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Abstract

This paper presents a path-based distance where local displacement costs vary

both according to the displacement vector and with the travelled distance. The

corresponding distance transform algorithm is similar in its form to classical

propagation-based algorithms, but the more variable distance increments are

either stored in look-up-tables or computed on-the-fly. These distances and

distance transform extend neighborhood-sequence distances, chamfer distances

and generalized distances based on Minkowski sums. We introduce algorithms to

compute a translated version of a neighborhood sequence distance map both for

periodic and aperiodic sequences and a method to derive the centered distance

map. A decomposition of the grid neighbors, in Z2 and Z3, allows to significantly

decrease the number of displacement vectors needed for the distance transform.

Overall, the distance transform can be computed with minimal delay, without

the need to wait for the whole input image before beginning to provide the result
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1. Introduction

In [1] discrete distances were introduced along with sequential algorithms to

compute the distance transform (DT) of a binary image, where each point is

mapped to its distance to the background. These discrete distances are built

from adjacency and connected paths (path-based distances): the distance be-

tween two points is equal to the cost of the shortest path that joins them. For

distance d4 (“d ” in [1]), defined in the square grid Z2, each point has four neigh-

bors located at its top, left, bottom and right edges. Similarly, for distance d8

(“d∗” in [1]), each point has four extra diagonally located neighbors. In both

cases, d4 and d8, the cost of a path is defined as the number of displacements.

These simple distances have been extended in different ways, by changing the

neighborhood depending on the travelled distance [2, 3], by weighting displace-

ments [3, 4], or even by a mixed approach of weighted neighborhood sequence

paths [5].

Section 2 presents definitions of distances, balls and some properties of non-

decreasing integer sequences that will be used later. Section 3 introduces a

new generalization of path-based distances where displacement costs vary both

on the displacement vector and on the travelled distance. An application is

presented in Section 4 for the efficient computation of neighborhood-sequence

DT in 2D and 3D.

2. Preliminaries

2.1. Lambek-Moser inverse of a integer sequence [6].

Let the function f define a non-decreasing sequence of integers (f(1), f(2), . . . )

For the sake of simplicity, we call f a sequence. The inverse sequence of f , de-

noted by f†, is a non-decreasing sequence of integers defined by:

f(m) < n ⇔ f†(n) 6< m . (1)

f†(n) can be seen as the count of values less than n in f , the last index of

a value less than n in f , the index that precedes the first value greater than or
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equal to n:

f†(n) = Card
({
m : f(m) < n

})

= max
{
m : f(m) < n

}
or 0 if f(1) ≥ n or ∞ if ∀m, f(m) < n

= min
{
m : f(m) ≥ n

}
− 1 or ∞ if ∀m, f(m) < n . (2)

Table 1 shows a non-decreasing sequence f and its inverse f†. f†(6) = 3

because there are exactly 3 values less than 6 in f : f(1), f(2) and f(3).

An interesting property of a sequence f and its inverse f† is that, by adding

the rank of each term to these two sequences, we obtain two complementary

sequences f(m) + m and f†(n) + n [6], as shown in Table 1. This property

extends the results given by Ostrowski, Hyslop, and Aitken [7] about Beatty

sequences [8]. From [6], we deduce that the inverse of the sequence f(m) =

bτmc with a scalar τ , is f†(n) = dnτ − 1e so f(m) + m = b(1 + τ)mc and

f†(n) +n = d(1 + 1
τ )n− 1e are two complementary sequences. If τ is irrational,

these sequences are Beatty sequences and, for any positive n, d(1 + 1
τ )n− 1e is

equal to b(1 + 1
τ )nc as given in [8].

Hajdu and Hajdu introduced Beatty sequences in the context of neighbor-

hood sequence-distances [9]. Beside their interest in defining neighborhood se-

quences, Lambek-Moser inverse sequences will be used in following Section 3.2

as a link between the propagation of distance values and the construction of

disks. With Proposition 1, we introduce a new use of the Lambek-Moser inverse

to iterate over non-decreasing integer sequences.

Proposition 1. f†(f(m) + 1) + 1 is the rank of the smallest term greater than

m where f increases.

3
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m or n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f(n) 1 3 3 6 7 9 9 12 13 15 15 18 19 21

f†(m) 0 1 1 3 3 3 4 5 5 7 7 7 8 9

f(n) + n 2 5 6 10 12 15 16 20 22 25 26 30 32 35

f†(m) +m 1 3 4 7 8 9 11 13 14 17 18 19 21 23

f†(f(n) + 1) + 1 2 4 4 5 6 8 8 9 10 12 12 13 14 16

Table 1: Example of a non-decreasing sequence f and its Lambek-Moser inverse. f is the

cumulative sequence of the periodic sequence (1, 2, 0, 3), f† its inverse. f†(6) = 3 because

there are exactly 3 values less than 6 in f . Each positive integer appears exactly once in the

range of f(n) + n or f†(m) +m. f†(f(n) + 1) + 1 locates the rank of the next f increase.

Proof.

f†(f(m) + 1) + 1 = m′ ⇔




f†(f(m) + 1) < m′

f†(f(m) + 1) ≥ m′ − 1

⇔





f(m′) ≥ f(m) + 1

f(m′ − 1) < f(m) + 1

⇔ f(m′) > f(m) and f(m′ − 1) ≤ f(m) .

For example, in Table 1, f(6) = 9, f†(f(6)+1)+1 = 8 is the rank of appearance

of the first value greater than 9, which is 12 in this case. If we extend f with

f(0) = 0, and define g by g(0) = 0, g(n+ 1) = f†(f(g(n)) + 1) + 1, then f(g(n))

takes, in increasing order, all the values of f , each one appearing once.

2.2. Path-based distances

Definition 1 (Discrete distance). A function d : Zn × Zn → N is a trans-

lation-invariant distance if the following conditions holds ∀x, y, z ∈ Zn, ∀λ ∈ Z:

1. translation invariance d(x+ z, y + z) = d(x, y) ,

2. positive definiteness d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y ,

3. symmetry d(x, y) = d(y, x) .

In the following sections, we will drop definiteness and symmetry to define

“asymmetric pseudo-distances”.

