞. So the Theorem is proven.