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Institut de Mathématiques de Toulouse (UMR 5219)
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Abstract. This paper is a first attempt to derive a qualitatively simple model
coupling the dynamics of a charged biopolymer and its diffuse cloud of coun-
terions. We consider here the case of a single actin filament. A zig-zag chain
model introduced by Zolotaryuk et al [28] is used to represent the actin he-
lix, and calibrated using experimental data on the stiffness constant of actin.
Starting from the continuum drift-diffusion model describing counterion dy-
namics, we derive a discrete damped diffusion equation for the quantity of
ionic charges in a one-dimensional grid along actin. The actin and ionic cloud
models are coupled via electrostatic effects. Numerical simulations of the cou-
pled system show that mechanical waves propagating along the polymer can
generate charge density waves with intensities in the pA range, in agreement
with experimental measurements of ionic currents along actin.

1. Introduction. Biopolymers can exhibit a variety of complex dynamical behav-
iors, such as structural transitions in proteins [11] or the breathing of base pairs in
DNA [19]. Simulating such phenomena with all-atom models remains a formidable
task, due to the large number of degrees of freedom involved and the multiple time
scales generated by the dynamics. In addition, realistic models should take into ac-
count the effects of the surrounding solvent, which consists in water molecules and
ions that greatly influence the physical properties and dynamics of biopolymers.
Interestingly, nontrivial dynamical phenomena also occur in the ionic clouds that
condense around charged biopolymers. More precisely, experiments performed by
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Lin and Cantiello have revealed that ionic signals can propagate inside the ionic
cloud surrounding actin filaments [14].

To analyze the dynamics of biopolymers, an alternative to full molecular simu-
lations is the use of simplified lattice models which only retain a small number of
essential degrees of freedom per monomer and the main geometrical characteristics
of the molecular chain. Despite their relative simplicity, such models qualitatively
reproduce experimental observations in different contexts such as DNA breathing
[20] or vibrationnal self-trapping in α-helices [7].

In most cases, previous lattice models for biopolymers have separately studied
on the one side the vibrational and conformational dynamics (see e.g. [19, 27,
24] in the case of DNA), and on the other side the dynamics of condensed ionic
charges [13, 26, 23]. However, since the frequency spectrum of internal motions
in biopolymers is very large (ranging from picosecond to millisecond periods), a
dynamical coupling between slow internal motions and ionic charges may occur
and produce interesting phenomena. Along this direction, Perepelytsya and Volkov
have introduced a lattice model coupling the vibrational dynamics of DNA and
some of its counterions directly bound to phosphate groups (see [18] and references
therein). Their model reproduces a ion-phosphate mode detected in experiments [4],
and shows that heavy counterions Cs+ have an effect on the internal vibrations of
DNA. However, their analysis is restricted to alkaline metal ions bound to phosphate
groups, treated as a lattice of point charges, and does not take into account the more
diffuse ionic cloud surrounding DNA. This other group of ions is usually described
by continuum models [8, 9], and it is a challenging task to derive a tractable model
that would simultaneously encompass the continuum counterion dynamics and the
discrete biopolymer dynamics.

The present paper is a first attempt along this direction. The polymer itself
is described by a nonlinear lattice introduced by Zolotaryuk et al consisting in a
zig-zag chain [28]. In addition, the polymer is embedded in a ionic cloud divided
into fixed cells with averaged charge densities, and the resulting sequence of charge
densities satisfies a discrete damped diffusion equation. Both models are nonlinearly
coupled via electrostatic effects.

Our contribution consists in three different results. Firstly, we calibrate the
mechanical model of Zolotaryuk et al in the case of actin polymers, using available
experimental data for the stretching of actin filaments [12, 15]. Secondly, starting
from the continuum drift-diffusion model for ionic charge densities [2], we derive
a spatially averaged lattice model describing charge densities that is coupled to
the above mechanical lattice. Our lattice model for charges is thus derived from
first principles, and differs from previous models based on physical assumptions
that were not completely justified. Indeed, previous models assumed an analogy
between actin and a nonlinear transmission line resulting in a KdV equation for
ionic signals [13], the existence of an induction effect resulting from the possible
helical motion of charges around the polymer, and a formally introduced nonlinear
capacitance effect [26, 23]. Thirdly, we numerically compute the amplitude of charge
density waves resulting from an initial localized compression of the polymer. The
currents we obtain under low ionic strength conditions lie in the pA range, which is
consistent with intensities of ionic signals measured in experiments [14]. In addition
we show that compression solitons propagating along the polymer can generate a
localized ionic wave in the pA range, propagating steadily with almost no dispersion
(the principle of this phenomenon is depicted in figure 1). This phenomenon could
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have interesting biological implications since ionic signals play an important role in
cellular activities.

