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Introduction

In this paper, we consider the global existence of solutions to the following 2-D incompressible inhomogeneous Navier-Stokes equations with initial data in the scaling invariant Besov spaces and without size restriction for the initial velocity:

(1.1)

   ∂ t ρ + u • ∇ρ = 0, (t, x) ∈ R + × R 2 , ∂ t (ρu) + div(ρu ⊗ u) -div(µ(ρ)M) + ∇Π = 0, divu = 0,
where ρ, u = (u 1 , u 2 ) stand for the density and velocity of the fluid respectively, M = 1 2 (∂ i u j +∂ j u i ), Π is a scalar pressure function, and the viscosity coefficient µ(ρ) is a smooth, positive function on [0, ∞). Such system describes a fluid which is obtained by mixing two immiscible fluids that are incompressible and that have different densities. It may also describe a fluid containing a melted substance.

There is a wide literatures devoted to the mathematical study of the incompressible Navier-Stokes equations in the homogeneous case (where the density is a constant) or in the more physical case of inhomogeneous fluids. In the homogeneous case, the celebrated theorem of Leray [START_REF] Leray | Jean Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] on the existence of global weak solutions with finite energy in any space dimension is now a classical result. Moreover, in the two dimensional space, it is also classical that the Leray weak solution is in fact a global strong solution. In dimension larger than two, the Fujita-Kato theorem [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF] allows to construct global strong solutions under a smallness condition on the initial data comparing with the viscosity of the fluid. To obtain those types of results in the inhomogeneous case are the topics of many recent works dedicated to this system [START_REF] Abidi | Équation de Navier-Stokes avec densité et viscosité variables dans d'espace critique[END_REF][START_REF] Abidi | Existence globale pour un fluide inhomogéne[END_REF][START_REF] Abidi | On the wellposedness of 3-D inhomogeneous Navier-Stokes equations in the critical spaces[END_REF][START_REF] Abidi | Wellposedness of 3-D inhomogeneous Navier-Stokes equations with highly oscillating initial velocity feild[END_REF][START_REF] Antontsev | Boundary value problems in mechanics of nonhomogeneous fluids[END_REF][START_REF] Danchin | Density-dependent incompressible viscous fluids in critical spaces[END_REF][START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF][START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF][START_REF] Danchin | Incompressible flows with piecewise constant density[END_REF][START_REF] Desjardins | Regularity results for two-dimensional flows of multiphase viscous fluids[END_REF][START_REF] Germain | Equations de Navier-Stokes dans R 2 : existence et comportement asymptotique de solutions d'énergie infinie[END_REF][START_REF] Gui | Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity[END_REF][START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF]... Our main goal in this paper is to provide a global wellposedness result for the density-dependent incompressible Navier-Stokes equations with variable viscosity, in a critical functional framework which is invariant by the scaling of the equations and under a non-linear smallness condition on fluctuation of the initial density which has to be doubly exponential small compared with the size of the initial velocity. In the second part of the paper, we apply our methods combined with the techniques in [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF] to prove the global existence of the solution to (1.1) with piecewise constant initial density, which is away from vacuum and has small jumps at the interface. This latter problem is of a great interest from physical point of view as it represents the case of a immiscible mixture of fluids with different densities. We give in this manner a partial response of a question raised by Lions [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] concerning the propagation of the regularity of the boundary to a "density-patches".

We briefly describe in this paragraph some of the classical results for the inhomogeneous Navier-Stokes system. When the viscous coefficient equals some positive constant, Ladyženskaja and Solonnikov [START_REF] Ladyženskaja | The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. (Russian) Boundary value problems of mathematical physics, and related questions of the theory of functions, 8[END_REF] first established the unique resolvability of (1.1) in a bounded domain Ω with homogeneous Dirichlet boundary condition for u; similar result was obtained by Danchin [START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF] in R d with initial data in the almost critical Sobolev spaces; Simon [START_REF] Simon | Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure[END_REF] proved the global existence of weak solutions. In general, the global existence of weak solutions with finite energy to (1.1) with variable viscosity was proved by Lions in [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] (see also the references therein, and the monograph [START_REF] Antontsev | Boundary value problems in mechanics of nonhomogeneous fluids[END_REF]). Yet the regularity and uniqueness of such weak solutions is a big open question in the field of mathematical fluid mechanics, even in two space dimensions when the viscosity depends on the density. Except under the assumptions:

ρ 0 ∈ L ∞ (T 2 ), inf c>0 µ(ρ 0 ) c -1 L ∞ (T 2 )
≤ ǫ, and u 0 ∈ H 1 (T 2 ),

Desjardins [START_REF] Desjardins | Regularity results for two-dimensional flows of multiphase viscous fluids[END_REF] proved that Lions weak solution (ρ, u) satisfies u ∈ L ∞ ((0, T ); H 1 (T 2 )) and ρ ∈ L ∞ ((0, T ) × T 2 ) for any T < ∞. Moreover, with additional assumption on the initial density, he could also prove that u ∈ L 2 ((0, τ ); H 2 (T 2 )) for some short time τ. To understand this problem further, the third author to this paper proved the global wellposedness to a modified 2-D model problem of (1.1), which coincides with the 2-D inhomogeneous Navier-Stokes system with constant viscosity, with general initial data in [START_REF] Zhang | Global smooth solutions to the 2-D nonhomogeneous Navier-Stokes equations[END_REF]. Gui and Zhang [START_REF] Gui | Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity[END_REF] proved the global wellposedness of (1.1) with initial data satisfying ρ 0 -1 H s+1 being sufficiently small and u 0 ∈ H s (R 2 ) ∩ Ḣ-ε (R 2 ) for some s > 2 and 0 < ε < 1. However, the exact size of ρ 0 -1 H s+1 was not given in [START_REF] Gui | Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity[END_REF].

Very recently, Danchin and Mucha [START_REF] Danchin | Incompressible flows with piecewise constant density[END_REF] proved that: given initial density ρ 0 in L ∞ (Ω) with a positive lower bound and initial velocity u 0 ∈ H 2 (Ω) for some bounded smooth domain of R d , the system (1.1) with constant viscosity has a unique local solution. Furthermore, with the initial density being close enough to some positive constant, for any initial velocity in two space dimensions, and sufficiently small velocity in three space dimensions, they also proved its global wellposedness. We remark that the Lagrangian formulation for the describing the flow plays a key role in the analysis in [START_REF] Danchin | Incompressible flows with piecewise constant density[END_REF]. To prove the 2-D global result, they first applied energy method to obtain L ∞ (R + ; H 1 (Ω)) estimate for the velocity field u and L 2 (R + ; L 2 (Ω)) estimate for ∂ t u. Then the authors employed the classical maximal L p T (L q ) estimate for the linear Stokes operator to obtain the second order space derivative estimate for the velocity. Notice that when µ(ρ) depends on ρ, and the initial density is sufficiently close to some positive constant in L ∞ (R 2 ), one can recover L ∞ (R + ; H 1 (R 2 )) estimate for the velocity u and L 2 (R + ; L 2 (R 2 )) estimate for ∂ t u by using Desjardins' techniques from [START_REF] Desjardins | Regularity results for two-dimensional flows of multiphase viscous fluids[END_REF]. Yet we do not know then how to recover the second order space derivatives of the velocity. Therefore, I think it is a very challenging problem to prove Danchin and Mucha [START_REF] Danchin | Incompressible flows with piecewise constant density[END_REF] type results for (1.1) with variable viscosity.

When the density ρ is away from zero, we denote by

a def = 1 ρ -1 and µ(a) def = µ( 1 1+a
), then the system (1.1) can be equivalently reformulated as

(1.2)    ∂ t a + u • ∇a = 0, (t, x) ∈ R + × R 2 , ∂ t u + u • ∇u + (1 + a)(∇Π -div( µ(a)M) = 0, divu = 0.
Notice that just as the classical Navier-Stokes system (which corresponds to a = 0 in (1.2)), the inhomogeneous Navier-Stokes system (1.2) also has a scaling. In fact, if (a, u) solves (1.2) with initial data (a 0 , u 0 ), then for any ℓ > 0,

(1.3) (a, u) ℓ def = (a(ℓ 2 •, ℓ•), ℓu(ℓ 2 •, ℓ•)) and (a 0 , u 0 ) ℓ def = (a 0 (ℓ•), ℓu 0 (ℓ•))
(a, u) ℓ is also a solution of (1.2) with initial data (a 0 , u 0 ) ℓ .

It is easy to check that the norm of

B d p p,1 (R d ) × B -1+ d p p,1
(R d ) is scaling invariant under the scaling transformation (a 0 , u 0 ) ℓ given by (1.3). In [START_REF] Abidi | Équation de Navier-Stokes avec densité et viscosité variables dans d'espace critique[END_REF], Abidi proved in general space dimension d that: if

1 < p < 2d, 0 < µ < µ(ρ), given a 0 ∈ B d p p,1 (R d ) and u 0 ∈ B -1+ d p p,1 (R d ), (1.2) has a global solution provided that a 0 B d p p,1 + u 0 B -1+ d p p,1
≤ c 0 for some sufficiently small c 0 . Moreover, this solution is unique if 1 < p ≤ d. This result generalized the corresponding results in [START_REF] Danchin | Density-dependent incompressible viscous fluids in critical spaces[END_REF][START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF] and was improved by Abidi and Paicu in [START_REF] Abidi | Existence globale pour un fluide inhomogéne[END_REF] with a 0 ∈ B

d q q,1 (R d ) and u 0 ∈ B -1+ d p p,1
(R d ) for p, q satisfying some technical assumptions. Abidi, Gui and Zhang removed the smallness condition for a 0 in [START_REF] Abidi | On the wellposedness of 3-D inhomogeneous Navier-Stokes equations in the critical spaces[END_REF][START_REF] Abidi | Wellposedness of 3-D inhomogeneous Navier-Stokes equations with highly oscillating initial velocity feild[END_REF]. Notice that the main feature of the density space is to be a multiplier on the velocity space and this allows to define the nonlinear terms in the system (1.2). Recently, Danchin and Mucha [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF] proved a more general wellposedness result of (1.1) with µ(ρ) = µ > 0 by considering very rough densities in some multiplier spaces on the Besov spaces B -1+ d p p,1 (R d ) for 1 < p < 2d, which in particular completes the uniqueness result in [START_REF] Abidi | Équation de Navier-Stokes avec densité et viscosité variables dans d'espace critique[END_REF] for p ∈ (d, 2d) in the case when µ(ρ) = µ > 0.

