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In this paper, we study cooperative scattering of low intensity light by a cloud of N two
level systems. We include the incident laser field driving these two level systems and compute
the radiation pressure force on the center of mass of the cloud. This signature is of particular
interest for experiments with laser cooled atoms. Including the complex coupling between
dipoles in a scalar model for dilute clouds of two level systems, we obtain expression for
cooperative scattering forces taking into account the collective Lamb shift. We also derive
the expression of the radiation pressure force on a large cloud of two level systems from an
heuristic approach and show that at lowest driving intensities this force is identical for a
product and an entangled state.

Keywords: Cold atoms, Dicke superradiance, cooperative scattering.

1. Introduction

Cooperative scattering by an assembly of resonant systems has been studied in
detail for many years and is based on the seminal work by R. Dicke in 1954 (1).
Related superradiance effects and collective level shifts have been studied in the
context of atomic physics in the 70s (2–4). In the last decade, this topic has seen
renewed interest (5–14) with novel experiments in nuclear physics (15) and in laser
cooled clouds of atoms (16–20), applications in quantum information (21) and
quantum phase transitions (22, 23). As we are mainly concerned with applications
on laser cooled atomic samples, we focus in this paper on specific parameters and
observables which are of interest in such experiments. We therefore derive expres-
sions of the radiation pressure force acting on the center of mass of the atomic
cloud, as well as the scattered electric field. We go beyond past approximations
including the complex kernel for the coupling terms between N atoms (3, 8), de-
scribed by two level systems in a scalar approach. Neglecting the complete vectorial
nature of the dipole dipole coupling seems a priori more justified in a dilute sam-
ple of atoms, where near field corrections are small (19). Furthermore, we obtain
the force and the radiation field as quantum operators, which may be useful for
studying fluctuations and diffusion effects in radiation forces and scattered emis-
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Figure 1. (color online) Experimental configuration considered : a cloud of two level atoms is driven by
an incident laser detuned by ∆0 from the atomic resonance ωa, with wavevector k0.

sion. Also, the imaginary part of the complex kernel, describing the collective Lamb
shift, is evaluated for a gaussian density profile.

This paper is organized as follows : in section 2, we specify the Hamiltonian
used and discuss our approximations. In section 3, we introduce the observables
relevant for experiments with cold atoms, namely the radiation pressure forces
on the center of mass of the atomic cloud and the scattered light intensity. The
evaluation of these observables is done for specific atomic states in section 4. We
derive the result for this cooperative radiation pressure force from a more heuristic
approach in section 5. In section 6 we discuss the relevance of the Timed Dicke
State compared to a product state for this cooperative pressure force in the low
intensity limit before concluding in section 7.

2. Hamiltonian and operator equations

Our system consists of a gas of N two-level atoms (with random positions rj ,
lower and upper states |gj〉 and |ej〉 with j = 1, . . . , N , transition frequency ωa
with linewidth Γ = d2ω3

a/2π~ε0c3, where d is the electric dipole matrix element),
driven by a uniform resonant radiation beam with wave vector k0 = k0êz, frequency
ω0 = ωa + ∆0 and electric field E0 (see fig. 1).

The atom-field interaction Hamiltonian in the rotating-wave approximation
(RWA) is

Ĥ = Ĥ0 + Ĥ1 (1)

where

Ĥ0 = ~
N∑
j=1

{
−∆0

2
σ̂3j +

Ω0

2

(
σ̂je
−ik0·rj + σ̂†je

ik0·rj
)}

Ĥ1 = ~
N∑
j=1

∑
k

gk

[
â†kσ̂je

i(ωk−ω0)t−ik·rj + σ̂†j âke
−i(ωk−ω0)t+ik·rj

]
. (2)

Here Ω0 = dE0/~ is the pump Rabi frequency, âk is the photon annihilation op-
erator with wavenumber k and frequency ωk = ck, gk = d