Figure 1. Schematic representation of a compression soliton
propagating along a biopolymer, and accompanied by a localized
charge density wave in the cloud of condensed counterions. Black
circles represent surface charges on the polymer, and white circles
denote counterions in solution.

This work is of course preliminary, in particular because the description of the
electrostatic coupling between the surface charges on the polymer and the con-
densed counterions is oversimplified. However, it yields physically realistic current
intensities despite its great simplicity, and provides a general methodology to cou-
ple polymer and charge dynamics that will serve as a basis for a more realistic
modelling.

The outline of the paper is as follows. The zig-zag chain model is described in
section 2 and calibrated in section 3. In section 4 we establish the lattice model for
ionic charges, and couple both models in section 5. Section 6 presents numerical
simulations of charge density waves generated by a local compression of the polymer.
Section 7 sums up our main results, highlights different directions in which the model
must be improved and lists some interesting problems that remain to be examined.

2. Equations of motion of actin monomers. We begin by describing a very
simplified model of the geometry of actin and giving the equations of motion of its
monomers.

2.1. Lattice model for an isolated actin filament. The actin filament can be
represented by a simple helix of pitch l ≈ 5.9 nm or by a double helix with 72 nm
pitch [5, 10]. The helix diameter is hl ≈ 7.5 nm. We approximate the simple helix
by a very simplified planar zig-zag chain model introduced in reference [28], where
each monomer is treated as a material point (see figure 2). The distance between
first neighbors on the helix is then a = l(h2 + 1/4)1/2. The different types of in-
teractions between monomers (e.g. covalent bonds, hydrogen bonds, electrostatic
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forces, contacts interactions) are incorporated in effective potentials. Electrostatic
interactions are significant in view of recent results on the distribution of surface
charges on actin filaments [1]. Indeed, each actin monomer has a protuberance that
is heavily charged (−10 e, e denoting the elementary charge) compared to the re-
mainder of the monomer on which positive and negative charges almost compensate
(the total charge of the monomer is −11 e). As a result, a cloud of positive coun-
terions condenses around the actin filament, forming the Debye layer. We include
therefore in the equations of motion of monomers an electrostatic force due to this
ionic cloud.

We note Mn the nth actin monomer. When n is odd, the monomer Mn is
represented by a point of cartesian coordinates (xn + nl/2, yn − lh/2). If n is even,
Mn is represented by a point of coordinates (xn +nl/2,−yn + lh/2). We note dm,n

the distance between the monomers Mm and Mn, which is given by

d2m,n = (xn − xm + (n−m)l/2)
2
+ (yn + ym − lh)2, if (n−m) is odd, (1)

d2m,n = (xn − xm + (n−m)l/2)
2
+ (yn − ym)2, if (n−m) is even. (2)

The potential energy resulting from monomer interactions is given by

W =
∑
n

(V (dn,n+2) + U(dn,n+1)), (3)

where U and V are effective potentials describing interactions between first and
second neighbors respectively (see figure 2). We set

U(x) =
k̄

2
(x− ā)2, V (x) =

k̄

2
(x− l̄)2, (4)

where the potentials are written in terms of the small deviations around the struc-
ture in the absence of the ionic cloud. The pitch l̄ and diameter l̄ h̄ in the absence
of counterions will be computed in section 3, and ā = l̄(h̄2 + 1/4)1/2 is the dis-
tance between first neighbors on the chain. The parameter k̄ will be deduced from
experimental data on actin stiffness (see section 3).

Figure 2. Schematic representation of a zig-zag molecular chain.

2.2. Inclusion of an electrostatic force due to the ionic cloud. We derive
here a very crude approximation of the electrostatic force exerted by the ionic cloud
on a given actin monomer. A important parameter is the Debye length κ−1 defined
by

κ2 =
2e2n0

εkBT
(5)
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where n0 is the concentration of monovalent ions far from actin, ε = 7, 08.10−10 USI
is the solvent permittivity, kB = 1, 38.10−23 J.K−1 the Boltzmann constant and T
the temperature. The Debye length characterizes the thickness of the diffuse layer
of counterions that is formed around the polymer.