4
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Definition 2 (Path-based distance). Let P(p, q) be the set of paths from

p ∈ Zn to q ∈ Zn. d : Zn × Zn → N is a path-based distance if:

(i) ∀(p, q), d(p, q) = min
{
L(P ), P ∈ P(p, q)

}
,

(ii) d is a distance,

where L(P ) is the length (or cost) of the path P . A path P ∈ P(p, q) is minimal

if its length is equal to d(p, q). It it usually not unique between p and q.

Definition 3 (k-neighbor). In the nD square, cubic or hypercubic grid, two

points p and q are k-neighbors, 0 < k ≤ n, if their cubic cells share a face of

dimension at least n− k, i.e.:
∑

i=1...n

|pi − qi| ≤ k ,

max
i=1...n

{
|pi − qi|

}
≤ 1 ,

(3)

where pi stands for the ith component of p.

The k-neighborhood of p, denoted byNk(p), is the set of k-neighbors of p and

the k-neighborhood Nk, in a translation-invariant context, is the set of vectors

from any point p to its k-neighbors. In the 2D square grid, k-neighborhoods are

defined as follows:

N1 = {(0, 0), (±1, 0), (0,±1)} and N2 = {(0, 0), (±1, 0), (0,±1), (±1,±1)} .

N1 and N2 are often referred to as 4- and 8-neighborhoods because they contain

respectively four and eight non-zero displacement vectors.

For distance d4, a path is a sequence of points (p0, . . . , pn) where each pair

of successive points (pi−1, pi) are 1-neighbors and the length of the path is the

number of displacements, n. Whereas the 2-neighborhood is used for distance

d8 [1, 2]. Distances d4 and d8 have a high rotational dependancy as noticed by

Rosenfeld and Pfaltz.

A neighborhood sequence (NS) B = (b(i))i>0 is a sequence where each b(i)

denotes a neighborhood relation in Zn in the sense of Definition 3. If B is

l-periodic, i.e. if for some finite, strictly positive l ∈ Z+, b(i) = b(i + l) is

5
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valid for all i ∈ N∗, then we write B =
(
b(1), b(2), . . . , b(l)

)
. A B-path is a

sequence of points (p0, . . . , pn) where each pair of successive points (pi−1, pi)

are B(i)-neighbors. Given the NS B, the NS-distance dB is the path-based

distance whose paths are only B-paths and the length of a path is the number

of displacements. d4 and d8 can be seen as NS-distances d(1) and d(2) with

1-periodic sequences B =
(
1
)
and B =

(
2
)
, but the simplest NS-distance that

combines both neighborhoods is the octagonal distance d(1,2) with sequence

B =
(
1, 2
)
[2].

The notation 1B(r) for N1, more generally, jB(r) for Nj , is used to count

the occurrences of the neighborhood in B up to position r:

jB(r) = Card ({i : b(i) = j, 1 ≤ i ≤ r}) .

A different approach is used for chamfer, or weighted, distances where each

displacement vector #»vk in a neighborhood N is associated to the weight (or local

cost) wk [3, 4, 10]. A chamfer maskM is a central symmetric set of weightings

( #»vk;wk) with at least a base of Zn:

M = {( #»vk;wk) ∈ Zn × N∗}1≤k≤m .

The length of the path (p0, . . . , pn) is the sum of the displacements costs:

L(p0, . . . , pn) =
n∑

i=1

w(i), where ( #           »pi−1pi;w(i)) ∈M .

Definition 4 (Ball). The disk D(p, r) of center p and radius r and the sym-

metrical disk Ď(p, r) are the sets:

D(p, r) = {q : d(p, q) ≤ r} ,

Ď(p, r) = {q : d(q, p) ≤ r} .
(4)

By definition, any disk of negative radius is empty and the disk of radius 0 only

contains its center (D(p, 0) =
{
p
}
).

Definition 5 (Distance transform). The distance transform DTX of the

set X is a function that maps each point p to its distance from the complement

6
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of X:
DTX : Zn → N

DTX(p) = min
{
d(q, p) : q ∈ Zn \X

}
.

(5)

Alternatively, since all points at a distance less than DTX(p) to p belong to X,

because Ď(p,DTX(p)− 1) ⊂ X, and at least one point at a distance to p equal

to DTX(p) is not in X, because Ď(p,DTX(p)) 6⊂ X, then:

DTX(p) ≥ r ⇔ Ď(p, r − 1) ⊂ X . (6)

The DT is usually defined as the distance to the background which is equivalent

to the distance from the background by symmetry. The equivalence is lost

with asymmetric distances, and this definition better reflects the fact that DT

algorithms always propagate paths from the background points.

Efficient algorithms exist to compute the DT of path-based distances based

on the propagation of values from the neighbor points with the addition of

local costs. They require two scans in reverse orders for the simple d4 and

d8 distances [1], two scans for chamfer distances [3, 4]. NS-distances have an

extra complexity because the cost of a path is not invariant to the order of its

displacement vectors. NS-DT algorithms are known with four scans [11] and

three scans [12].

2.3. Path-based distances and displacement costs

In the following, we show that path-based distances presented in Section 2.2,

despite having different definitions of paths and path lengths, can be described

with a unique paradigm in which they are only characterized by the local costs

of displacement vectors.

For a simple distance, a path is a sequence of points where the difference

between two successive points is a displacement vector taken in a fixed neighbor-

hood N , and the cost (or length) of a path is the number of its displacements.

The cost of the path (p0, . . . , pn, pn + #»v ) derives from the cost of the path

(p0, . . . , pn):

L(p0, . . . , pn) = r ⇒ ∀ #»v ∈ N ,L(p0, . . . , pn, pn + #»v ) = r + 1 . (7)

7
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Rosenfeld and Pfaltz specifically forbid paths where a point appears more than

once [1]. This restriction has no effect on the distance because a path where a

point appears more than once can not be minimal. In a similar manner, they

exclude the null vector from the neighborhood, forbidding a point to appear

several times consecutively. As before, it has no effect on the distance. Notice

that, in terms of distance, forbidding a path is equivalent to giving it an infinite

cost, so that it can not be minimal. Equation (7) can be rewritten as:

L(p0, . . . , pn) = r ⇒ ∀ #»v ,L(p0, . . . , pn, pn + #»v ) = r + c #»v ,

where

c #»v =





1 if #»v ∈ N

∞ otherwise
.