√
ωk/(2~ε0Vph), Vph

the photon volume, σ̂j = exp(i∆0t)|gj〉〈ej | and σ̂3j = |ej〉〈ej | − |gj〉〈gj |. Instead
of solving the Schrödinger equation introducing some ansatz for the system state
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|Ψ(t)〉 (18), we write the motion equations of the atomic and field operators,

dσ̂j
dt

=
1

i~
[σ̂j , Ĥ] = i∆0σ̂j +

iΩ0

2
σ̂3je

ik0·rj + i
∑
k

gkσ̂3j âke
−i(ωk−ω0)t+ik·rj (3)

dσ̂3j

dt
=

1

i~
[σ̂3j , Ĥ] = iΩ0σ̂je

−ik0·rj + 2i
∑
k

gkâ
†
kσje

i(ωk−ω0)t−ik·rj + h.c. (4)

dâk
dt

=
1

i~
[âk, Ĥ] = −igkei(ωk−ω0)t

N∑
m=1

σ̂me
−ik·rm . (5)

We consider the atoms initially in their ground state and we assume weak excitation
(Ω0 � Γ), so that we approximate σ̂3j(t) ≈ −Îj , where Îj is the identity operator
for the jth atom. This approximation amounts to neglect saturation and multi-
excitation, i.e. all the processes generating more than one photon at the same time
(linear regime). Integrating Eq.(5) and substituting it into Eq.(3), neglecting ak(0)
(since the initial field state is vacuum) we obtain

dσ̂j
dt

= i∆0σ̂j −
iΩ0

2
Îje

ik0·rj −
∑
k

g2
k

N∑
m=1

eik·(rj−rm)

∫ t

0
dt′σ̂m(t− t′) e−i(ωk−ω0)t′ .(6)

The last term in Eq.(6) describes the effect of the spontaneously emitted photons
on the atoms, and it is well known in the quantum electrodynamic literature (24,
25). In the Markov approximation (i.e. when the photon transit time through the
atomic sample is much shorter than the excitation decay time (26)), we assume
under the integral σ̂m(t − t′) ≈ σ̂m(t). The time integral then yields a real part
(with a term δ(k − k0) ) and an imaginary part (corresponding to the principal
part of the integral). Taking into account these two terms is at the origin of the
exponential kernel whereas the real part alone would lead to a sin kernel in Eq.(9)
below. We then transform the sum over the modes k into an integral,

∑
k →

(Vph/8π
3)
∫
dk. The real and imaginary parts of the double integral over t and k

yield the cooperative decay and frequency shift (collective Lamb shift), respectively.
The proper expression of the cooperative frequency shift has been obtained adding
to the Hamiltonian (2) the not-RWA contributions associated to virtual photons
exchanged between different atoms. It results the following relation (12):

∑
k

g2
ke
ik·R

∫ ∞
0

dt′e−ic(k−k0)t′ −→ Γ

2ik0|R|
eik0|R| (7)

where Γ = Vphg
2
k0
k2

0/(πc). Using Eq.(7) in Eq.(6) we obtain (12),

dσ̂j(t)

dt
= i∆0σ̂j(t)−

iΩ0

2
Îje

ik0·rj − Γ

2

N∑
m=1

γjmσ̂m(t). (8)

where

γjm =
−i cos(k0rjm) + sin(k0rjm)

k0rjm
=
eik0rjm

ik0rjm
. (9)

and rjm = |rj − rm|. Eqs.(8) describe the time evolution of the atomic operators
for N weakly excited atoms scattering radiation. The real part of γjm describes the
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spontaneous emission decay and the imaginary part of γjm describes the energy
shift due to resonant dipole-dipole interactions. A slightly different approach can be
used to derive this result as shown in appendix A. Note that even though this result
will yield a density dependent collective shift of the resonance, we use a scalar model
for the field, neglecting thus any polarization and near field dependence (10, 13).
Detailed calculations for small and large samples of various geometries however
show that near field and far field contributions as well as resonant and antiresonant
terms need to be taken properly into account for quantitative predictions (3, 13,
14), and the present model thus needs to be considered with care illustrating only
a part of the dipole-dipole coupling for real systems.