On the other hand, motivated by [START_REF] Gui | Stability to the global solutions of 3-D Navier-Stokes equations[END_REF][START_REF] Paicu | Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces[END_REF][START_REF] Zhang | Erratum to: Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space[END_REF] concerning the global wellposedness of 3-D incompressible anisotropic Navier-Stokes system with the third component of the initial velocity field being large, we [START_REF] Paicu | Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system[END_REF] proved that: given a 0 ∈ B

3 q q,1 (R 3 ) and u 0 = (u h 0 , u 3 0 ) ∈ B -1+ 3 p p,1 (R 3 ) for 1 < q ≤ p < 6 and 1 q -1 p ≤ 1 3 , (1.
2) with µ(a) = µ > 0 has a unique global solution as long as

µ a 0 B 3 q q,1 + u h 0 B -1+ 3 p p,1 exp C 0 u 3 0 2 B -1+ 3 p p,1 µ 2 ≤ c 0 µ
for some sufficiently small c 0 . We emphasize that our proof in [START_REF] Paicu | Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system[END_REF] used in a fundamental way the algebraical structure of (1.2), namely div u = 0.

The first object of this paper is to improve the global wellposedness result in [START_REF] Gui | Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity[END_REF] so that given initial data in the scaling invariant Besov spaces, for any initial velocity, (1.2) has a global solution provided that the fluctuation of the initial density is sufficiently small, furthermore, its explicit dependence on the initial velocity will be given here.

Theorem 1.1. Let 1 < q ≤ p < 4, and

1 q -1 p ≤ 1 2 . Let a 0 ∈ B 2 q q,1 (R 2 ) and u 0 ∈ B -1+ 2 p p,1
(R 2 ) be a solenoidal vector field. Then there exist positive constants c 0 and C 0 , which depend on µ ′ L ∞ (-1,1) , such that if

(1.4) η def = a 0 B 2 q q,1 exp C 0 1 + µ 2 (0) exp C 0 µ 2 (0) u 0 2 B -1+ 2 p p,1 ≤ c 0 µ(0) 1 + µ(0) , (1.2) has a global solution a ∈ C([0, ∞); B 2 q q,1 (R 2 ))∩ L ∞ (R + ; B 2 q q,1 (R 2 )) and u ∈ C([0, ∞); B -1+ 2 p p,1 (R 2 ))∩ L ∞ (R + ; B -1+ 2 p p,1 (R 2 )) ∩ L 1 (R + ; B 1+ 2 p p,1 (R 2 )). If 1 p + 1 q ≥ 1, this solution is unique. Remark 1.1.
• The definitions of the functional spaces will be presented in Subsection 2.1. • We remark that compared with the finite energy solutions constructed in [START_REF] Danchin | Incompressible flows with piecewise constant density[END_REF], our solution here is not of finite energy and belongs to the critical spaces related to (1.2). While for the classical 2-D Navier-Stokes system, large infinite energy solution was proved by Gallagher and Planchon [START_REF] Gallagher | On global infinite energy solutions to the Navier-Stokes equations in two dimensions[END_REF] and Germain [START_REF] Germain | Equations de Navier-Stokes dans R 2 : existence et comportement asymptotique de solutions d'énergie infinie[END_REF].

It turns out that we can apply the main idea to prove Theorem 1.1 combined with the techniques in [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF] to remove the smallness condition for initial velocity in [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF] when the space dimension equals to 2. Toward this, we first recall the definition of multiplier spaces to Besov spaces from [START_REF] Maz | Theory of Sobolev Multipliers[END_REF]:

Definition 1.1. The multiplier space M(B s p,1 (R d )) of B s p,1 (R d ) is the set of distributions f such that f ψ ∈ B s p,1 (R d ) whenever ψ ∈ B s p,1 (R d ).
We endow this space with the norm

f M(B s p,1 ) def = sup ψ∈B s p,1 (R d ): ψ B s p,1 ≤1 ψf B s p,1 .
In [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF], Danchin and Mucha proved the following global wellposedness for (1.1) with constant viscosity: 

ρ 0 -1 M(B -1+ d p p,1 ) + µ -1 u 0 B -1+ d p p,1 ≤ c, system (1.1) with µ(ρ) = µ > 0 has a unique global solution (ρ, u) with ρ ∈ L ∞ (R + ; M(B -1+ d p p,1 (R d ))) and u ∈ C([0, ∞); B -1+ d p p,1 (R d )) ∩L 1 (R + ; B 1+ d p p,1 (R d )).
Motivated by [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF] and the proof of Theorem 1.1, here we consider similar global wellposedness of (1.2), which does not require any smallness assumption for u 0 .

Theorem 1.3. Let p ∈ (2, 4), a 0 ∈ M(B -1+ 2 p p,1 (R 2 )) with µ(a 0 ) ∈ M(B 2 p p,1 (R 2 )), and u 0 ∈ B -1+ 2 p p,1 (R 2 ).
Then there exist positive constants c 0 and C 0 such that if

(µ a 0 M(B -1+ 2 p p,1 ) + µ(a 0 ) -µ(0) M(B 2 p p,1 )
)

× exp C 0 1 + µ 2 (0) exp C 0 µ 2 (0) u 0 2 B -1+ 2 p p,1 ≤ c 0 µ(0), (1.5) (1.2) has a unique global solution (a, u) with a ∈ L ∞ (R + ; M(B -1+ 2 p p,1 (R 2 )) and u ∈ C([0, ∞); B -1+ 2 p p,1 (R 2 )) ∩L 1 (R + ; B 1+ 2 p p,1 (R 2 )).
Notice from [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF] that: let Ω 0 be a bounded C 1 domain of R 2 and ρ 0 = 1 + σχ Ω 0 for some sufficiently small constant σ, a 0 = 1 (R 2 ) be a solenoidal vector field. Let Ω 0 be a bounded C 1 domain of R 2 and ρ 0 = 1 + σχ Ω 0 for some small enough constant σ (compared

ρ 0 -1 = -σ 1+σ χ Ω 0 and µ(a 0 ) -µ(0) = (µ(1 + σ) -µ(1))χ Ω 0 belong to M(B -1+ 2 p p,1 (R 2 )) for 2 ≤ p <
to u 0 B -1+ 2 p p,1
). Then (1.1) has a unique global solution (ρ, u)

with u ∈ C([0, ∞); B -1+ 2 p p,1 (R 2 )) ∩ L 1 (R + ; B 1+ 2 p p,1 (R 2 )) and ρ(t) = 1 + σχ Ωt for Ω t = X u (t, Ω 0 ),
where X u (t, y) is determined by

(1.6) X u (t, y) = y + t 0 u(τ, X u (τ, y))dτ.
Besides, the measure of Ω t and the C 1 regularity of ∂Ω t are preserved for all time.

Remark 1.2.

• We have considered here the physical case of a density given by a discontinuous function (immiscible fluids) and of a viscous coefficient depending on the density of the fluid. In particular, our Corollary 1.1 removes the smallness condition for the initial velocity field in Corollary 1 of [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF]. In fact, for Ω 0 being a bounded C 2 domain of R 2 and u 0 ∈ L 2 (Ω) ∩ B 1 4,2 (Ω) (which is above the critical regularity of (1.1)), Danchin and Mucha [START_REF] Danchin | Incompressible flows with piecewise constant density[END_REF] can prove a similar global wellposedness result for (1.1) with constant viscosity.

• Given initial data a 0 , u 0 in the scaling invariant spaces:

a 0 ∈ L ∞ (R d ) and u 0 ∈ B -1+ d p p,r (R d ) for 1 < p < d, 1 < r < ∞,
and which satisfies some nonlinear smallness condition, we [START_REF] Huang | Global solutions to incompressible inhomogeneous fluid system with bounded density and non-Lipschitz velocity[END_REF] proved that (1.2) with µ(a) = µ > 0 has a global weak solution. And the uniqueness of such solution is in progress.

Scheme of the proof and organization of the paper. The strategy to the proof of both Theorem 1.1 and Theorem 1.3 is to seek a solution of (1.2) with the form u = v + w with (w, p) solving the classical Navier-Stokes system

(1.7)    ∂ t w + w • ∇w -µ∆w + ∇p = 0, (t, x) ∈ R + × R 2 , divw = 0, w| t=0 = u 0 , and (a, v, Π 1 ) solving (1.8)            ∂ t a + (v + w) • ∇a = 0, (t, x) ∈ R + × R 2 , ∂ t v + v • ∇v + w • ∇v + v • ∇w -(1 + a) div(μ(a)M(v)) + (1 + a)∇Π 1 = (1 + a) div[(μ(a) -µ)M(w)] + µa∆w -a∇p déf = F, div v = 0, (a, v)| t=0 = (a 0 , 0),
where and in what follows, we shall always denote µ(0) by µ.

In Section 2, we shall first collect some basic facts on Littlewood-Paley theory, and then present the estimates to the free transport equation and the pressure function determined by (1.8); in Section 3, we solve (1.7) for w with u 0 ∈ B -1+ 2 p p,1 (R 2 ) for 1 < p < 4. We should mention that because of the restriction to the index p in [START_REF] Abidi | Équation de Navier-Stokes avec densité et viscosité variables dans d'espace critique[END_REF][START_REF] Abidi | Wellposedness of 3-D inhomogeneous Navier-Stokes equations with highly oscillating initial velocity feild[END_REF], the proof here is much simpler than that in [START_REF] Gallagher | On global infinite energy solutions to the Navier-Stokes equations in two dimensions[END_REF][START_REF] Germain | Equations de Navier-Stokes dans R 2 : existence et comportement asymptotique de solutions d'énergie infinie[END_REF]. Then we prove Theorem 1.1 in Section 4. Finally along the same lines to the proof of Theorem 1.1, we present the proof of Theorem 1.3 in the last section.

Let us complete this introduction by the notations we shall use in this context. Notation. Let A,B be two operators, we denote [A; B] = AB -BA, the commutator between A and B. For a b, we mean that there is a uniform constant C, which may be different on different lines, such that a ≤ Cb. We shall denote by (a | b) the L 2 inner product of a and b. (d j ) j∈Z will be a generic element of ℓ 1 (Z) so that j∈Z d j = 1. For X a Banach space and I an interval of R, we denote by C(I; X) the set of continuous functions on I with values in X, and by L q (I; X) stands for the set of measurable functions on I with values in X, such that t -→ f (t) X belongs to L q (I).