For a NS-distance characterized by the sequence B:

L(p0, . . . , pn) = r ⇒ ∀ #»v ,L(p0, . . . , pn, pn + #»v ) = r + cB#»v (r) , (8)

where the displacement cost cB#»v (r) is 1 for a displacement vector in the neigh-

borhood B(r + 1) and infinite otherwise:

cB#»v (r) =





1 if #»v ∈ NB(r+1)

∞ otherwise
. (9)

For a weighted distance with mask M = {( #»vk;wk) ∈ Zn × N∗}1≤k≤m, the dis-

tance increment only depends on the displacement vector, but not on the dis-

tance already travelled:

L(p0, . . . , pn) = r ⇒ ∀ #»v ,L(p0, . . . , pn, pn + #»v ) = r + c #»v , (10)

c #»v =




w if ( #»v ;w) ∈M

∞ otherwise
. (11)

Briefly, the displacement cost for a vector #»v and the travelled distance r, is

1 or ∞, independently of r for simple distances, is equal to 1 or ∞ whether
#»v belongs or not to NB(r) for a NS-distance, is in N∗ ∪ {∞} according to the

chamfer mask and independently of r for a weighted distance.

8
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In the following, we propose to use a displacement cost, denoted by c #»v (r),

with values in N∗∪{∞}, that depends both on the displacement vector #»v and on

the travelled distance r. According to the previous remarks, the cost associated

to the null displacement will always be unitary:

∀r ∈ N, c #»
0 (r) = 1 . (12)

3. Path-based Distance with Varying Weights

3.1. Definition and Properties

Definition 6 (Path). We call path from p to q, any finite sequence of points

P = (p = p0, p1, . . . , pn = q) with at least one point, and denote by P(p, q), the

set of these paths.

Notice that this definition of a path is not related to any adjacency relation.

The sequence P = (p) is allowed as a path from p to itself. It is distinct from

P = (p, p), the path from p to itself with a null displacement.

Definition 7 (Partial and total costs of a path). Let N be a set of vec-

tors containing the null vector #»
0 and the positive displacement costs c #»v (with

c #»
0 (r) = 1 and c #»v 6∈N (r) = ∞). The total cost of the path P = (p0, p1, . . . , pn)

is:
L(P ) = Ln(P ) ,

L0(P ) = L(p0) = 0 ,

Li+1(P ) = L(p0, . . . , pi+1) = Li(P ) + c #          »pipi+1
(Li(P )) ,

(13)

p0

p1

p2 p3

c #     »p0p1(0) c #     »p1p2(L1(P ))

c #     »p2p3(L2(P ))

Figure 1: Total cost of a path P = (p0, p1, p2). Costs of displacements #      »p0p1, #      »p1p2 and #      »p2p3

depend on the partial costs L0(P ) = 0, L1(P ) = c #     »p0p1 (0) + 0 and L2(P ) = c #     »p1p2 (L1(P )) +

L1(P ). The total cost of P is c #     »p2p3 (L2(P )) + L2(P ).

9
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where Li(P ) is the partial cost of the path truncated to its i+1 first points (i.e.

to its i first displacements).

Figure 1 illustrates the individual displacement costs in a path, each one de-

pending on the partial length of the path.

Definition 8 (Absolute and relative costs of displacement). We use the

notation C #»vk(r) = r + c #»vk(r). c #»vk(r) is the relative cost of the displacement #»vk

when the distance travelled so forth is r. C #»vk(r) represents the partial cost of

the path after this displacement (the absolute cost of this displacement):

Li+1(P ) = Li(P ) + c #          »pipi+1
(Li(P )) = C #          »pipi+1

(Li(P )) . (14)

Definition 9 (Pseudo-distance). The pseudo-distance induced by
({

#»vk
}
, c #»vk

)

is defined by:

d(p, q) = 0 ⇔ p = q

d(p, q) = min
P∈P(p,q)

{
L(P )

}
.

Definition 10 (Minimal cost of displacement). We call minimal relative

(resp. absolute) cost of displacement, denoted by ĉ (resp. Ĉ), the quantity

ĉ #»v (r) = min
{
c #»v (s) + s− r, ∀s ≥ r

}
(resp. Ĉ #»v (r) = min

{
C #»v (s),∀s ≥ r

}
).

Proposition 2 (Preservation of cost order by concatenation).

Appending the same displacement to existing paths preserves the relation order

of their costs. Let P = (p1, · · · , pnP
) and Q = (q1, · · · , qnQ

) be two paths

with costs L(P ) and L(Q), #»v a vector and P ′ = (p1, · · · , pnP
, pnP

+ #»v ), Q′ =

(q1, · · · , qnQ
, qnQ

+ #»v ) the extended paths with costs L(P ′) and L(Q′) measured

with minimal displacement costs. Then:

L(P ) ≤ L(Q) ⇒ L(P ′) ≤ L(Q′) . (15)

Proof. From (14), L(P ′) = Ĉ #»v (L(P )) and L(Q′) = Ĉ #»v (L(Q)). By definition

of Ĉ #»v , s ≤ r ⇒ Ĉ #»v (s) ≤ Ĉ #»v (r), which gives (15).

10
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Proposition 3. Let N =
{

#»vk
}
be a set of vectors and, c #»v (r), the displacement

costs for these vectors. There exists a path P from p to q of cost L(P ) = r

measured with costs c #»v (r) if and only if there exists a path P ′ from p to q of

cost L′(P ′) = r measured with the minimal displacement costs ĉ #»v (r).

Proof. Consider the cost of P after i displacements, Li(P ) = Li(p0, p1, . . . , pi),

we note m0 = 1,m0<i≤n = 1 + Li(P ) − Li−1(P ) − ĉ #          »pi−1pi(Li−1(P )) = 1 +

c #          »pi−1pi(Li−1(P )) − ĉ #          »pi−1pi(Li−1(P )) and Mi =
∑i
j=0mi the cumulated sum of

mi. Clearly, if L(P ) is finite then each mi is finite and positive because ĉ #»v (r) is

less than or equal to c #»v (r) by construction. Let P ′ be the (finite) path obtained

by mi occurrences of each point pi:

P ′ = (p0, p1 . . . p1︸ ︷︷ ︸
m1

, . . . , pi . . . pi︸ ︷︷ ︸
mi

, . . . , pn . . . pn︸ ︷︷ ︸
mn

) .