Eq.(8) can also cast in the form

dσ̂j
dt

=
1

i~
[σ̂j , Ĥ

′
0 + Ĥeff ], (10)

where

Ĥ ′0 = ~
N∑
j=1

{
−∆0σ̂

†
j σ̂j +

Ω0

2

(
σ̂je
−ik0·rj + σ̂†je

ik0·rj
)}

Ĥeff =
~Γ

2

∑
j,m

eik0rjm

ik0rjm
σ̂†j σ̂m. (11)

and the commutation rules in the linear regime are [σ̂j , σ̂
†
m] = δjm.

3. Observables

Among the different observables of the system, scattered light and radiation pres-
sure force contain important signatures of cooperative scattering. Concerning scat-
tered radiation, the positive-frequency part of the electric field is defined as

Ê(r, t) = i
∑
k

Ekâk(t)e−iωkt+ik·r (12)

where Ek =
√
~ωk/2ε0Vph is the single-photon electric field. By integrating Eq.(5)

and inserting it in Eq.(12) we obtain

Ê(r, t) =
∑
k

Ekgk
N∑
m=1

eik·(r−rm)−iω0t

∫ t

0
dt′e−i(ωk−ω0)t′ σ̂m(t− t′) (13)

Using Eq.(7), the Markov approximation leads to

Ê(r, t) ≈ −i dk
2
0

4πε0

N∑
j=1

e−iω0(t−|r−rj |/c)

|r− rj |
σ̂j(t) (14)

which has a transparent interpretation as the sum of wavelets scattered by N
dipoles of position rj and detected at distance r and time t. In the far field limit,
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|r− rj | ≈ r − (r · rj)/r and

Ê(r, t) ≈ −i dk
2
0

4πε0r
e−iω0(t−r/c)

N∑
j=1

e−iks·rj σ̂j(t) (15)

where ks = k0(r/r).
The radiation pressure force acting on the jth-atom has been calculated from

Eq.(1) as F̂j = −∇rjĤ = F̂aj + F̂ej where (18)

F̂aj = i~k0
Ω0

2

{
e−ik0·rj σ̂j − h.c.

}
(16)

F̂ej = i~
∑
k

kgk

{
â†kσ̂je

i(ωk−ω0)t−ik·rj − σ̂†j âke−i(ωk−ω0)t+ik·rj
}

(17)

where F̂aj and F̂ej result from the recoil received upon absorption of a photon from
the pump and from the emission of a photon into any direction k, respectively.
Eliminating the field using Eq.(5), Eq.(17) becomes

F̂ej(t) = −~
∑
k

kg2
k

{
N∑
m=1

e−ik·(rj−rm)

∫ t

0
dt′ei(ωk−ω0)t′ σ̂†m(t− t′) σ̂j(t)

+ σ̂†j(t)
N∑
m=1

eik·(rj−rm)

∫ t

0
dt′e−i(ωk−ω0)t′ σ̂m(t− t′)

}
.(18)

Assuming the Markov approximation, σ̂m(t− t′) ≈ σ̂m(t), then Eq.(18) becomes

F̂ej(t) = −~
N∑
m=1

∑
k

kg2
k

{
σ̂†m(t)σ̂j(t)e

−ik·rjm
∫ t

0
dt′ei(ωk−ω0)t′ + σ̂†j(t)σ̂m(t)eik·rjm

∫ t

0
dt′e−i(ωk−ω0)t′

}
(19)

where rjm = rj − rm. The force (19) acting on the jth atom has a single-atom

contribution F̂
(self)
ej (term m = j in the sum) accounting for its own photon emission

recoil, and a contribution F̂
(int)
ej (terms m 6= j) accounting for coupling between

the jth atom and all the other atoms. Note that this dipole-dipole interaction can
occur via a coupling to common vacuum modes of radiation. The interference terms
in the total scattered field can leave a fingerprint on the forces acting on the atoms
inside the cloud. The first contribution yields

F̂
(self)
ej ≈ −~Γ

∑
|k|=k0

k σ̂†j σ̂j , (20)

where the sum is over all the randomly oriented modes k = k0k̂ and we have
omitted the self-energy shift (Lamb shift) coming from the principal part term of
the time integral in Eq(19). Noting that for m 6= j we have ik exp(ik · rjm) =
∇rj exp(ik · rjm), the second contribution to Eq.(19) can be written as

F̂
(int)
ej (t) = −i~∇rj

∑
m 6=j

∑
k

g2
k

{
σ̂j(t)σ̂

†
m(t)e−ik·rjm

∫ t

0
dt′ei(ωk−ω0)t′ − h.c.