Preliminary Estimates

2.1. Some Basic Facts on Littlewood-Paley Theory. For the convenience of the readers, we recall the following basic facts on Littlewood-Paley theory from [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]: for a ∈ S ′ (R 2 ), we set

∆ j a def = F -1 (ϕ(2 -j |ξ|) a), S j a def = F -1 (χ(2 -j |ξ|) a), (2.1)
where Fa and a denote the Fourier transform of the distribution a, ϕ(τ ) and χ(τ ) are smooth functions such that

Supp ϕ ⊂ τ ∈ R / 3 4 ≤ |τ | ≤ 8 3 and ∀τ > 0 , j∈Z ϕ(2 -j τ ) = 1, Supp χ ⊂ τ ∈ R / |τ | ≤ 4 3 and χ(τ ) + j≥0 ϕ(2 -j τ ) = 1.
We have the formal decomposition

u = j∈Z ∆ j u, ∀ u ∈ S ′ (R 2 )/P[R 2 ],
where P[R 2 ] is the set of polynomials (see [START_REF] Peetre | New thoughts on Besov spaces[END_REF]). Moreover, the Littlewood-Paley decomposition satisfies the property of almost orthogonality:

(2.2) ∆ j ∆ k u ≡ 0 if |j -k| ≥ 2 and ∆ j (S k-1 u∆ k v) ≡ 0 if |j -k| ≥ 5. Definition 2.1. [Definition 2.15 of [6]] Let (p, r) ∈ [1, +∞] 2 , s ∈ R . The homogeneous Besov space B s p,r (R 2 ) consists of those distributions u ∈ S ′ h (R 2 ), which means that u ∈ S ′ (R 2 ) and lim j→-∞ S j u L ∞ = 0 (see Definition 1.26 of [6]), such that u B s p,r def = 2 qs ∆ q u L p ℓ r (Z) < ∞.
In order to obtain a better description of the regularizing effect to the transport-diffusion equation, we will use Chemin-Lerner type spaces L λ T (B s p,r (R 2 )) (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for instance). 

f L λ T (B s p,r ) def = q∈Z 2 qrs T 0 ∆ q f (t) λ L p dt r λ 1 r < ∞,
with the usual change if r = ∞. For short, we just denote this space by L λ T (B s p,r ). We also need the following form of functional framework, which is a sort of generalization to the weighted Chemin-Lerner type norm defined [START_REF] Paicu | Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces[END_REF][START_REF] Paicu | Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system[END_REF]:

Definition 2.3. Let f (t) ∈ L 1 loc (R + ), f ( 
t) ≥ 0 and X be a Banach space. We define

u L 1 T,f (X) def = T 0 f (t) u(t) X dt. Lemma 2.1. Let B be a ball of R 2 , and C be a ring of R 2 ; let 1 ≤ p 2 ≤ p 1 ≤ ∞. Then there hold: If the support of â is included in 2 k B, then ∂ α x a L p 1 2 k(|α|+2( 1 p 2 -1 p 1 )) a L p 2 . If the support of â is included in 2 k C, then a L p 1 2 -kN sup |α|=N ∂ α x a L p 1 .
Lemma 2.2. Let θ be a smooth function supported in an annulus C of R d . There exists a constant C such that for any C 0,1 measure-preserving global diffeomorphism ψ over R d with inverse φ, any tempered distribution u with û supported in λC, any p ∈ [1, ∞] and any (λ, µ) ∈ (0, ∞) 2 , we have

θ(µ -1 D)(u • ψ) L p ≤ C u L p min( µ λ ∇φ L ∞ , λ µ ∇ψ L ∞ ).
Lemma 2.3. If the support of û is included in λC, then there exists a positive constant c, such that

e t∆ u L p e -cλ 2 t u L p for any p ∈ [1, ∞]. Lemma 2.4. Let p 1 ≥ p 2 ≥ 1, and s 1 ≤ 2 p 1 , s 2 ≤ 2 p 2 with s 1 + s 2 > 0. Let a ∈ B s 1 p 1 ,1 (R 2 ), b ∈ B s 2 p 2 ,1 (R 2 ). Then ab ∈ B s 1 +s 2 -2 p 1 p 1 ,1 (R 2 ) and ab B s 1 +s 2 -2 p 1 p 1 ,1 a B s 1 p 1 ,1 b B s 2 p 2 ,1 . Proposition 2.1. Let p ∈ (1, ∞), r ∈ [1, ∞] and s ∈ R. Let u 0 ∈ B s p,r (R 2 ) be a divergence-free field and g ∈ L 1 T (B s p,r ). Then the following system    ∂ t u -ν∆u + ∇Π = g, (t, x) ∈ R + × R 2 , div u = 0, u| t=0 = u 0 , has a unique solution (u, ∇Π) so that u L ∞ T (B s p,r ) + µ u L 1 T (B s+2 p,r ) + ∇Π L 1 T (B s p,r ) ≤ C u 0 B s p,r + g L 1 T (B s p,r ) . 2.2.
Estimates of the transport equation. The goal of this section is to investigate the transport equation in (1.8)

(2.3) ∂ t a + (v + w) • ∇a = 0, a| t=0 = a 0 .
More precisely, we shall prove the following proposition:

Proposition 2.2. Let 1 < q ≤ p with 1 q -1 p ≤ 1 2 . Let v, w ∈ L 1 ((0, T ), B 1+ 2 p p,1 (R 2
)) be divergence free vector fields, and a 0 ∈ B 2 q q,1 (R 2 ). We denote f (t)

def = w(t) B 1+ 2 p p,1 and a λ def = a exp -λ t 0 f (τ )dτ . Then (2.3) has a unique solution a ∈ C([0, T ]; B 2 q q,1 (R 2 )) so that (2.4) a λ L ∞ t (B 2 q q,1 ) + λ 2 a λ L 1 t,f (B 2 q q,1 ) ≤ a 0 B 2 q q,1 + C v L 1 t (B 1+ 2 p p,1 ) a λ L ∞ t (B 2 q q,1 )
for any t ∈ (0, T ] and λ large enough, and where a λ

L 1 t,f (B 2 q q,1 )
is given by Definition 2.3.

Proof. As both the existence and uniqueness of solution to (2.3) basically follows from (2.4). For simplicity, we just present the a priori estimate (2.4) for smooth enough solutions of (2.3). Indeed thanks to (2.3), we have

∂ t a λ + λf (t)a λ + (v + w)
• ∇a λ = 0. Applying ∆ j to the above equation and taking the L 2 inner product of the resulting equation with |∆ j a λ | q-2 ∆ j a λ (in the case when q ∈ (1, 2), we need a small modification to make this argument rigorous, which we omit here), we obtain

(2.5) 1 q d dt ∆ j a λ (t) q L q + λf (t) ∆ j a λ (t) q L q + ∆ j ((v + w) • ∇a λ ) |∆ j a λ | q-2 ∆ j a λ = 0.
Applying Bony's decomposition to (v + w) • ∇a λ gives rise to

(v + w) • ∇a λ = T (v+w) ∇a λ + T ∇a λ (v + w) + R((v + w), ∇a λ ).
One gets by using a standard commutator argument that

∆ j (T (v+w) ∇a λ ) |∆ j a λ | q-2 ∆ j a λ = |j-j ′ |≤5 [∆ j ; S j ′ -1 (v + w)]∆ j ′ ∇a λ |∆ j a λ | q-2 ∆ j a λ + (S j ′ -1 (v + w) -S j-1 (v + w))∆ j ∆ j ′ ∇a λ |∆ j a λ | q-2 ∆ j a λ + S j-1 (v + w)∇∆ j a λ |∆ j a λ | q-2 ∆ j a λ ,
as div v = div w = 0, the last term equals 0, from which and (2.5), we infer

∆ j a λ (t) L q + λ t 0 f (τ ) ∆ j a λ (τ ) L q dτ ≤ ∆ j a 0 L q + C |j-j ′ |≤5 [∆ j ; S j ′ -1 (v + w)]∆ j ′ ∇a λ L 1 t (L q ) + (S j ′ -1 (v + w) -S j-1 (v + w))∆ j ∆ j ′ ∇a λ L 1 t (L q ) + T ∇a λ (v + w) L 1 t (L q ) + R((v + w), ∇a λ ) L 1 t (L q ) .
(2.6)

We first get by applying the classical estimate on commutator (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for instance) and Definition 2.3 that

|j-j ′ |≤5 [∆ j ; S j ′ -1 (v + w)]∆ j ′ ∇a λ L 1 t (L q ) |j-j ′ |≤5 ∇S j ′ -1 v L 1 t (L ∞ ) ∆ j ′ a λ L ∞ (L q ) + t 0 ∇S j ′ -1 w(τ ) L ∞ ∆ j ′ a λ (τ ) L q dτ |j-j ′ |≤5 d j ′ 2 -j ′ 2 q v L 1 t (B 1+ 2 p p,1 ) a λ L ∞ t (B 2 q q,1 ) + t 0 w(τ ) B 1+ 2 p p,1 ∆ j ′ a λ (τ ) L q dτ d j 2 -j 2 q v L 1 t (B 1+ 2 p p,1 ) a λ L ∞ t (B 2 q q,1 ) + a λ L 1 t,f (B 2 q q,1 )
.

Applying Lemma 2.1 leads to |j-j ′ |≤5 (S j ′ -1 (v + w) -S j-1 (v + w))∆ j ∆ j ′ ∇a λ L 1 t (L q ) |j-j ′ |≤5 S j ′ -1 ∇v -S j-1 ∇v L 1 t (L ∞ ) ∆ j a λ L ∞ (L q ) + t 0 (S j ′ -1 ∇w -S j-1 ∇w)(τ ) L ∞ ∆ j ′ a λ (τ ) L q dτ d j 2 -j 2 q v L 1 t (B 1+ 2 p p,1 ) a λ L ∞ t (B 2 q q,1 ) + |j-j ′ |≤5 t 0 w(τ ) B 1+ 2 p p,1 ∆ j ′ a λ (τ ) L q dτ d j 2 -j 2 q v L 1 t (B 1+ 2 p p,1 ) a λ L ∞ t (B 2 q q,1 ) + a λ L 1 t,f (B 2 q q,1 )
.

On the other hand, as q ≤ p, let r be determined by 1 r = 1 q -1 p . Then we get that

T ∇a λ (v + w) L 1 t (L q ) |j-j ′ |≤5 S j ′ -1 ∇a λ L ∞ t (L r ) ∆ j ′ v L 1 t (L p ) + t 0 S j ′ -1 ∇a λ (τ ) L r ∆ j ′ w(τ ) L p dτ , now as 1 q -1 p ≤ 1 2 , one has S j ′ -1 ∇a λ L ∞ t (L r ) ℓ≤j ′ -2 2 ℓ(1+ 2 p ) ∆ ℓ a λ L ∞ t (L q ) l≤j ′ -2 d ℓ 2 ℓ(1+ 2 p -2 q ) a λ L ∞ t (B 2 q q,1 ) 2 j ′ (1+ 2 p -2 q ) a λ L ∞ t (B 2 q q,1 )
.