We take as an induction hypothesis that the partial cost of P ′ after mi oc-

currences of pi, L′Mi−1(P ′), is equal to Li(P ). It holds for i = 0 because

L′M0−1(P ′) = L′m0−1(P ′) = L′0(P ′) = 0 = L0(P ). If the hypothesis holds for

i− 1, then the partial cost of P ′ after the first occurrence of pi is L′Mi−1
(P ′) =

Li−1(P )+ĉ #          »pi−1pi(Li−1(P )), and aftermi−1 repeats of pi, equals L′Mi−1+mi−1(P ′) =

L′Mi−1(P ′) = Li−1(P )+ĉ #          »pi−1pi(Li−1(P ))+mi−1 = Li−1(P )+c #          »pi−1pi(Li−1(P )) =

Li(P ) and the hypothesis is true at rank i. Therefore, for every path of finite

cost r measured with L, there exists a path with the same cost measured with L′.
This is shown in Fig. 2a.

Conversely, let P ′ be a path with finite cost measured by L′. We build a

path P where each point of P ′ appears m′i times consecutively with m′i such that

m′i − 1 + c #          »pipi+1
(L′i(P ′) +m′i − 1) = ĉ #          »pipi+1

(L′i(P ′)). By definition of ĉ, ∀r, ∃s :

ĉ #»v (r) = c #»v (s) + s − r, so m′i exists. Let M ′0 = 0 and M ′0<i≤n =
∑i−1
j=0mj, be

the cumulated sum of the previous terms of m′i.

The induction hypothesis is that the partial cost of P , measured with L, at
the first occurence of pi, LM ′i (P ), is equal to L′i(P ′). It holds for i = 0 with

a null partial cost LM ′0(P ) = L0(P ) = 0 = L′0(P ′). If the hypothesis holds at

rank i, the partial cost of P , after m′i − 1 repetitions of pi, if LM ′i+m′i−1(P ) =

11
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(a)
p0 p1 p2

+5 +3

+3
+1+1

+2

+1

r 0 1 2 3 4 5 6

c #»v (r) 5 2 ∞ ∞ ∞ 3 1

ĉ #»v (r) 3 2 5 4 3 2 1

(b)
p0 p1 p2

+3 +4

+1

+2
+1

+1
+1

+1
r 0 1 2 3 4 5 6

c #»v (r) 5 2 ∞ ∞ ∞ 3 1

ĉ #»v (r) 3 2 5 4 3 2 1

Figure 2: (a) Given P = (p0, p1, p2), shown with dashed lines, has a total cost L(P ) = 8

measured with displacement costs c #»v . P ′ = (p0, p1, p1, p1, p2, p2), solid lines, is built in such

a way that its cost L′(P ′) measured with minimal displacement costs ĉ #»v , is equal to L(P ) = 8.

(b) Given P ′ = (p0, p1, p2), shown with solid lines, has a total cost L′(P ′) = 7 measured with

displacement costs ĉ #»v . P = (p0, p0, p1, p1, p1, p1, p2), dashed lines, is built in such a way that

L(P ) = L′(P ′) = 7.

LM ′i (P ) + m′i − 1 = L′i(P ′) + m′i − 1, and at the first occurence of pi+1, equals

L′i(P ′)+m′i−1+c #          »pipi+1
(L′i(P ′)+m′i−1) = L′i(P ′)+ ĉ #          »pipi+1

(L′i(P ′)) = L′i+1(P ′)

and the hypothesis also holds at rank i+ 1. An example of such a path is shown

on Fig. 2b.

Corollary 1. Displacement costs c #»v and ĉ #»v induce the same pseudo-distance.

According to (12), any path from p to q of cost less than r can be extended

with null displacements to reach cost r:

L(p0, . . . , pn = q) = s < r ⇒ L(p0, . . . , pn = q, . . . , q︸ ︷︷ ︸
1+r−s

) = r . (16)

Proposition 4. There exists a path of cost r from p to q if and only if d(p, q) ≤ r.

Proof. If a path of cost r from p to q exists then by definition of the distance,

d(p, q) = r if P cost is minimal, d(p, q) < r otherwise. Conversely, if d(p, q) = s

then there exists a path of cost s from p to q that, according to (16), can be

extended to cost r ≥ s.

12
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Corollary 2. For any value of r greater than or equal to d(p, q), there exists

a path from p to q which cost is exactly r. The closed disk centered in p with

radius r is the set of points for which a path from p of cost equal to r exists:

q ∈ D(p, r) ⇔ ∃P ∈ P(p, q),L(P ) = r . (17)

An iterative construction rule of balls is deduced from (17):

∀r > 0, D(p, r) =
⋃

#»v ∈N

{
q : ∃P ∈ P(p, q − #»v ) and C #»v (L(P )) = r

}

=
⋃

#»v ∈N
s :C #»v (s)=r

D(p+ #»v , s) . (18)

3.2. Iterative Construction of Shapes

Let
(
D(O, r)

)
be a sequence of balls built iteratively using:

D(O, r) =





∅ if r < 0

{
O
}

if r = 0

⋃
#»v ∈N

D(O + #»v , S #»v (r)− 1) otherwise

(19)

where the construction values S #»v are non decreasing sequences of natural in-

tegers, in particular ∀r > 0, S #»
0 (r) = r. A generalized distance that produces

these balls was shown in [13], along with a method to decompose any convex

polygon into a sequence of balls with a few neighbors #»v . Examples of such

decompositions are provided in Fig. 5 and Tables 2 and 3 for the 2D case, in

Fig. 6 and Table 4 for the 3D case.