}
.(21)
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Using Eq.(7) in Eq.(21), Eq.(19) becomes

F̂ej(t) = F̂
(self)
ej (t)−∇rj

∑
m6=j

V̂jm(t). (22)

where

V̂jm(t) = −~Γ

2

{
σ̂†j(t)σ̂m(t)e−ik0rjm + σ̂j(t)σ̂

†
m(t)eik0rjm

k0rjm

}
(23)

is the effective interaction energy between jth and mth atoms. Since
∇r[exp(ik0r)/r] = r(ik0r − 1) exp(ik0r)/r

3, Eq.(22) becomes

F̂ej = F̂
(self)
ej − ~k0Γ

2

N∑
m=1

n̂jm
(k0rjm)2

{
σ̂†j σ̂m(1 + ik0rjm)e−ik0rjm + h.c.

}
, (24)

where n̂jm = rjm/rjm. The emission force acting on the jth atom has two con-
tributions: a) a self-force due to its own photon emission; b) a force due to the
dipole-dipole interactions with all the other atoms. This second force has a term
decreasing as 1/rjm and one decreasing as 1/rjm

2.

4. Atomic state

The linear approximation assumed in the equations of the atomic operators σ̂j ,
Eq.(8), suggests that we may restrict the Hilbert space of the N atoms to the
subspace spanned by the ground state |g〉 = |g1, . . . , gN 〉 and the single-excited-
atom states |j〉 = |g1, . . . , ej , . . . , gN 〉 with j = 1, . . . , N . Hence, we set

|Ψ(t)〉 = α(t)|g〉+ e−i∆0t
N∑
j=1

βj(t)|j〉 (25)

where we will approximate α ≈ 1 after having evaluated the different expectation

values, e.g. 〈σ̂j〉 ≈ βj and 〈σ̂†j σ̂m〉 ≈ β∗j βm. So, Eq.(8) yields

dβj(t)

dt
=

(
i∆0 −

Γ

2

)
βj(t)−

iΩ0

2
eik0·rj − Γ

2

∑
j 6=m

γjmβm(t), (26)

with initial conditions βj(0) = 0. The self-interaction term, Γγjj = Γ − i∆ΩLS

yields the single-atom spontaneous decay Γ and the single-atom Lamb shift ∆ΩLS ,
which can be reabsorbed in the definition of the atomic frequency ωa, and will be
neglected in the present analysis.

Considering the force applied to the center-of mass of the atomic ensemble, F̂ =
(1/N)

∑
j F̂j , from Eqs.(16) and (24) the components along the z axis are

〈F̂az〉 = ~k0
Ω0

N

N∑
j=1

Im
(
eik0·rjβ∗j

)
(27)

〈F̂ez〉 = −~k0Γ

2N

∑
j 6=m

ẑjmj1(k0rjm)i(β∗j βm − c.c.), (28)
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where j1(z) = sin(z)/z2 − cos(z)/z is the first order spherical Bessel function and
ẑjm = (zj − zm)/rjm. Note also that the self-force (20) has zero average since∑

k
k = 0 (although in general its fluctuations are different from zero).

Also, from Eq.(15) it is possible to obtain the average intensity of the scattered
radiation as a function of the atomic wave function,

I(r, t) = ε0c〈Ê†(r, t)Ê(r, t)〉 =

(
d2ω4

0

16π2ε0c3r2

) ∣∣∣∣∣∣
N∑
j=1

e−iks·rjβj(t)

∣∣∣∣∣∣
2

. (29)

The state (25) may be conveniently expressed in the timed Dicke (TD) basis,
introduced originally by Dicke (1) and successively considered by R. Friedberg and
coworkers (3) for their study on cooperative Lamb shift and by M.O. Scully and
coworkers (6, 9) to describe cooperative decay of N atoms prepared in a symmetric
phased state. The completely symmetric TD state is |+〉k0