Applying Lemma 2.1 and Definition 2.3 once again gives, if

1 q -1 p < 1 2 |j-j ′ |≤5 t 0 S j ′ -1 ∇a λ (τ ) L r ∆ j ′ w(τ ) L p dτ 2 -j(1+ 2 p ) |j-j ′ |≤5 ℓ≤j ′ -2 2 ℓ(1+ 2 p ) t 0 ∆ ℓ a λ (τ ) L q w(τ ) B 1+ 2 p p,1 dτ 2 -j(1+ 2 p ) ℓ≤j+3 d ℓ 2 ℓ(1+ 2 p -2 q ) a λ L 1 t,f (B 2 q q,1 ) d j 2 -j 2 q a λ L 1 t,f (B 2 q q,1 )
.

In the case when 1 q -1 p = 1 2 , we have

j∈Z 2 j 2 q |j-j ′ |≤5 t 0 S j ′ -1 ∇a λ (τ ) L r ∆ j ′ w(τ ) L p dτ j∈Z ℓ≤j+3 2 ℓ(1+ 2 p ) t 0 d j (τ ) ∆ ℓ a λ (τ ) L q w(τ ) B 1+ 2 p p,1 dτ ℓ≤j+3 d ℓ a λ L 1 t,f (B 2 q q,1 ) a λ L 1 t,f (B 2 q q,1 )
.

As a consequence, we obtain

T ∇a λ (v + w) L 1 t (L q ) d j 2 -j 2 q ( v L 1 t (B 1+ 2 p p,1 ) a λ L ∞ t (B 2 q q,1 ) + a λ L 1 t,f (B 2 q q,1 )
).

For the last term in (2.6), we deduce from Lemma 2.1 that

R(v + w, ∇a λ ) L 1 t (L q ) 2 2j p j ′ ≥j-N 0 ∆ j ′ v L 1 t (L p ) ∆j ′ ∇a λ L ∞ t (L q ) + t 0 ∆ j ′ w(τ ) L p ∆j ′ ∇a λ (τ ) L q dτ 2 2j p j ′ ≥j-N 0 d j ′ 2 -j ′ ( 2 p + 2 q ) v L 1 t (B 1+ 2 p p,1 ) a λ L ∞ t (B 2 q q,1 ) + 2 -j ′ 2 p t 0 w(τ ) B 1+ 2 p p,1 ∆j ′ a λ (τ ) L q dτ 2 2j p j ′ ≥j-N 0 d j ′ 2 -j ′ ( 2 p + 2 q ) v L 1 t (B 1+ 2 p p,1 ) a λ L ∞ t (B 2 q q,1 ) + a λ L 1 t,f (B 2 q
q,1 )

d j 2 -j 2 q v L 1 t (B 1+ 2 p p,1 ) a λ L ∞ t (B 2 q q,1 ) + a λ L 1 t,f (B 2 q q,1 )
.

Substituting the above estimates into (2.6) and taking summation for j ∈ Z, we arrive at

a λ L ∞ t (B 2 q q,1 ) + λ a λ L 1 t,f (B 2 q q,1 ) ≤ a 0 B 2 q q,1 + C v L 1 t (B 1+ 2 p p,1 ) a λ L ∞ t (B 2 q q,1 ) + a λ L 1 t,f (B 2 q q,1 )
.

Taking λ ≥ 2C in the above inequality, we conclude the proof of (2.4).

2.3.

Estimates of the pressure function. In this subsection, we aim at providing the a priori estimate for ∇Π 1 determined by (1.8). We first get by taking div to the momentum equation of (1.8) that

-∆Π 1 = div(a∇Π 1 ) + div F -div(v • ∇v + w • ∇v + v • ∇w) + div[(1 + a) div (μ(a) -µ)M(v) ] + µ div(a∆v), (2.7) 
where F is given by (1.8).

Proposition 2.3. Let 1 < q ≤ p < 4. Let a ∈ L ∞ T (B 2 q q,1 ), w, v ∈ L 1 T (B 1+ 2 p p,1 ) ∩ L ∞ T (B -1+ 2 p p,1
) and

∇p ∈ L 1 T (B -1+ 2 p p,1
). For λ 1 , λ 2 > 0, we denote

f 1 (t) def = w(t) B 1+ 2 p p,1 + 1 µ ∇p(t) B -1+ 2 p p,1 , f 2 (t) def = w(t) 2 B 2 p p,1
and

Πλ def = Π 1 exp -λ 1 t 0 f 1 (τ )dτ -λ 2 t 0 f 2 (τ )dτ , (2.8)
and similar notations for aλ and vλ. Then (2.7) has a unique solution

∇Π 1 ∈ L 1 T (B -1+ 2 p p,1
) so that for any ǫ > 0, there holds ∇Πλ

L 1 t (B -1+ 2 p p,1 ) ≤ C 1 -C a L ∞ t (B 2 q q,1 )
ǫ vλ

L 1 t (B 1+ 2 p p,1 ) + v L ∞ t (B -1+ 2 p p,1 ) vλ L 1 t (B 1+ 2 p p,1 )
+ vλ

L 1 t,f 1 (B -1+ 2 p p,1 ) + 1 ǫ vλ L 1 t,f 2 (B -1+ 2 p p,1 ) + µ + C(1 + a L ∞ t (B 2 q q,1 )
) aλ

L 1 t,f 1 (B 2 q q,1 ) + a L ∞ t (B 2 q q,1 )
vλ

L 1 t (B 1+ 2 p p,1 )
(2.9)

provided that C a L ∞ t (B 2 q q,1 )
≤ 1 2 , where vλ

L 1 t,f (B -1+ 2 p p,1
) is given by Definition 2.3 and the positive constant C depends on µ ′ L ∞ (-1,1) . The proof of this proposition will mainly be based on the following lemmas: Lemma 2.5. Under the assumptions of Proposition 2.3, one has for any ǫ > 0

v • ∇w + w • ∇v L 1 t (B -1+ 2 p p,1 ) ǫ v L 1 t (B 1+ 2 p p,1 ) + v L 1 t,f 1 (B -1+ 2 p p,1 ) + 1 ǫ v L 1 t,f 2 (B -1+ 2 p p,1
) .

Proof. As div v = div w = 0, we have

v • ∇w + w • ∇v L 1 t (B -1+ 2 p p,1 ) vw L 1 t (B 2 p p,1 )
.

While we get by applying Bony's decomposition that

vw = T v w + T w v + R(v, w).
Notice that applying Lemma 2.1 leads to

∆ j (T v w) L 1 t (L p ) t 0 |k-j|≤5 S k-1 v L ∞ ∆ k w L p dτ t 0 d j (τ )2 -j(1+ 2 p ) w(τ ) B 1+ 2 p p,1 ℓ≤j 2 2 p ℓ ∆ ℓ v(τ ) L p dτ d j 2 -j 2 p t 0 v(τ ) B -1+ 2 p p,1 w(τ ) B 1+ 2 p p,1 dτ, and ∆ j (R(v, w)) L 1 t (L p ) 2 j 2 p t 0 k≥j-N 0 ∆ k v L p ∆ k w L p dτ 2 j 2 p t 0 k≥j-N 0 d k (τ )2 -k 4 p v(τ ) B -1+ 2 p p,1 w(τ ) B 1+ 2 p p,1 dτ d j 2 -j 2 p t 0 v(τ ) B -1+ 2 p p,1 w(τ ) B 1+ 2 p p,1 dτ.
It follows from the same line that

∆ j (T w v) L 1 t (L p ) t 0 |k-j|≤5 S k-1 w L ∞ ∆ k v L p dτ |k-j|≤5 t 0 w B 2 p p,1 ∆ k v L p dτ |k-j|≤5 t 0 2 -k w 2 B 2 p p,1 ∆ k v L p dτ 1 2 |k-j|≤5 t 0 2 k ∆ k v L p dτ 1 2 d j 2 -j 2 p 1 ǫ t 0 w(τ ) 2 B 2 p p,1 v(τ ) B -1+ 2 p p,1 dτ + ǫ t 0 v(τ ) B 1+ 2 p p,1 dτ .
The above estimates together with Definition 2.3 prove the lemma. Lemma 2.6. Let F be determined by (1.8). Then under the assumptions of Proposition 2.3, one has

F L 1 t (B -1+ 2 p p,1 ) ≤ Cµ + C(1 + a L ∞ t (B 2 q q,1 )
) a

L 1 t,f 1 (B 2 q q,1 )
.

for some positive constant C depending on µ ′ L ∞ (-1,1) .

Proof. Note that q ≤ p and 1 q + 1 p > 1 2 , we deduce by the product laws in Besov space that µa∆w -a∇p

L 1 t (B -1+ 2 p p,1 ) µ t 0 a B 2 q q,1 ( w B 1+ 2 p p,1 + 1 µ ∇p B -1+ 2 p p,1
) dτ µ a

L 1 t,f 1 (B 2 q q,1 )
. Along the same line, we get that

(1 + a) div[(μ(a) -µ)M(w)] B -1+ 2 p p,1 (1 + a B 2 q q,1 ) (μ(a) -µ)M(w) B 2 p p,1 (1 + a B 2 q q,1 ) μ(a) -µ B 2 q q,1 M(w) B 2 p p,1 ≤ C(1 + a B 2 q q,1 ) a B 2 q q,1 w B 1+ 2 p p,1
, for some positive constant C depending on µ ′ L ∞ (-1,1) as long as a L ∞ ≤ 1. This gives rise to

(1 + a) div[(μ(a) -µ)M(w)] L 1 t (B -1+ 2 p p,1 ) ≤ C(1 + a L ∞ t (B 2 q q,1 ) ) t 0 a B 2 q q,1 w B 1+ 2 p p,1 dτ ≤ C(1 + a L ∞ t (B 2 q q,1 )
) a

L 1 t,f 1 (B 2 q q,1 )
.

This finishes the proof of Lemma 2.6.

Now let us turn to the proof of Proposition 2.3.