Using the Lambek-Moser inverse and notations used in this paper, we can

reformulate the expression of the displacement costs from the construction rules

as:

∀r ≥ 0, C #»v (r) = S†#»v (r + 1) + 1 . (20)

Note that a finite sequence of balls with maximal radius l is practically

equivalent to an infinite sequence of balls where all balls with radii greater than

or equal to l are equal. In this case, all values of S #»v at index l and beyond are

equal and don’t exceed the value l. As a consequence, C† is infinite at index l

and beyond.

13
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3.3. Sequences of Minkowski Sums

Proposition 5. If all finite values of absolute costs for radii less than r1 do

not exceed r1 (∀0 ≤ r < r1, C(r) ≤ r1 or C(r) = ∞) then all balls of ra-

dius r2 greater than or equal to r1 are the Minkowski sum of D(p, r1) with the

disk D′(O, r2 − r1) produced by the displacement costs c′#»v (r) = c #»v (r + r1) (i.e.

C ′#»v (r) = C #»v (r + r1)− r1):

∀r < r1, C(r) ≤ r1 ⇒ ∀r2 ≥ r1, D(p, r2) = D(p, r1)⊕D′(O, r2 − r1) . (21)

Proof. (21) holds for r2 = r1: D(p, r1) = D(p, r1)⊕
{
O
}
. Suppose (21) holds

in the interval [r1, r2]. Only values of s in the interval [r1, r2] can be such that

C #»v (s) = r2 + 1 and (21) applies to D(p+ #»v , s), so (18) can be written as:

D(p, r2 + 1) =
⋃

#»v ∈N
s :C #»v (s)=r2+1

D(p+ #»v , r1)⊕D′(O, s− r1)

= D(p+ #»v , r1)⊕
⋃

#»v ∈N
s :C #»v (s)=r2+1

D′(O, s− r1)

= D(p+ #»v , r1)⊕
⋃

#»v ∈N
s :C′#»v (s)=r2−r1+1

D′(O, s)

= D(p+ #»v , r1)⊕D′(O, r2 − r1 + 1) .

Hence, (21) holds in the interval [r1, r2 + 1].

Proposition 5 provides a sufficient (but not necessary) condition that enables

to build sequences of Minkowski sums. In particular, when relative displacement

costs are either 1 or∞ as in (9), then Proposition 5 applies to all positive radius

values so that the NS-distance balls are produced by a sequence of Minkowski

sums with the sequence of neighborhoods, as it is well known. In the follow-

ing Section 4.4, Proposition 5 will be used along with (19) and (20) to build

sequences of balls in which Minkowski sums are decomposed into several steps.

14
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4. Minimal Delay NS-Distance Transform

In [14], Wang and Bertrand, proposed a single scan asymmetric general-

ized DT based on a neighborhood for which there exists a scanning order such

that when a point p in the image is scanned, all neighbors of p have already

been scanned (forward scan condition). Then, they extended this result to a

sequence where two neighborhoods with forward scan condition are alternated

(i.e. B = (1, 2)) [15]. In the following we propose a method to compute, using

a single raster scan, an asymmetric generalized DT based on any number of

neighborhoods having forward scan condition used in an arbitrary order defined

by a sequence B, either periodic or not. For our purpose, we will use translated

versions of regular NS-distances neighborhoods, in order to meet the forward

scan condition for each of them. The resulting translated distance map can

easily be transformed back into a regular, symmetrical, NS-distance map.

4.1. Generalized Distance Transform

Proposition 6. The DT of an image X with the distance induced by the neigh-

borhood N and the displacement costs C #»v is such that:

DTX(p) =





0 if p 6∈ X

min
{
Ĉ #»v (DTX(p− #»v )), #»v ∈ N ∗

}
otherwise

. (22)

where Ĉ #»v represents the minimal absolute displacement costs corresponding to

C #»v (Definition 10).

Proof. Case p 6∈ X directly results from Definitions 5 and 9. Suppose now that

p ∈ X so any path from q 6∈ X to p has at least one displacement. Proposition 3

states that distances induced by
({

#»vk
}
, C #»vk

)
and

({
#»vk
}
, Ĉ #»vk

)
are equal so we

consider the latter cost increments for which Proposition 2 holds. According to

Proposition 2, if P = (q = p0, . . . , pn = p− #»v ) is a minimal path from q to p− #»v

then P ′ = (q = p0, . . . , pn, p+ #»v ) has a minimal cost — among paths from q to

p with second last point p − #»v — equal to Ĉ #»v (L(P )). So Ĉ #»v (DTX(p − #»v )) is

the shortest distance from a point q 6∈ X to p via p − #»v . Since all paths which

15
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last displacement #»v does not belong to N have an infinite cost and can not be

minimal, (22) holds.

When all vectors in N ∗ are directed forward relatively to the scan order, (22)

propagates paths from background pixels in a single scan. As a consequence,

a generalized DT using any number of neighborhoods N1 . . .Nn, selected by a

sequence B,B(i) ∈ [1, n], derives directly from (9) and (22) and minimal costs

given by:

Ĉ #»v (r) = min
{
s : s > r and #»v ∈ NB(s)

}
. (23)

Let χ #»v (r) denote the characteristic function of the set NB(r) (i.e. χ #»v (r) =

1 if #»v ∈ NB(r); 0 otherwise) and χΣ
#»v (r) its cumulative sum (χΣ

#»v (r) =
∑
s≤r

χ #»v (r)).

Then according to Proposition 1:

Ĉ #»v (r) = [χΣ
#»v ]†(χΣ

#»v (r) + 1) + 1 . (24)

Algorithm 1 produces a generalized DT using any sequence of neighborhoods

(N represents their union) in forward scan condition, using displacement costs

given by (24). A similar algorithm was already presented for the decomposition

of convex structuring polygons [13].

4.2. Translated NS-distance transform

The sequence of balls for a NS-distance induced by a sequence B is produced

by iterative Minkowski sums of neighborhoods:

D(p, 0) =
{
p
}
, D(p, r) = D(p, r − 1)⊕NB(r) .

For each neighborhood Nj , we apply a translation vector #»
tj such that the trans-

lated neighborhood N ′j = Nj ⊕
{ #»
tj
}
is in forward scan condition. In a transla-

tion preserved scan order, #»
tj translates the first visited point in Nj to the origin.