= (1/
√
N)
∑

j exp(ik0 ·
rj)|j〉 and Eq.(25) can be written as

|Ψ(t)〉 = α(t)|g〉+ e−i∆0tβTD(t)|+〉k0
+ e−i∆0t

N−1∑
s=1

γs(t)|s〉k0
, (30)

where |s〉k0
groups all the states orthogonal to |+〉k0

(6).
A numerical analysis of eq.(26) shows that, for a constant driving field Ω0 and

for atomic cloud sizes much larger than the optical wavelength, the occupation
probability of the states |s〉k0

is only a small fraction of the atomic state (20) and
it is in general negligible, so that Eq.(26) becomes

dβTD
dt

= − i
2

√
NΩ0 + i (∆0 −∆N )βTD −

1

2
ΓNsNβTD, (31)

where

sN =
1

N2

N∑
j,m=1

sin(k0|rj − rm|)
k0|rj − rm|

e−ik0·(rj−rm) =
1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ |SN (k0, θ, φ)|2 (32)

∆N = − Γ

2N

N∑
j 6=m

cos(k0|rj − rm|)
k0|rj − rm|

e−ik0·(rj−rm) = −ΓN

8π2
P

∫ ∞
0

dκκ3

κ− 1

∫ 2π

0
dφ

∫ π

0
dθ sin θ |SN (k0κ, θ, φ)|2(33)

where κ = k/k0,

SN (k) ≡ 1

N

N∑
j=1

e−i(k−k0)·rj (34)

is the factor form and the integral over κ in Eq.(33) is evaluated as a principal
part. The term ∆N is the collective Lamb frequency shift (3, 10). At steady state
we find

βTD =
Ω0

√
N

2(∆0 −∆N ) + iNΓsN
, (35)
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and

〈F̂z〉 = 〈F̂az〉+ 〈F̂ez〉 = ~k0Γ
Ω2

0

4(∆0 −∆N )2 +N2Γ2s2
N

N [sN − fN ] (36)

where

fN =
1

N2

∑
j 6=m

ẑjmj1(k0rjm) sin(k0zjm). (37)

The cooperative radiation force can be obtained from the standard single-atom
radiation pressure force F1 = ~k0ΓΩ2

0/(4∆2
0+Γ2) substituting the natural linewidth

by the collective linewidth, ΓN = ΓNsN , and multiplying it by 1− fN/sN , where
fN/sN is the probability to observe the photon emitted in the forward direction.
Isolating the term j = m,

|SN (k)|2 =
1

N
+
∑
j 6=m

ei(k0−k)·(rj−rm) ≈ 1

N
+ |S∞(k)|2 (38)

where the factor form S∞(k) is evaluated for a continuous approximation with
density distribution n(r),

S∞(k) =
1

N

∫
V
drn(r)ei(k0−k)·r. (39)

Then, sN ≈ (1/N) + s∞ and fN ≈ f∞ where,

s∞ =
1

4π

∫
dΩk|S∞(k)|2, f∞ =

1

4π

∫
dΩk cos θ|S∞(k)|2 (40)

and Eq.(36) becomes

Fz =
~k0ΓΩ2

0

4(∆−∆N )2 + Γ2
N

[
1 +

N

4π

∫
dΩk(1− cos θ)|S∞(k)|2

]
. (41)

The factor form S∞(k) and the integrated factors s∞ and f∞ have been cal-
culated in ref. (18) for a Gaussian density distribution with ellipsoidal profile,
n(r)0 exp[−(x2+y2)/2σ2

r−z2/2σ2
z ], yielding S∞(k0, θ) = exp{−σ2[sin2 θ+η2(cos θ−

1)2]/2}, where σ = k0σr and η = σz/σr is the aspect ratio. For spherical and large
clouds (η = 1 and σ � 1), s∞ ≈ 1/(4σ2), f∞ ≈ s∞ − 1/(8σ4) and the collective
Lamb shift is ∆N ≈ ∆∞ where (see (14) and Appendix B)

∆∞ = − ΓN

4
√
πσ3

, (42)

which is a redshift, proportional to the number of atoms in a cubic wavelength
(3), i.e. atomic density and not optical thickness b0 = 3N/σ2. These values for
s∞, f∞ and ∆∞ can be compared to numerical evaluation of the sN , fN and ∆N

for a finite number of atoms and a specific configuration. In Fig. 2 we show the
distribution of these values for different sample size.