Proof of Proposition 2.3. As both the existence and uniqueness parts of Proposition 2.3 basically follows from the uniform estimate (2.9) for appropriate approximate solutions of (2.7). For simplicity, we just prove (2.9) for smooth enough solutions of (2.7). Indeed thanks to (2.7), we have

∇Πλ = ∇(-∆) -1 div(a∇Πλ) + div Fλ -div(v • ∇vλ + vλ • ∇w + w • ∇vλ) + div (1 + a) div(( µ(a) -µ)M(vλ)) + µ div(a∆vλ) ,
from which, we deduce that ∇Πλ

L 1 t (B -1+ 2 p p,1 ) ≤C a∇Πλ L 1 t (B -1+ 2 p p,1 ) + Fλ L 1 t (B -1+ 2 p p,1 ) + v • ∇vλ L 1 t (B -1+ 2 p p,1 ) + vλ • ∇w + w • ∇vλ L 1 t (B -1+ 2 p p,1 ) + µ a∆vλ L 1 t (B -1+ 2 p p,1 ) + (1 + a) div(( µ(a) -µ)M(vλ)) L 1 t (B -1+ 2 p p,1
) .

(2.10) However as q ≤ p and 1 q + 1 p > 1 2 , applying standard product laws in Besov space leads to v • ∇vλ

L 1 t (B -1+ 2 p p,1 ) v L ∞ t (B -1+ 2 p p,1 ) vλ L 1 t (B 1+ 2 p p,1 )
, a∇Πλ

L 1 t (B -1+ 2 p p,1 ) a L ∞ t (B 2 q q,1 )
∇Πλ

L 1 t (B -1+ 2 p p,1
) , µ a∆vλ

L 1 t (B -1+ 2 p p,1 ) µ a L ∞ t (B 2 q q,1 )
vλ

L 1 t (B 1+ 2 p p,1 )
,

(1 + a) div(( µ(a) -µ)M(vλ)) L 1 t (B -1+ 2 p p,1 ) ≤ C(1 + a L ∞ t (B 2 q q,1 )
) a

L ∞ t (B 2 q q,1 )
vλ

L 1 t (B 1+ 2 p p,1 )
, for some positive constant C depending on µ ′ L ∞ (-1,1) as long as a L ∞ ≤ 1. This along with Lemmas 2.5 to 2.6 implies Proposition 2.3 provided that C a

L ∞ t (B 2 q q,1 ) ≤ 1 2 .
3. The global infinite energy solutions to classical 2-D Navier-Stokes system

In this section, we shall solve the global wellposedness of the classical Navier-Stokes system (1.7)

with initial data u 0 ∈ B -1+ 2 p p,1
(R 2 ) for 1 < p < 4, which is not of finite energy. In general, the global wellposedness to 2-D classical Navier-Stokes system with initial data in the scaling invariant Besov spaces and of infinite energy was solved in [START_REF] Gallagher | On global infinite energy solutions to the Navier-Stokes equations in two dimensions[END_REF][START_REF] Germain | Equations de Navier-Stokes dans R 2 : existence et comportement asymptotique de solutions d'énergie infinie[END_REF]. However considering the special structure of B -1+ 2 p p,1 (R 2 ) for 1 < p < 4, we shall provide a much simpler proof than that in [START_REF] Gallagher | On global infinite energy solutions to the Navier-Stokes equations in two dimensions[END_REF][START_REF] Germain | Equations de Navier-Stokes dans R 2 : existence et comportement asymptotique de solutions d'énergie infinie[END_REF], furthermore, more detailed information to this solution will be given here. More precisely, we shall split the solution w to (1.7) as w L + w with w L def = e µt∆ u 0 . Then it follows from (1.7) and Lemma 2.3 that

(3.1) w L L ∞ t (B -1+ 2 p p,1 ) + µ w L L 1 t (B 1+ 2 p p,1 ) ≤ C u 0 B -1+ 2 p p,1
, and w solves

(3.2)    ∂ t w + w • ∇ w + w • ∇w L + w L • ∇ w + w L • ∇w L -µ∆ w + ∇p = 0, div w = 0, w| t=0 = 0.
The main result of this section is as follows:

Proposition 3.1. Given solenoidal vector filed u 0 ∈ B -1+ 2 p p,1
(R 2 ) for p ∈ (1, 4), (1.7) has a unique solution w of the form:

w L + w, with w ∈ C([0, ∞); B 0 2,1 (R 2 ))∩ L ∞ (R + ; B 0 2,1 (R 2 ))∩L 1 (R + ; B 2 2,1 (R 2
)), and there holds w

L ∞ t (B -1+ 2 p p,1 ) + µ w L 1 t (B 1+ 2 p p,1 )
+ ∇p

L 1 t (B -1+ 2 p p,1 ) ≤C u 0 B -1+ 2 p p,1 (1 + u 0 B -1+ 2 p p,1 ) exp C µ 2 u 0 2 B -1+ 2 p p,1 . (3.3)
We start the proof of Proposition 3.1 by the following two technical lemmas.

Lemma 3.1. Let p ∈ [1, ∞], w L ∈ L ∞ t (B -1+ 2 p p,1 ) ∩ L 1 t (B 1+ 2 p p,1 ) and w ∈ L ∞ t (B 0 2,1 ) ∩ L 1 t (B 2
2,1 ) be divergence free vector fields, then for any ǫ > 0, one has

w • ∇w L + w L • ∇ w L 1 t (B 0 2,1 ) ǫ w L 1 t (B 2 2,1 ) + t 0 w L B 1+ 2 p p,1 + 1 ǫ w L 2 B 2 p p,1 w B 0 2,1 dτ.
Proof. The proof of this lemma basically follows from that of Lemma 2.5. Note that div w = div w L = 0, we have

w • ∇w L + w L • ∇ w L 1 t (B 0 2,1 ) ww L L 1 t (B 1 2,1
) , and we get by applying Bony's decomposition

ww L = T w L w + T ww L + R( w, w L ). Applying Lemma 2.1 yields ∆ j (T ww L ) L 1 t (L 2 ) t 0 |k-j|≤5 S k-1 w L 2 ∆ k w L L ∞ dτ d j 2 -j t 0 w L B 1+ 2 p p,1 w B 0 2,1 dτ, and ∆ j (R( w, w L )) L 1 t (L 2 ) t 0 2 j 2 p k≥j-N 0 ∆ k w L 2 ∆ k w L L p dτ t 0 2 j 2 p k≥j-N 0 d k (τ )2 -k(1+ 2 p ) w L B 1+ 2 p p,1 w B 0 2,1 dτ d j 2 -j t 0 w L B 1+ 2 p p,1 w B 0 2,1 dτ.
Along the same line, one has

∆ j (T w L w) L 1 t (L 2 ) t 0 |k-j|≤5 S k-1 w L L ∞ ∆ k w L 2 dτ |k-j|≤5 t 0 w L B 2 p p,1 ∆ k w L 2 dτ |k-j|≤5 t 0 2 -k w L 2 B 2 p p,1 ∆ k w L 2 dτ 1 2 |k-j|≤5 t 0 2 k ∆ k w L 2 dτ 1 2 d j 2 -j 1 ǫ t 0 w 2 B 2 p p,1 w B 0 2,1 dτ + ǫ t 0 w B 2 2,1 dτ .
By summing up the above estimates, we finish the proof of Lemma 3.1.

Lemma 3.2. Let p ∈ (1, 4) and w L be given at the beginning of this section, one has

(3.4) w L • ∇w L L 1 t (B 0 2,1 ) 1 µ u 0 2 B -1+ 2 p p,1 .
Proof. Indeed due to divw L = 0, one has

w L • ∇w L L 1 t (B 0 2,1 ) w L ⊗ w L L 1 t (B 1 2,1 ) ,
and thanks to Bony's decomposition, we get

w L ⊗ w L = 2T w L w L + R(w L , w L ).
We first deal with (3.4) for the case when 2 ≤ p < 4. In this case, we have p < 2p p-2 ≤ ∞, so that applying Lemma 2.1 gives

S k-1 w L L ∞ t (L 2p p-2 ) ℓ≤k-2 2 2ℓ( 1 p -p-2 2p ) ∆ ℓ w L L ∞ t (L p ) d k 2 2k p w L L ∞ t (B -1+ 2 p p,1 ) d k 2 2k p u 0 B -1+ 2 p p,1
, where we used (3.1) in the last step. Then applying Lemma 2.1 once again leads to

∆ j (T w L w L ) L 1 t (L 2 ) |k-j|≤5 S k-1 w L L ∞ t (L 2p p-2 ) ∆ k w L L 1 t (L p ) 1 µ d j 2 -j u 0 2 B -1+ 2 p p,1 . (3.5)
Similarly as 2 ≤ p < 4, we get by applying Lemma 2.1 that

∆ j (R(w L , w L )) L 1 t (L 2 ) 2 2j( 2 p -1 2 ) k≥j-N 0 ∆ k w L L ∞ t (L p ) ∆ k w L L 1 t (L p ) 1 µ 2 j( 4 p -1) k≥j-N 0 d k 2 -k 4 p u 0 2 B -1+ 2 p p,1 1 µ d j 2 -j u 0 2 B -1+ 2 p p,1
. This together with (3.5) proves (3.4) for p ∈ [START_REF] Abidi | Existence globale pour un fluide inhomogéne[END_REF][START_REF] Abidi | Wellposedness of 3-D inhomogeneous Navier-Stokes equations with highly oscillating initial velocity feild[END_REF].

On the other hand, when p ∈ (1, 2), let p ′ be determined by 1 p ′ = 1 -1 p , we deduce from Lemma 2.1 that

S k-1 w L L ∞ t (L p ′ ) ℓ≤k-2 2 2ℓ( 2 p -1) ∆ ℓ w L L ∞ t (L p ) d k 2 k( 2 p -1) w L L ∞ t (B -1+ 2 p p,1 ) d k 2 k( 2 p -1) u 0 B -1+ 2 p p,1
, and

∆ j (T w L w L ) L 1 t (L 2 ) 2 j |k-j|≤5 S k-1 w L L ∞ t (L p ′ ) ∆ k w L L 1 t (L p ) 1 µ d j 2 -j u 0 2 B -1+ 2 p p,1 . (3.6)
Along the same line, one has

∆ j (R(w L , w L )) L 1 t (L 2 ) 2 j k≥j-N 0 ∆ k w L L ∞ t (L p ′ ) ∆ k w L L 1 t (L p ) 1 µ 2 j k≥j-N 0 d k 2 -2k u 0 2 B -1+ 2 p p,1 1 µ d j 2 -j u 0 2 B -1+ 2 p p,1
. This together with (3.6) ensures (3.4) for p ∈ (1, 2).

With the above two technical lemmas, we now present the proof of Proposition 3.1.