Assuming a nD standard raster scan order:

#»
tj = (0, . . . , 0︸ ︷︷ ︸

n−j

, 1, . . . , 1︸ ︷︷ ︸
j

) . (25)
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Data: X: a set of points

Data: N : neighborhood in forward scan condition

Data: Ĉ #»v : minimal absolute displacement costs

Result: DTX : generalized distance transform of X

foreach p in DT domain, in raster scan do

if p /∈ X then

DTX(p)← 0

else

l←∞
foreach #»v in N do

l← min
{
l; Ĉ #»v (DTX(p− #»v )

}

end

DTX(p)← l

end

end
Algorithm 1: Single scan generalized distance transform
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The translated neighborhoods N ′1 and N ′2 obtained with #»
t1 = (0, 1) and

#»
t2 = (1, 1) are depicted in Fig. 3a and Fig. 3b. Characteristic functions for

vectors in N ′1 \ N ′2, N ′2 \ N ′1 and N ′1 ∩ N ′2 (see Fig. 3c-e) are respectively the

first differences of 1B , 2B and the constant value 1 resulting in the following

minimal displacement costs:

Ĉ #»v (r) =





Ĉ1
#»v (r) = 1†B(1B(r) + 1) + 1 if #»v ∈ N ′1 and #»v 6∈ N ′2

Ĉ2
#»v (r) = 2†B(2B(r) + 1) + 1 if #»v 6∈ N ′1 and #»v ∈ N ′2

Ĉ12
#»v (r) = r + 1 if #»v ∈ N ′1 and #»v ∈ N ′2

.

Periodic sequence. When B is a periodic sequence, minimal relative costs ĉ #»v

are also periodic sequences. Take the periodic sequence of the octagonal dis-

tance B = (1, 2), then 1B(r)r≥0 = (0, 1, 1, 2, . . . ), 1†B(r)r>0 = (0, 2, 4, . . . ),

Ĉ1
#»v (r)r≥0 = (1, 3, 3, 5 . . . ) and ĉ1#»v (r)r≥0 = (1, 2, 1, 2 . . . ). 1B(r)r>0 is the cu-

mulative sum of the 2-periodic sequence (1, 0), whereas 1†B(r)r>0 is the cu-

mulative sum with offset −2 of the 1-periodic sequence (2) as given by Al-

gorithm 2. Similarly, 2B(r)r≥0 = (0, 0, 1, 1, 2, . . . ), 2†B(r)r>0 = (1, 3, . . . ),

Ĉ2
#»v (r)r≥0 = (2, 2, 4 . . . ) and ĉ2#»v (r)r≥0 = (2, 1, 2, 1 . . . ).

Rate-based sequence. Suppose now that the sequence of neighborhoods is de-

fined as the first difference of a Beatty sequence (as in [9]): B(r) = bτrc −
bτ(r− 1)c, with τ ∈ [1, 2] so that B(r) ∈ {1, 2}. 1B and 2B are respectively the

cumulative sums of 2 − B(r) = d(2 − τ)re − d(2 − τ)(r − 1)e and B(r) − 1 =

b(τ − 1)rc − b(τ − 1)(r − 1)c. Then 1B(r) = d(2 − τ)re, 2B(r) = b(τ − 1)rc,
1†B(r) = b r−1

2−τ c and 2†B(r) = d r
τ−1 − 1e. This allows to compute Ĉ1

#»v and Ĉ2
#»v

on the fly. For the octagonal distance, τ = 3
2 , 1B(r) = d r2e, 2B(r) = b r2c,

1†B(r) = 2r − 2 and 2†B(r) = 2r − 1.

An exemple result of Algorithm 1 for the translated octagonal distance (with

displacement costs obtained either from sequence B = (1, 2) either from τ = 3
2 )

is shown in Fig. 4b.
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Data: fp, f(1) · · · f(fp) and fo

Result: gp, g(1) · · · g(gp) and go

gp ←
∑fp
i=1 f(i);

n = fo + 1;

m0 ← fp;

for m← 1 to fp do

if f(m) 6= 0 then m0 ← min
{
m0 ;m

}
;

g(n)← g(n) + 1;

n← n+ f(m);

end

go ← m0 − 1− g(fo + 1);

for m← 1 to −fo do go ← go + g(m+ fo); // Adjust go if fo < 0

for m← 0 down to −fo do go ← go − g(m+ fo) ; // ...or if fo ≥ 0

Algorithm 2: Computation of gΣ = fΣ†, inverse of the sequence fΣ.

fΣ is the cumulative sequence of the fp-periodical non-negative sequence f

with constant offset fo and negative values clipped to 0: ∀r > 1, fΣ(r) =

max
{

0 ; fo +
∑r
s=1 f(s)

}
. Likewise, gΣ is the cumulative sequence of the gp-

périodical non-negative sequence g with offset go and negative values clipped

to 0.
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(a) (b) (c) (d) (e) (f)

Figure 3: Neighborhoods used for the translated NS-distance transform. (a), and (b) are

respectively the type 1 and 2 translated neighborhoods, N ′1 and N ′2. (c) and (d) and (e) are

respectively N ′1 \ N ′2, N ′2 \ N ′1 and N ′1 ∩ N ′2, each set associated to a different sequence of

displacement costs. (f) is the whole set of neighbors, N ′1∪N ′2, used for the translated NS-DT.

1 1 1 1

1 1 2 2 2 2 1

1 2 2 2 3 3 2 2 1

1 2 2 2 2 3 4 3 2 1

1 2 1 1 2 2 3 2 2 1

1 1 1 2 2 2 1

1 1 1

1 1 1 1

1 1 1 1 1 1 1

1 1 1 2 2 2 2 1 1

1 1 2 2 2 2 2 2 2 1

1 2 2 2 2 2 3 3 2 1

1 2 2 2 3 3 3

2 2 4

1 1 1 1

1 1 2 2 2 2 1

1 2 2 3 3 3 3 2 1

1 2 3 3 3 4 4 4 3 2

2 3 3 4 4 4 5 5 4 2

2 3 3 4 6 6 5

3 4 7

(a) (b) (c)

Figure 4: (a) Octagonal DT of a binary image. (b) Translated octagonal DT. Outlined centers

of disks (a) are translated to the same location, outlined with value 3 (b). (c) Translated

octagonal DT with intermediate disks.