In our numerical simulations shown in Fig. 3 we observe strong configuration
dependent fluctuations for the value of the collective Lamb shift. A precise com-
parison with our analytical expression, valid for large clouds, is thus cumbersome
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Figure 2. (color online) Distributions for values of sN , fN and ∆N for N = 50 atoms, plotted for 10000
configurations for a size corresponding to σ = 10 (blue curves) and σ = 2 (green curves).
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Figure 3. (color online) Collective Lamb shift vs atom number for σ = 1.6 (green triangles) σ = 2 (blue
circles) and σ = 3 (red squares).

and did not allow us to validate precise predictions of the numerical factor in Eq.
(42).

Normalizing the radiation pressure force with respect to the single atom value,
we obtain for large atomic samples,

〈F̂z〉
F1

=
4∆2

0 + Γ2

4(∆0 −∆N )2 + Γ2(1 + b0/12)2

[
1 +

b0
24σ2

]
(43)

Finally, from Eq.(29) we obtain the scattered intensity

I(r) =

(
I0

16π2k2
0r

2

)[
Γ2

4(∆0 −∆N )2 + Γ2(1 + b0/12)2

] [
N +N2|S∞(ks)|2

]
. (44)

This expression of the scattered intensity illustrates the role of the shape of the
atomic cloud for the modified emission diagram. The emission diagram of the TD
state is shown in Fig.4. It illustrates the strong forward emission by the cloud when
its size exceeds a few optical wavelengths, reminiscent of Mie scattering, or more
precisely of Rayleigh-Debye-Gans (28). As we will discuss in the following section,
a modified emission diagram yields a modified radiation pressure force, as the recoil
of the scattered photon (partially) compensate the recoil effect at absorption.
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Figure 4. (color online) Emission diagram computed according to Eq. (29) for the Timed Dicke state
|+〉k0

with N = 40 atoms : σ = 0.4 (blue), σ = 1 (red) , σ = 8 (green).

5. Heuristic approach

The result (36) can be interpreted heuristically considering the momentum balance
in a given time interval δt (29). During δt, N two-level atoms with positions rj (j =
1, . . . , N) do δN florescence cycles, each time absorbing a photon with momentum
~k0 from the laser and emitting a photon with momentum ~ki (i = 1, . . . , δN) in a
random direction Ωi, with probability Pi,j = P (Ωi, rj). The momentum variation
for the jth atom after δN cycles is

δpj = (~k0)δN −
δN∑
i=1

(~ki)Pi,j . (45)

For a single isolated atom the emission is isotropic and Pi,j = 1, but for N atoms
the emission can be not isotropic depending on the atomic distribution. Also, the
excitation could be not uniform if the phase front of the driving beam is getting dis-
torted by the refractive index changes in the atomic cloud. Assuming for simplicity
that the excitation is uniform over the entire atomic ensemble and neglecting phase
distortion effects (30, 31), δN will be the same for all the atoms and |ki| = k0.
Considering the momentum variation along the direction of the incident photon (z
axis), after averaging over the atoms

δpz =
1

N

N∑
j=1

δpj,z = (~k0)δN − (~k0)

δN∑
i=1

Pi cos θi (46)

where Pi = (1/N)
∑

j Pi,j = P (cos θi) is the emission probability along the angle θi.
Considering cos θi and δN as independent random variables, the statistical average
of Eq.(46) is

δpz = (~k0) δN − (~k0) δN · cos θ (47)

where we assumed
∑

i cos θi ≈ δN · cos θ. Hence, the pressure force is

Fz =
δpz
δt

= (~k0)

(
δN

δt

)[
1− cos θ

]
(48)
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Comparing with Eq.(36) we found the following correspondence(
δN