Proof of Proposition 3.1. As the existence part of Proposition 3.1 essentially follows from (3.3). Again for simplicity, we just present the detailed proof to (3.3) for smooth enough solutions of (1.7). We first get by taking the L 2 inner product of (3.1) with w that 1 2

d dt w(t) 2 L 2 + µ ∇ w(t) 2 L 2 ≤ w 2 L 2 ∇w L L ∞ + w L 2 w L • ∇w L L 2 .
Applying Gronwall's inequality and then using (3.1), Lemma 3.2, we get that

w L ∞ t (L 2 ) ≤ w L • ∇w L L 1 t (L 2 ) exp ∇w L L 1 t (L ∞ ) ≤ C µ u 0 2 B -1+ 2 p p,1 exp C µ u 0 B -1+ 2 p p,1 ≤ C u 0 B -1+ 2 p p,1 exp C µ u 0 B -1+ 2 p p,1 , (3.7) and µ ∇ w 2 L 2 t (L 2 ) ≤ w 2 L ∞ t (L 2 ) ∇w L L 1 t (L ∞ ) + w L ∞ t (L 2 ) w L • ∇w L L 1 t (L 2 ) ≤ C µ u 0 3 B -1+ 2 p p,1 exp C µ u 0 B -1+ 2 p p,1 ≤ C u 0 2 B -1+ 2 p p,1 exp C µ u 0 B -1+ 2 p p,1 . (3.8)
On the other hand, we notice that

w • ∇ w L 1 t (B 0 2,1 ) ≤C t 0 w • ∇ w B 0 2,1 dτ ≤ C t 0 w Ḣ 1 2 ∇ w Ḣ 1 2 dτ ≤C t 0 w 1 2 L 2 ∇ w L 2 w 1 2 B 2 2,1
dτ.

So that it follows from (3.2), Proposition 2.1 and Lemma 3.1 that

w L ∞ t (B 0 2,1 ) + µ w L 1 t (B 2 2,1 ) + ∇p L 1 t (B 0 2,1 ) ≤ C w • ∇ w L 1 t (B 0 2,1 ) + w • ∇w L + w L • ∇ w L 1 t (B 0 2,1 ) + w L • ∇w L L 1 t (B 0 2,1 ) ≤ C ǫ w L 1 t (B 2 2,1 ) + w L ∞ t (L 2 ) ∇ w 2 L 2 t (L 2 ) + t 0 w L B 1+ 2 p p,1 + 1 ǫ w L 2 B 2 p p,1 w B 0 2,1 dτ + C µ u 0 2 B -1+ 2 p p,1
.

Taking ǫ = µ 2C in the above inequality and using (3.1), (3.8), we infer w

L ∞ t (B 0 2,1 ) + µ w L 1 t (B 2 2,1 ) + ∇p L 1 t (B 0 2,1 ) ≤ C exp C t 0 ( w L B 1+ 2 p p,1 + 1 µ w L 2 B 2 p p,1
) dτ

× C µ u 0 3 B -1+ 2 p p,1 exp C µ u 0 B -1+ 2 p p,1 + C µ u 0 2 B -1+ 2 p p,1 ≤ C u 0 B -1+ 2 p p,1 (1 + u 0 B -1+ 2 p p,1 ) exp C µ 2 u 0 2 B -1+ 2 p p,1 . (3.9)
Therefore, summing up (3.1) and (3.9) results in w

L ∞ t (B -1+ 2 p p,1 ) + µ w L 1 t (B 1+ 2 p p,1 )
+ ∇p

L 1 t (B -1+ 2 p p,1 ) ≤ w L L ∞ t (B -1+ 2 p p,1 ) + µ w L L 1 t (B 1+ 2 p p,1 )
+ w

L ∞ t (B -1+ 2 p p,1 ) + µ w L 1 t (B 1+ 2 p p,1 )
+ ∇p

L 1 t (B -1+ 2 p p,1 ) ≤C u 0 B -1+ 2 p p,1 (1 + u 0 B -1+ 2 p p,1 ) exp C µ 2 u 0 2 B -1+ 2 p p,1
, which gives rise to (3.3). The uniqueness part of Proposition 3.1 has been proved in [START_REF] Gallagher | On global infinite energy solutions to the Navier-Stokes equations in two dimensions[END_REF][START_REF] Germain | Equations de Navier-Stokes dans R 2 : existence et comportement asymptotique de solutions d'énergie infinie[END_REF]. This completes the proof of the proposition.

The proof of Theorem 1.1

The goal of this section is to present the proof of Theorem 1.1. In fact, given a 0 ∈ B

2 q q,1 (R 2 ), u 0 ∈ B -1+ 2 p p,1 (R 2 ) with a 0 B 2 q q,1
being sufficiently small and p, q satisfying the conditions listed in Theorem 1.1, it follows by a similar argument as that in [START_REF] Abidi | Existence globale pour un fluide inhomogéne[END_REF] that there exists a positive time T so that (1.2) has a unique solution (a, u, ∇Π) with

a ∈ C([0, T ]; B 2 q q,1 (R 2 )), u ∈ C([0, T ]; B -1+ 2 p p,1 (R 2 )) ∩ L 1 ((0, T ); B 1+ 2 p p,1 (R 2 )), ∇Π ∈ L 1 ((0, T ); B -1+ 2 p p,1 (R 2 )). (4.1) 
Moreover, if 1 p + 1 q ≥ 1, this solution is unique. We denote T * to be the largest possible time so that there holds (4.1). Hence the proof of Theorem 1.1 is reduced to show that T * = ∞ under the assumption of (1.4). Toward this, we split the velocity u as w + v, with (w, p), (a, v, Π 1 ) solving (1.7) and (1.8) respectively. Then thanks to Proposition 3.1, it remains to solve (1.8) globally.

4.1. The estimate of v. First we reformulate the v equation of (1.8) to be

∂ t v -µ∆v =F -(1 + a)∇Π 1 + µa∆v + (1 + a) div[( µ(a) -µ)M(v)] -(v • ∇v + v • ∇w + w • ∇v). (4.2)
Let f 1 (t), f 2 (t), aλ, vλ, ∇Πλ be given by (2.8), and

a λ 1 def = a exp -λ 1 t 0 f 1 (τ )dτ . Then it follows from (4.2) that ∂ t vλ + (λ 1 f 1 (t) + λ 2 f 2 (t))vλ -µ∆vλ = Fλ -(1 + a)∇Πλ + µa∆vλ + (1 + a) div[( µ(a) -µ)M(vλ)] -(v • ∇vλ + vλ • ∇w + w • ∇vλ).
Applying ∆ j to the above equation and taking the L 2 inner product of the resulting equation with |∆ j vλ| p-2 ∆ j vλ (in the case when p ∈ (1, 2), we need a small modification to make this argument rigorous, which we omit here), we obtain

1 p d dt ∆ j vλ p L p + (λ 1 f 1 (t) + λ 2 f 2 (t)) ∆ j vλ p L p -µ ∆∆ j vλ | |∆ j vλ| p-2 ∆ j vλ ≤ ∆ j Fλ L p + ∆ j ((1 + a)∇Πλ) L p + ∆ j ((1 + a) div[( µ(a) -µ)M(vλ)]) L p + µ ∆ j (a∆vλ) L p + ∆ j (v • ∇vλ + vλ • ∇w + w • ∇vλ) L p ∆ j vλ p-1 L p . (4.3) 
While applying Lemma A.5 of [START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat-conductive gases[END_REF] that

-∆∆ j vλ | |∆ j vλ| p-2 ∆ j vλ ≥ c2 2j ∆ j vλ p L p
for some positive constant c, from which and (4.3), we deduce that

∆ j vλ L ∞ t (L p ) + t 0 (λ 1 f 1 (t ′ ) + λ 2 f 2 (t ′ )) ∆ j vλ L p dt ′ + cµ ∆ j vλ L 1 t (L p ) ≤ ∆ j Fλ L 1 t (L p ) + ∆ j ((1 + a)∇Πλ) L 1 t (L p ) + ∆ j ((1 + a) div[( µ(a) -µ)M(vλ)]) L 1 t (L p ) + µ ∆ j (a∆vλ) L 1 t (L p ) + ∆ j (v • ∇vλ + vλ • ∇w + w • ∇vλ) L 1 t (L p ) .
This gives rise to vλ

L ∞ t (B -1+ 2 p p,1 ) + λ 1 vλ L 1 t,f 1 (B -1+ 2 p p,1 ) + λ 2 vλ L 1 t,f 2 (B -1+ 2 p p,1 ) + cµ vλ L 1 t (B 1+ 2 p p,1 ) ≤ C Fλ L 1 t (B -1+ 2 p p,1 ) + (1 + a)∇Πλ L 1 t (B -1+ 2 p p,1 ) + v L ∞ t (B -1+ 2 p p,1 ) vλ L 1 t (B 1+ 2 p p,1 ) + µ + C(1 + a L ∞ t (B 2 q q,1 )
) a

L ∞ t (B 2 q q,1 )
vλ

L 1 t (B 1+ 2 p p,1 ) + vλ • ∇w + w • ∇vλ L 1 t (B -1+ 2 p p,1 ) , (4.4) 
where the norm vλ

L 1 t,f (B -1+ 2 p p,1
) is given by Definition 2.3 and C is a positive constant depending

on µ ′ L ∞ (-1,1) as long as a L ∞ ≤ 1. Let (4.5) T def = sup t < T * , a L ∞ t (B 2 q q,1 )
≤ c 1 for some c 1 sufficiently small. Then (2.9) ensures that for t ≤ T

(1 + a)∇Πλ

L 1 t (B -1+ 2 p p,1 ) ≤C ǫ vλ L 1 t (B 1+ 2 p p,1 ) + v L ∞ t (B -1+ 2 p p,1 ) vλ L 1 t (B 1+ 2 p p,1 )
+ vλ

L 1 t,f 1 (B -1+ 2 p p,1 ) + 1 ǫ vλ L 1 t,f 2 (B -1+ 2 p p,1 ) + (1 + µ + a L ∞ t (B 2 q q,1 )
) aλ

L 1 t,f 1 (B 2 q q,1 ) + a L ∞ t (B 2 q q,1 )
vλ

L 1 t (B 1+ 2 p p,1 ) 
, from which, Lemma 2.5, we infer from (4.4) that vλ

L ∞ t (B -1+ 2 p p,1 ) + λ 1 vλ L 1 t,f 1 (B -1+ 2 p p,1 ) + λ 2 vλ L 1 t,f 2 (B -1+ 2 p p,1 ) + cµ vλ L 1 t (B 1+ 2 p p,1 )
≤ C ǫ vλ

L 1 t (B 1+ 2 p p,1 ) + v L ∞ t (B -1+ 2 p p,1 ) vλ L 1 t (B 1+ 2 p p,1 ) 
+ vλ

L 1 t,f 1 (B -1+ 2 p p,1 ) + 1 ǫ vλ L 1 t,f 2 (B -1+ 2 p p,1 ) + (1 + µ + a L ∞ t (B 2 q q,1 )
) aλ

L 1 t,f 1 (B 2 q q,1 ) + a L ∞ t (B 2 q q,1 )
vλ

L 1 t (B 1+ 2 p p,1 ) (4.6) 
for t ≤ T and some positive constant C depending on µ ′ L ∞ (-1,1) .