4.3. Symmetric DT from asymmetric DT

Let
{ #»
t(r), r ∈ N∗

}
be a sequence of translation vectors such that the trans-

lated disks D′(p, r) = D(p+
#»
t(r), r) and Ď′(p, r) = Ď(p− #»

t(r), r) are increasing

according to the set inclusion. For a sequence of disks produced by translated

neighborhoods defined in (25), the translation vectors are:

#»
t(r) =

#»
t(r − 1) +

#       »
tB(r)

=
∑

j

jB(r)
#»
tj

=




n∑

j=n

jB(r), . . . ,
n∑

j=1

jB(r)


 .

In particular, for the 2D case:

#»
t(r) = (2B(r),1B(r) + 2B(r)) = (2B(r), r) . (26)

20



01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

DT′X has equivalence with values of DTX :

DTX(p) ≥ r ⇔ Ď(p, r − 1) ⊆ X

⇔ Ď′(p+
#»
t(r − 1), r − 1) ⊆ X

⇔ DT′X(p+
#»
t(r − 1)) ≥ r . (27)

Consequently:

DTX(p) = r ⇔ DTX(p) ≥ r and DTX(p) < r + 1

⇔ DT′X(p+
#»
t(r)) ≤ r ≤ DT′X(p+

#»
t(r − 1)) . (28)

Knowing DT′X(p) and DT′X(p +
#»
t ), we can deduce the values of DTX(p −

#»
t(r− 1)) for all values of r between DT′X(p+

#»
t ) and DT′X(p) for which #»

t(r) =
#»
t(r − 1) +

#»
t , i.e. #»

t =
#       »
tB(r). Algorithm 3 recovers the values r of the centered

DT by selecting all r in the interval [DT′X(p+
#»
tj),DT′X(p)] such that B(r) = j.

Iterating through values r with B(r) = j is achieved using Proposition 1. Values

of DT′X become available before the whole image is computed. For instance, in

a standard raster scan, as soon as line y is processed, all lines of DT′X above

y − rmax are fully recovered (where rmax denotes the maximal value of DT′ in

that line).

4.4. Translated NS-DT with Intermediate disks.

The full set of neighbors used by the previous algorithm is the union of all

translated neighbors (excluding the new origin of the neighborhood). In 2D,

this set contains nine vectors, compared to the eight neighbors needed by the

classical algorithms. This count increases rapidly with the dimension: 32, 107,

350 respectively for 3D, 4D and 5D (apparently following, with a constant offset

−1, sequence A126184 in Sloane’s On-Line Encyclopedia of Integer Sequences

[16]). In this section we will show how we can drastically reduce the count of

required vectors, by further decomposing neighborhoods using set unions and

translation.

Let B be a sequence of values in [1, n] and cj#»v where j ∈ [1, n] be n relative

cost sub-sequences with finite length corresponding to the construction of n
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sets of points Nj with j ∈ [1, n]. For the sake of simplicity, we assume that

all sub-sequences have the same length l. We build the expanded sequence of

displacement costs for neighbor #»v , c #»v , by concatenation of the sub-sequences

c1#»v . . . c
n
#»v selected by the master sequence B:

∀ #»v , ∀r > 0, c #»v (r) = c
B(b rl c+1)
#»v (〈r〉l) .

By Proposition 5, the balls generated by these displacement costs are such that:

∀k > 0, D(O, kl) = D(O, (k − 1)l)⊕NB(k) .

The ith sub-sequence occupies the radii (i − 1)l to il − 1 in the expanded

sequence and conversely, radius r corresponds to sub-sequence with index i =

br/lc + 1 starting at radius r − 〈r〉l. According to Proposition 6, the distance

transform can be computed by propagation of the minimal absolute displace-

ment costs Ĉ #»v . Minimal displacement costs are either equal to costs in the

corresponding sub-sequences when these costs are finite, or deduced from the

first value of a subsequent sub-sequence. The quantity Ĉ #»v (r) corresponds either

to the value at index 〈r〉l in the current ith sub-sequence: ĉB(i)
#»v (〈r〉l)+r, or to the

first value in next sub-sequence ĉj#»v where #»v is used: ĉj#»v (0) + l(j†B(jB(i) + 1))),

whichever is minimal according to Definition 10.

Ĉ #»v (r) = min
{
ĉ
B(i)
#»v (〈r〉l) + r; (29a)

ĉj#»v (0) + lj†B(jB(i) + 1)), j ∈ [1, n]
}
, (29b)

where i = br/lc+ 1.

Clearly, if a vector #»v is not used in the decomposition of the neighborhood

j, then ĉj#»v is infinite and the vector can be omitted from (29b). On the contrary,

when a vector is used in all n neighborhoods, (29) is simplified to:

∀j, ĉj#»v (0) 6=∞⇒ Ĉ #»v (r) = min
{
ĉ
B(i)
#»v (〈r〉l)+r; c

B(i+1)
#»v (0)+li, j ∈ [1, n]

}
. (30)

A further simplification holds when the displacement costs are always finite for

a given vector #»v , then we can omit (29b) in (29):

∀j, ĉj#»v (l) 6=∞⇒ ∀r ≥ 1, Ĉ #»v (r) = ĉ
B(i)
#»v (〈r〉l) + r . (31)
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(a) (b) (c) (d) (e)

Figure 5: Decomposition of the neighborhoods used for the translated NS-distance transform.

(b), and (d) are respectively the type 1 and 2 translated neighborhoods, N ′1 and N ′2. (a)

and (c) are intermediate disks. Only four displacement vectors (e) are needed instead of nine

without this decomposition.

If B is periodic, then so is ĉ #»v , with a period multiplied by l. Using (29),

we can avoid an actual expansion of the master sequence B by concatenation

of sub-sequences. On the contrary, Ĉ #»v can be efficiently computed on the fly,

when needed by Algorithm 1, for periodic sequences B with long periods or,

a fortiori, for aperiodic sequences. However, for short sequences, it can be

desirable to precompute ĉ #»v once and for all.