δt

)
=

Ω2
0ΓN

4(∆−∆N )2 + Γ2
N

, cos θ =
fN
sN

(49)

where ΓN = ΓNsN . So, the scattering rate (δN/δt) is equal to the excitation prob-
ability, ρee = Ω2

0/[4(∆ − ∆N )2 + Γ2
N ], times the collective decay rate, ΓN . The

radiation pressure force (36) is equal to the momentum photon, ~k0, multiplied by
the scattering rate and by a geometrical factor 1− cos θ taking into account the di-
rectionality of the scattered light. Cooperativity modifies both the scattering rate,
enhancing the decay rate and shifting the resonance frequency, and the scattering
direction. Small samples tend to radiate isotropically whereas extended samples
radiate superradiantly in forward direction (11, 18). These cooperative effects can
be revealed measuring radiation pressure force by monitoring center-of-mass mo-
tion of large atomic clouds released by magneto-optical traps (16, 17), and then
identifying fast decay, shifts and modified emission diagrams described by Eqs.(36)
and (44).

6. Product state

It has been noted that the same results obtained for a symmetric TD state could be
obtained assuming a product state for N atoms (5, 13) (named also ’Bloch state’
by some authors (7)):

|Ψ(t)〉c =

N∏
j=1

{
αc(t)|gj〉+ βc(t)e

ik0·rj−i∆0t|ej〉
}
, (50)

where αc(t) and βc(t) are the same for every atom, with |αc(t)|2 + |βc(t)|2 = 1.
The ansatz of Eq. (50) assumes each jth atom driven into the excited state with
equal probability |βc(t)|2 and phase φj = k0 · rj − ∆0t. As it happens for the
symmetric TD state (30), the driving field imposes a coherence in the photons
emitted spontaneously by each atom, so that superradiance arises because the
state is symmetric under exchange of particles (32). However, it is expected that
the quantum statistic of the symmetric TD state will be quite different from that
of the ’quasi-classical’ product state. Notice that for |βc| � 1 the product state
(50) can be written in the following form (7, 14)

|Ψ〉c = αNc |g〉+ αN−1
c βc

∑
j

eik0·rj−i∆0t|j〉+ αN−2
c β2

c

∑
j 6=m

eik0·(rj+rm)−2i∆0t|j,m〉+ . . .(51)

where |j,m〉 = |g1, . . . , ej , . . . , em, . . . , gN 〉. Hence, the product state can be ex-
panded in the symmetric TD states with 1 to N excited atoms. Only in the limits
αc ≈ 1 and |βc| � 1 the product state reduces to the symmetric single-excited atom
state |ψ〉 ≈ |g〉 + βc

√
N |+〉k0

if only the first two terms of Eq. (51) are retained.

The expectation values for the state (50) are 〈σ̂j〉 = α∗cβc and 〈σ̂†mσ̂j〉 = |αc|2|βc|2,
so for αc ≈ 1 they coincide with those obtained from the symmetric TD state.
Differences between the product and the symmetric TD states should appear when
higher-order expectation values are observed, as for instance 〈σ̂j σ̂m〉, which is zero
for the TD state and α∗2βjβm ≈ βjβm for the product state. Notice that operator
ordering produces different results in high-order expectation values if scattered pho-
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tons or atomic forces are measured. These features and non classical effects studies
in cooperative scattering by cold atoms will be the object of a future investigation.

7. Conclusion

In this paper, we have included a more precise kernel to evaluate the cooperative
radiation pressure force on a cloud of two level systems. The collective Lamb shift
leads to a shift ∆N of the resonance, which is proportional to the spatial density.
As we have used a scalar model in this paper, near field and polarization effects
are neglected. One thus needs to consider this shift with some scepticism as the
numerical factor for this shift in a real system will be strongly modified by the
vectorial nature of the light (3). For dilute clouds, we recover previous results
(16), where these density effects are negligible. We also presented a simple model
to estimate the radiation pressure force from the modified emission diagram and
assuming coupling to the single photon superradiant (Timed Dicke) state (6). This
approach can be useful to estimate not only average forces but also fluctuations
and dissipation. Finally, we noted that in the low intensity limit, the average result
we derived for the cooperative radiation pressure force can be obtained either
by assuming a driven Timed Dicke state or a product state (5, 7, 13), with no
entanglement required. Looking for non classical features in cooperative scattering
of light by a cloud of two level system thus requires studies of higher orders either
by using higher intensities or looking at correlations or fluctuations of the force.
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Appendix A. Evaluation of the integral kernel in Eq.(6)