4.2.

The proof of Theorem 1.1. We get by taking λ = λ 1 in Proposition 2.2 that

(4.7) a λ 1 L ∞ t (B 2 q q,1 ) + λ 1 2 a λ 1 L 1 t,f 1 (B 2 q q,1 ) ≤ a 0 B 2 q q,1 + C v L 1 t (B 1+ 2 p p,1 ) a λ 1 L ∞ t (B 2 q q,1 )
.

Note that

aλ

L 1 t,f 1 (B 2 q q,1 ) ≤ a λ 1 L 1 t,f 1 (B 2 q q,1 )
, By summing up (4.6) and (4.7)×(1+µ) and choosing ε, λ 1 , λ 2 satisfying Cǫ = c 2 µ, λ 1 = 8C, λ 2 = 2C 2 cµ , we obtain

(1 + µ) a λ 1 L ∞ t (B 2 q q,1 )
+ vλ

L ∞ t (B -1+ 2 p p,1 ) + λ 1 2 1 + µ 2 a λ 1 L 1 t,f 1 (B 2 q q,1 )
+ vλ

L 1 t,f 1 (B -1+ 2 p p,1 ) + λ 2 2 vλ L 1 t,f 2 (B -1+ 2 p p,1 ) + cµ 2 vλ L 1 t (B 1+ 2 p p,1 ) ≤ (1 + µ) a 0 B 2 q q,1 + C 1 (1 + µ) v L 1 t (B 1+ 2 p p,1 ) a λ 1 L ∞ t (B 2 q q,1 ) + v L ∞ t (B -1+ 2 p p,1 ) vλ L 1 t (B 1+ 2 p p,1 ) + (1 + µ + a L ∞ t (B 2 q q,1 )
) a

L ∞ t (B 2 q q,1 )
vλ

L 1 t (B 1+ 2 p p,1 ) (4.8) 
for t ≤ T and some positive constant C 1 depending on µ ′ L ∞ (-1,1) . Now let c 2 be a small enough positive constant, which will be determined later on. We define Υ by (4.9)

Υ def = sup t < T * : (1 + µ) a L ∞ t (B 2 q q,1 ) + v L ∞ t (B -1+ 2 p p,1 ) + µ v L 1 t (B 1+ 2 p p,1 )
≤ c 2 µ .

(4.9) together with (4.5) implies that Υ ≤ T , if we take c 2 ≤ c 1 . We shall prove that Υ = ∞ under the assumption of (1.4). Otherwise, taking c 2 ≤ min c 12C )

+ 1 + µ 2 a λ 1 L ∞ t (B 2 q q,1 ) + cµ 4 vλ L 1 t (B 1+ 2 p p,1 ) ≤ (1 + µ) a 0 B 2 q q,1
, for t ≤ Υ. This together with (2.8) gives rise to

v L ∞ t (B -1+ 2 p p,1 ) + 1 + µ 2 a L ∞ t (B 2 q q,1 ) + cµ 4 v L 1 t (B 1+ 2 p p,1 ) ≤ (1 + µ) a 0 B 2 q q,1 exp C 2 t 0 w(τ ) B 1+ 2 p p,1 + 1 µ ∇p(τ ) B -1+ 2 p p,1 + 1 µ w(τ ) 2 B 2 p p,1 dτ , (4.10) 
for t ≤ Υ. Combining (4.10) with (3.3), we reach

v L ∞ t (B -1+ 2 p p,1 ) + 1 + µ 2 a L ∞ t (B 2 q q,1 ) + cµ 4 v L 1 t (B 1+ 2 p p,1 ) ≤ (1 + µ) a 0 B 2 q q,1 exp C 3 µ u 0 B -1+ 2 p p,1 (1 + u 0 B -1+ 2 p p,1 ) + C 2 3 µ 2 u 0 2 B -1+ 2 p p,1 (1 + u 0 2 B -1+ 2 p p,1 ) exp C 3 µ 2 u 0 2 B -1+ 2 p p,1 ≤ (1 + µ) a 0 B 2 q q,1 exp C 4 (1 + u 0 2 B -1+ 2 p p,1 ) exp C 4 µ 2 u 0 2 B -1+ 2 p p,1 ≤ (1 + µ) a 0 B 2 q q,1 exp C(1 + µ 2 ) exp C µ 2 u 0 2 B -1+ 2 p p,1
for t ≤ Υ and some positive constants C which depends on µ ′ L ∞ (-1,1) . If we take C 0 large enough and c 0 sufficiently small in (1.4), which depend on µ ′ L ∞ (-1,1) , there holds

(1 + µ) a L ∞ t (B 2 q q,1 ) + v L ∞ t (B -1+ 2 p p,1 ) + µ v L 1 t (B 1+ 2 p p,1 ) ≤ c 2 2 µ
for t ≤ Υ, which contradicts with (4.9). Whence we conclude that Υ = T * = ∞. This completes the proof of Theorem 1.1

The proof of Theorem 1.3

The proof of Theorem 1.3 basically follows the same line of the proof to Theorem 1.1. More precisely, 5.1. Estimates of the transport equation. As we shall not use Lagrange approach in [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF], we need first to investigate the following transport equation (5.1)

∂ t f + u • ∇f = 0, f | t=0 = f 0 with initial data f 0 in multiplier space of B s p,1 (R 2 ) . Lemma 5.1. Let f ∈ B s p,1 (R d ) with -1 < s < 1, and u ∈ L 1 ((0, T ); Lip(R d ))
. Let X u be the flow map determined by (1.6).

Then f • X u ∈ L ∞ ((0, T ); B s p,1 (R d ))
, and there holds

(5.2) f • X u L ∞ t (B s p,1 ) ≤ C f B s p,1 exp C t 0 ∇u(τ ) L ∞ dτ for t ≤ T. Proof. Let f ℓ def = ∆ ℓ f, we deduce from Lemma 2.2 that ∆ j (f ℓ • X u ) L ∞ t (L p ) ≤ Cd ℓ 2 -ℓs f B s p,1 min 2 j-ℓ , 2 ℓ-j exp C t 0 ∇u(τ ) L ∞ dτ ,
from which and -1 < s < 1, we infer for any j ∈ Z

∆ j (f • X u ) L ∞ t (L p ) ≤ ℓ<j + ℓ≥j ∆ j (f ℓ • X u ) L ∞ t (L p ) ≤C f B s p,1 ℓ<j d ℓ 2 -ℓs 2 ℓ-j + ℓ≥j d ℓ 2 -ℓs 2 j-ℓ ) exp C t 0 ∇u(τ ) L ∞ dτ ≤Cd j 2 -js f B s p,1 exp C t 0 ∇u(τ ) L ∞ dτ , (5.3) 
this together with Definition 2.2 implies (5.2), and we complete the proof of the lemma.

Remark 5.1. The case when d p ≥ 1, s ∈ (-1, d p ), and u ∈ L 1 ((0, T ); B

1+ d p (R d ))
, we have a similar version of Lemma 5.1. For simplicity, we just present the case when d p = 1. Instead of (5.2), we shall prove

(5.4) f • X u L ∞ t (B 1 p,1 ) ≤ C f B 1 p,1 (1 + u L 1 t (B 2 p,1 ) ) exp C t 0 ∇u(τ ) L ∞ dτ .
We first deduce from (5.3) that

(5.5) f • X u L ∞ t (B 1 p,∞ ) ≤ C f B 1 p,1 exp C t 0 ∇u(τ ) L ∞ dτ .
While we get by taking ∇ y to (1.6) that

∇ y X u (t, y) = Id + t 0 ∇u(τ, X u (τ, y))∇ y X u (t, y) dτ,
from which, and the standard product laws in Besov spaces, we infer

∇ y X u -Id L ∞ t (B 1 p,∞ ) ≤C t 0 ∇u(τ, X u (τ, •)) B 1 p,∞ (1 + ∇ y X u (t, •) L ∞ ) + ∇u(τ, •) L ∞ ∇ y X u -Id B 1
p,∞ dτ. Applying Gronwall's inequality and (5.5) gives

(5.6) ∇ y X u -Id L ∞ t (B 1 p,∞ ) ≤ C u L 1 t (B 2 p,1 ) exp C t 0 ∇u(τ ) L ∞ dτ .
On the other hand, notice that

∇ y (f • X u ) = ∇f • X u (∇ y X u -Id) + ∇f • X u ,
from which and Bony's decomposition, we infer f

•X u L ∞ t (B 1 p,1 ) = ∇ y (f • X u ) L ∞ t (B 0 p,1 ) ≤C ∇f • X u L ∞ t (B 0 p,1 ) 1 + ∇ y X u -Id L ∞ t (L ∞ ) + ∇ y X u -Id L ∞ t (B 1 p,∞ ) .
(5.7)

While applying (5.2)

yields ∇f • X u L ∞ t (B 0 p,1 ) ≤ C f B 1 p,1 exp C t 0 ∇u(τ ) L ∞ dτ .
This together with (5.6) and (5.7) enures (5.4).

The main result of this subsection is as follows:

Proposition 5.1. Let 2 < p < 4, -1 < s ≤ 2 p and u ∈ L 1 ((0, T ), B 1+ 2 p p,1 (R 2 
)) be a divergence free vector fields. Then given f 0 ∈ M(B s p,1 (R 2 )), (5.1) has a unique solution f ∈ L ∞ ((0, T ); M(B s p,1 (R 2 ))), moreover, there holds

(5.8) f L ∞ t (M(B s p,1 )) ≤ C f 0 M(B s p,1 ) exp C t 0 ∇u(τ ) L ∞ dτ
for any t ∈ (0, T ].