4.4.1. 2D case

Consider the following decomposition of the translated 2D neighborhoods:

D1(O, 1) = D1(O, 0) ∪D1((0, 1), 0) ,

D1(O, 2) = D1(O, 1) ∪D1((0, 1), 1) ∪D1((−1, 1), 0) ∪D1((1, 1), 0) ,

D2(O, 1) = D2(O, 0) ∪D2((0, 1), 0) ∪D2((1, 0), 0) ∪D2((1, 1), 0) ,

D2(O, 2) = D2(O, 1) ∪D2((0, 1), 1) ∪D2((1, 0), 1) ∪D2((1, 1), 1) ,

where D1(O, 2) and D2(O, 2) are equal to the translated neighborhoods N ′1 and

N ′2. The intermediate disks D1(O, 1) and D2(O, 1) are depicted in Fig. 5a and

Fig. 5c. This decomposition is summarized by the construction values S1 and

S2, as defined in (19), and shown in Table 2 (where S(0,0) is omitted). The

corresponding displacements costs, deduced from (20) are shown in Table 3.

Note that (30) holds for vectors (1, 1) and (0, 1) as well as (31) for (0, 1).

Using these two set of sequences, any combination of Minkowski sums of N1

and N2 can be obtained. Take the octagonal distance with 2-periodic sequence

B = (1, 2). The direct application of (29) gives ĉ #»v values shown in Table 3c.

An example of DT′′ is shown in Fig. 4c.
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r 1 2

S1
(1,0)(r) 0 0

S1
(−1,1)(r) 0 1

S1
(0,1)(r) 1 2

S1
(1,1)(r) 0 1

r 1 2

S2
(1,0)(r) 1 2

S2
(−1,1)(r) 0 0

S2
(0,1)(r) 1 2

S2
(1,1)(r) 1 2

Table 2: Construction values for the decomposition of the two neighborhoods in 2D.

r 0 1

c1(1,0)(r) ∞ ∞
c1(−1,1)(r) 2 ∞
c1(0,1)(r) 1 1

c1(1,1)(r) 2 ∞

r 0 1

c2(1,0)(r) 1 1

c2(−1,1)(r) ∞ ∞
c2(0,1)(r) 1 1

c2(1,1)(r) 1 1

r 0 1 2 3

ĉ(1,0)(r) 3 2 1 1

ĉ(−1,1)(r) 2 5 4 3

ĉ(0,1)(r) 1 1 1 1

ĉ(1,1)(r) 2 2 1 1

(a) (b) (c)

Table 3: Displacement costs for the decomposition of N ′1 and N ′2, (a) and (b). In (c), minimal

relative displacement costs of the alternate concatenation of (a) and (b) providing a translated

octagonal distance with intermediate disks.
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Figure 6: Decomposition of the neighborhoods used for the translated NS-distance transform

in 3D. Top, middle and bottom rows correspond to neighborhoods N ′1, N ′2 and N ′3. The

decomposition steps are represented from left to right. The number of displacements vectors

is reduced from 32 without the decomposition to only nine.

4.4.2. 3D case

The same method can be applied in 3D: from a decomposition of each of

the neighborhoods, and a sequence B, an extended sequence is built for each

of the vectors concerned. Figure 6 illustrates a possible decomposition of 3D

neighborhoods that uses only nine vectors with the corresponding construction

values shown in Table 4.

5. Conclusion

In this paper, a path-based pseudo-distance scheme where displacement costs

vary both with the displacement vector and with the travelled distance was pre-

sented. This scheme is generic enough to describe neighborhood-sequence dis-

tances, weighted distances as well as generalized distances produced by Minkow-

ski sums. It was shown that a set of displacement costs can be provided in a

minimal form, where each displacement vector is assigned a non-decreasing se-

quence of costs, without altering the distance function. These non-decreasing

sequences are directly applied in the distance transform algorithm to keep track

of the costs of minimal paths from the background. An application to a trans-

lated neighborhood-sequence distance transform in a single scan was presented

along with a method to recover the proper, centered, distance transform. Com-
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N1 N2 N3

r 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

(0, 0, 1) 4 5 4 5 4 5

(0,−1, 1) 4

(0, 1, 1) 4

(−1, 0, 1) 4 3

(1, 0, 1) 4 3

(0, 1, 0) 1 2 1 2

(1, 0, 0) 1 2

(1, 1, 0) 1 1 2

(−1, 1, 0) 1

Table 4: Construction values for the decomposition of the 3D neighborhoods. Only strictly

positive values are shown.
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Data: DT′X : translated distance map of X

Result: DTX : centered distance map of X

foreach p in DT′ domain, in raster scan do

if DT′(p) = 0 then

DT(p)← 0

else

foreach j do

r ← max
{

1; DT′(p+
#»
tj)
}

// Get the minimal r ≥ DT′(p− #»
tj) such that B(r) = j

r ← j†B(jB(r)) + 1

while r ≤ DT′(p) do

DT(p− #»
t(r − 1))← r

// Get the next r such that B(r) = j

r ← j†B(jB(r) + 1) + 1

end

end

end

end
Algorithm 3: Obtention of a regular (centered) DT from a translated DT′.

bined methods provide partial result with a minimal delay, before the input

image is fully processed. Their efficiency can benefit all applications where

neighborhood-sequence distances are used, particularly in pipelined processing

architectures, or when the size of objects in the source image is limited. It was

also shown that, by further decomposing the Minkowski sums involved in the

neighborhood distance transform, the amount of displacement vector can be

reduced. In 3D, instead of using a total of 26 displacement vectors, or even 32

as required by the direct application of the translated distance transform, a full

transform can be computed with only nine vectors.

The pseudo-distance presented here is strongly linked to the properties of
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non-decreasing integer sequences studied by Lambek and Moser. First, the

Lambek-Moser inverse connects the iterative construction of disks with the dis-

placement costs propagated in the distance transform. Next, by allowing to iter-

ate through values of integer sequences, it permits to compute the displacement

costs on-the-fly. An implementation in C language is publicly available at http:

//www.irccyn.ec-nantes.fr/~normand/LUTBasedNSDistanceTransform.
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