Let’s consider the last term in Eq.(6) and pass to the continuous frequency ap-
proximation:

I(rjm) =
∑
k

g2
ke
ik·rjm

∫ t

0
dt′σ̂m(t− t′) e−ic(k−k0)t′ → Vph

(2π)3

∫
dkg2

ke
ik·rjm

∫ t

0
dt′σ̂m(t− t′) e−ic(k−k0)t′ .(A1)

We exchange the integration order and introduce spherical coordinates, dk =
dkk2dφ dθ sin θ. After integration of the angular part, we obtain

I(rjm) =
Vph
2π2

∫ t

0
dt′σ̂m(t− t′)eick0t′

∫ ∞
0

dkk2g2
k

sin(krjm)

krjm
e−ickt

′
. (A2)

where rjm = |rjm|. We approximate the k integral as

∫ ∞
0

dkk2g2
k

sin(krjm)

krjm
e−ickt

′ ≈
k2

0g
2
k0

2ik0rjm

∫ ∞
−∞

dk
{
e−ick(t′−rjm/c) − e−ick(t′+rjm/c)

}
,(A3)

where we made the following approximations: a) we assumed the spectrum centered
around k ≈ k0, so that kg2

k ≈ k0g
2
k0

; b) we extended the lower integration value
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from 0 to −∞, since the relevant values of k are around k0. Using the expression
above, we write

I(rjm) =
Γ

2ik0rjm

∫ t

0
dt′σ̂m(t− t′)eick0t′

{
δ(t′ − rjm/c)− δ(t′ + rjm/c)

}
=

Γ

2

eik0rjm

ik0rjm
σ̂m(t− rjm/c).(A4)

where Γ = Vphk
2
0g

2
k0
/(πc). We observe that this approach does not require to assume

the Markov approximation before solving the time integral, as in the standard
approach (12). On the contrary, this approach allows to obtain the retarded (or
not local) kernel, which, when the ’rapid transit approximation’ is assumed, i.e.
σ̂m(t− rjm/c) ≈ σ̂m(t), reduces to the exponential kernel of Eq.(8).

Appendix B. Collective Lamb shift for a Gaussian distribution

Let consider Eq.(33) for a continuous distribution:

∆∞ = −ΓN

8π2
P

∫ ∞
0

dκκ3

κ− 1

∫ 2π

0
dφ

∫ π

0
dθ sin θ |S∞(κ, θ, φ)|2 . (B1)

A spherical Gaussian distribution, n(r)0 exp(−r2/2σ2
R), yields S∞(κ, θ, φ) =

exp[−σ2(κ2 + 1− 2κ cos θ)/2], where σ = k0σR. Inserting it in eq.(B1) we obtain

∆∞ = −ΓN

4π
P

∫ ∞
0

dκκ3

κ− 1
e−σ

2(κ2+1)

∫ π

0
dθ sin θe2σ2κ cos θ

= − ΓN

8πσ2
P

∫ ∞
0

dκκ2

κ− 1

[
e−σ

2(κ−1)2 − e−σ2(κ2+1)2
]

= − ΓN

8πσ2
P

∫ ∞
0

dκ

(
κ+ 1 +

1

κ− 1

)[
e−σ

2(κ−1)2 − e−σ2(κ+1)2
]

= − ΓN

8πσ2
P

∫ ∞
−1

dx

(
2 + x+

1

x

)[
e−σ

2x2 − e−σ2(2+x)2
]
. (B2)

For σ � 1 it is approximated by

∆∞ ≈ −
ΓN

8πσ2
P

∫ ∞
−∞

dx

(
2 +

1

x

)
e−σ

2x2 ≈ − ΓN

4
√
πσ3

, (B3)

in agreement with the result of Friedberg and Manassah (14).
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