Proof. Both the existence and uniqueness part of Proposition 5.1 follows from (5.8). Indeed let X u be the flow map determined by (1.6). Then we infer from (5.1) that f (t, x) = f 0 (X -1 u (t, x)), from which, Definition 1.1 and Lemma 5.1, we infer

f (t) M(B s p,1 ) = sup ψ B s p,1 =1 ψf (t) B s p,1 = sup ψ B s p,1 =1 (ψ • X u (t)f 0 ) • X -1 u (t) B s p,1 ≤C sup ψ B s p,1 =1 ψ • X u (t)f 0 B s p,1 exp C t 0 ∇u(τ ) L ∞ dτ ,
applying Lemma 5.1 once again leads to

f (t) M(B s p,1 ) ≤C f 0 M(B s p,1 ) exp C t 0 ∇u(τ ) L ∞ sup ψ B s p,1 =1 ψ • X u (t) B s p,1 ≤C f 0 M(B s p,1 ) exp C t 0 ∇u(τ ) L ∞ sup ψ B s p,1 =1 ψ B s p,1 ≤C f 0 M(B s p,1 ) exp C t 0 ∇u(τ ) L ∞ for any t ≤ T.
This completes the proof of Proposition 5.1.

5.2.

Estimates of the pressure. In this subsection, we aim at providing similar version of Proposition 2.3 in the case when a ∈ L ∞ ((0, T ); M(B

-1+ 2 p p,1 (R 2 ))) and µ(a)-µ ∈ L ∞ ((0, T ); M(B 2 p p,1 (R 2 ))). Proposition 5.2. Let p ∈ [2, 4), a ∈ L ∞ ((0, T ); M(B -1+ 2 p p,1 (R 2 ))) and µ(a) -µ ∈ L ∞ ((0, T ); M(B 2 p p,1 (R 2 ))). Let w, v ∈ L ∞ T (B -1+ 2 p p,1 ) ∩ L 1 T (B 1+ 2 p p,1 ) and ∇p ∈ L 1 T (B -1+ 2 p p,1
). Then (2.7) has a unique solution with

∇Π 1 ∈ L 1 T (B -1+ 2 p p,1
), and for any ǫ > 0, t ≤ T, there holds ∇Πλ

L 1 t (B -1+ 2 p p,1 ) ≤ C 1 -C a L ∞ T (M(B -1+ 2 p p,1
)) ǫ vλ

L 1 t (B 1+ 2 p p,1 ) + v L ∞ t (B -1+ 2 p p,1 ) vλ L 1 t (B 1+ 2 p p,1 )
+ vλ

L 1 t,f 1 (B -1+ 2 p p,1 ) + 1 ǫ vλ L 1 t,f 2 (B -1+ 2 p p,1 ) + vλ L 1 t (B 1+ 2 p p,1 ) + t 0 f 1 (τ )dτ µ a L ∞ t (M(B -1+ 2 p p,1
))

+ (1 + a L ∞ t (M(B -1+ 2 p p,1 )) ) µ(a) -µ L ∞ t (M(B 2 p p, 1 
))

(5.9)

provided that C a L ∞ T (M(B -1+ 2 p p,1
))

≤ 1 2 , where f 1 (t), f 2 (t) and Πλ, vλ are defined by (2.8).

Proof. Similar to the proof of Proposition 2.3, we just present the proof of (5.9) for smooth enough solutions of (2.7). Indeed along the same line to the proof of Proposition 2.3, we have (2.10). While applying Definition 1.1 and standard product laws in Besov spaces leads to

v • ∇vλ L 1 t (B -1+ 2 p p,1 ) v L ∞ t (B -1+ 2 p p,1 ) vλ L 1 t (B 1+ 2 p p,1 )
, a∇Πλ

L 1 t (B -1+ 2 p p,1 ) a L ∞ t (M(B -1+ 2 p p,1 )) ∇Πλ L 1 t (B -1+ 2 p p,1 ) , a∆vλ L 1 t (B -1+ 2 p p,1 ) a L ∞ t (M(B -1+ 2 p p,1 )) vλ L 1 t (B 1+ 2 p p,1 )
, a(µ∆w -∇p)

L 1 t (B -1+ 2 p p,1 ) µ a L ∞ t (M(B -1+ 2 p p,1 )) t 0 f 1 (τ ) dτ,

and

(1 + a) div(( µ(a) -µ)M(vλ))

L 1 t (B -1+ 2 p p,1 ) (1 + a L ∞ t (M(B -1+ 2 p p,1 )) ) µ(a) -µ L ∞ t (M(B 2 p p,1 )) vλ L 1 t (B 1+ 2 p p,1 )
, (5.11)

(1 + a) div(( µ(a) -µ)M(w)) L 1 t (B -1+ 2 p p,1 ) (1 + a L ∞ t (M(B -1+ 2 p p,1 )) ) µ(a) -µ L ∞ t (M(B 2 p p,1 )) t 0 f 1 (τ ) dτ, so that Fλ L 1 t (B -1+ 2 p p,1 ) ≤ a(µ∆w -∇p) L 1 t (B -1+ 2 p p,1 ) + (1 + a) div(( µ(a) -µ)M(w)) L 1 t (B -1+ 2 p p,1 ) µ a L ∞ t (M(B -1+ 2 p p,1 )) + (1 + a L ∞ t (M(B -1+ 2 p p,1 )) ) µ(a) -µ L ∞ t (M(B 2 
We denote by T * the largest possible time so that there holds (5.11). Hence the proof of Theorem 1.3 is reduced to show that T * = ∞ provided that there holds (1.5). Toward this, as in the proof of Theorem 1.1, we split the velocity field u as w + v, with w, (a, v) solving (1.7) and (1.8) respectively. Then thanks to Proposition 3.1, it remains to solve (1.8) globally. In order to do so, let f 1 (t), f 2 (t), vλ, ∇Πλ be given by (2.8), along the same line to the proof of Theorem ≤ c 1 µ for some c 1 being sufficiently small. Then we get by substituting (5.9) and (5.10) into (5.12) that for t ≤ T vλ + µ( a

L ∞ t (
L ∞ t (M(B -1+ 2 p p,1
))

+ v L 1 t (B 1+ 2 p p,1 )
) ≤ c 2 µ . (5.16) (5.13) and (5.16) implies that Υ ≤ T if we take c 2 ≤ c 1 . We shall prove that Υ = ∞ under the assumption (1.5) (5.17)

On the other hand, notice from (1.8) that both a and µ(a) -µ satisfy (5.1) so that applying Proposition 5.1 gives rise to (5.18) a ) .

L ∞ t (
Then we get by summing up (5.17 
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Now let c 2

 2 be a small enough positive constant, which will be determined later on. We define Υ by Υ def = sup t < T * : v

f 1

 1 (τ )dτ for t ≤ Υ.

f 1

 1 (τ )dτ + 1 ,

  1.1, we deduce from (4.3) that

		vλ	L ∞ t (B p,1 -1+ 2 p	)	+ λ 1 vλ	L 1 t,f 1	(B p,1 -1+ 2 p	)	+ λ 2 vλ	L 1 t,f 2	(B p,1 -1+ 2 p	)	+ cµ vλ	L 1 t (B p,1 ) 1+ 2 p
	(5.12)	≤ C Fλ	L 1 t (B p,1 -1+ 2 p	)	+ (1 + a)∇Πλ L 1 t (B -1+ 2 p p,1 )	L 1 t (B p,1 -1+ 2 p + µ a L ∞ ) t (M(B + v p,1 L ∞ t (B p,1 -1+ 2 p -1+ 2 p )) vλ	) L 1 vλ t (B p,1 ) L 1 t (B p,1 ) 1+ 2 p 1+ 2 p
														L 1 t (B p,1 -1+ 2 p	)	,
	where the norm vλ	L 1 t,f (B p,1 -1+ 2 p	)	is given by Definition 2.3.
	We denote												
	(5.13)	T def = sup t < T * , µ a	L ∞ t (M(B p,1 -1+ 2 p

+ vλ • ∇w + w • ∇vλ + (1 + a) div(( µ(a) -µ)M(vλ))

  BChoosing ε, λ 1 and λ 2 in (5.14) so that Cǫ = cµ 4 , λ 1 = 2C, λ 2 = 8C 2 cµ and c 1 ≤ c 4C , we obtain

		vλ	L ∞ t (B p,1 -1+ 2 p	)	+	λ 1 2		vλ	L 1 t,f 1	(B p,1 -1+ 2 p	)	+	λ 2 2	vλ	L 1 t,f 2	(B p,1 -1+ 2 p	)	+	cµ 2	vλ	L 1 t (B p,1 ) 1+ 2 p
		≤ C 1 v	L ∞ t (B p,1 -1+ 2 p	)	vλ	L 1 t (B p,1 ) 1+ 2 p	+ µ a	L ∞ t (M(B p,1 -1+ 2 p
				-1+ 2 p p,1	)	+ λ 1 vλ		L 1 t,f 1	(B p,1 -1+ 2 p	)	+ λ 2 vλ	L 1 t,f 2	(B p,1 -1+ 2 p	)	+ cµ vλ	L 1 t (B p,1 ) 1+ 2 p
	(5.14)	≤ C ǫ vλ	L 1 t (B p,1 ) 1+ 2 p	+ v		L ∞ t (B p,1 -1+ 2 p	)	vλ	L 1 t (B p,1 ) 1+ 2 p	+ vλ	L 1 t,f 1	(B p,1 -1+ 2 p	)
		+	1 ǫ	vλ	L 1 t,f 2	(B p,1 -1+ 2 p	)	+ µ a	L ∞ t (M(B p,1 -1+ 2 p	))	+ µ(a) -µ	L ∞ t (M(B p,1 )) 2 p	0	t	f 1 (τ ) dτ .

  . Otherwise, taking c 2 ≤ c 8C 1 , we deduce form (5.15) that

	vλ	L ∞ t (B p,1 -1+ 2 p	)	+	cµ 4	vλ	L 1 t (B p,1 ) 1+ 2 p
	≤ C(µ a	L ∞ t (M(B p,1 -1+ 2 p

  M(B

			-1+ 2 p p,1	))	≤ C a 0	M(B p,1 -1+ 2 p	)	exp C( v	L 1 t (B p,1 ) 1+ 2 p	+ w	L 1 t (B p,1 ) 1+ 2 p	) ,
	and									
	(5.19)	µ(a) -µ	L ∞ t (M(B p,1 )) 2 p	≤ C µ(a 0 ) -µ	M(B p,1 ) 2 p	exp C( v	L 1 t (B p,1 ) 1+ 2 p	+ w	L 1 t (B p,1 ) 1+ 2 p
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for t ≤ Υ. This together with (2.8) gives rise to

dτ , from which and (3.3), we infer v

))

)

for t ≤ Υ and some positive constants C which depends on c and c 2 . If we take C 0 large enough and c 0 sufficiently small in (1.5), there holds

) ≤ c 2 2 µ for t ≤ Υ, which contradicts with (5.16). Whence we conclude that Υ = T * = ∞. This completes the proof of Theorem 1.3