Each monomer carries one negative charge −q with q = 11e. The electrostatic
force exerted on a given monomer by the ionic cloud is estimated in a simple way,
assimilating the nth monomer to a point charge −q located atMn and the surround-
ing Debye layer to an uniform distribution of charges contained in a half-sphere of
radius κ−1 around Mn. This rough approximation only takes into account the elec-
trostatic interactions between each monomer and the cloud of counterions in its
immediate vicinity, and yields an electrostatic force normal to the chain. We note
(0, g2k+1) the components of the electrostatic force applied to M2k+1 and (0,−g2k)

those of the force applied to M2k. Denoting by Q̃n the total ionic charge in the
Debye layer around Mn, we have

gn =
−3κ2

16πε
qQ̃n. (6)

When the layer of ions and actin are at equilibrium, we have in particular Q̃n = q
and gn = ge with

ge =
−3κ2

16πε
q2. (7)

Note that ge depends on the concentration of ions away from actin. If the ion
concentration is n0 = c mM.l−1, we have at 22◦C

ge ≈ −2.79 c pN . (8)

The equations of motion of the monomers are given by

M
d2xn

dt2
= −∂W

∂xn
, (9)

M
d2yn
dt2

= −∂W

∂yn
+ gn

where M ≈ 7, 18.10−23 kg is the mass of one actin monomer. Note that system
(9) is nonlinear although potentials U, V in (3) are harmonic, due to geometric
nonlinearities.

3. Calibration of the actin model. Experiments [12, 15] on the stiffness con-
stant of an actin filament are a good starting point to calibrate our model from
experimental data. These works study the elongation δL of a filament under an
external force f applied to one end. The stiffness constant K = f ′(δL) is found
almost constant for strong or moderate constraints. However, K decreases sharply
with δL when the external force lies below a certain threshold. In this regime, actin
behaves like a semi-flexible polymer that undulates as a result of thermal fluctua-
tions and the nonlinear relation giving K can be described using a worm-like chain
model [15, 16]. This regime is not correctly described by our model in which we
consider a zig-zag chain whose axis is straight when the chain is at rest. Therefore,
we restrict ourselves to the parameter regimes for which the stiffness constant of
actin remains almost constant.

We consider a filament of 2N + 1 monomers M0, ...,M2N . The monomer M0

is kept fixed (x0 = 0) while an external force f is exerted on M2N in the axial
direction. To evaluate actin stiffness from our model we consider the case when N
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is large and neglect boundary effects, i.e. we assume that interaction forces and
helix parameters are independent of n. We note respectively l1, l1h1 the pitch and
diameter of the helix in this configuration. The distance between first neighbors on
the chain is then a1 = l1(h

2
1 + 1/4)1/2. The total filament length is L = Nl1 (we

assimilate the chain to a straight filament corresponding to the axis of the helix).
The filament length at rest is Nl. The elongation of the filament when applying
the force is thus

δL = N(l1 − l).

In this section we shall compute l1 as a function of f and the unknown stiffness
constant k̄ of U, V , and determine the latter by comparison with an experimental
stress-strain curve.

The transverse and axial components of the equilibrium equations yield

− 2
l1h1

a1
U ′(a1) = ge, (10)

V ′(l1) +
l1
2a1

U ′(a1) = f. (11)

Using equation (10) in (11) and expressing a1 in terms of l1 and h1, we get the
system of equations

− 2h1(h
2
1 + 1/4)−1/2U ′(a1) = ge, (12)

l1(h
2
1 + 1/4)1/2 = a1, (13)

V ′(l1)− ge
4h1

= f. (14)

With this system one can calculate the pitch l1 and the diameter l1h1 as a function
of f and the normal stress ge (which is fixed by the Debye length). Indeed, since U
is harmonic, equations (12), (13) determine a1, l1 explicitly as functions of h1, and
then f can be expressed as a function of h1 using equation (14).

To estimate the model parameters, we consider a concentration of monovalent
counterions of 25 mM.l−1 corresponding to experiments in [12, 15]. Using (8) we
obtain ge ≈ −69.75 pN. We consider the reference values l0 = 5.9 nm, h0l0 = 7.5
nm, a0 = 8.06 nm for the parameters of the unstretched actin filament (f = 0) at
this ionic concentration.

The potentials defined in (4) are expressed using parameters ā, l̄ of the chain in
the absence of counterions (i.e. for ge = 0), which cannot be directly computed
at this stage from the equilibrium equations since k̄ is not yet determined. Conse-
quently, it is useful to introduce intermediate parameters

λ1 = k̄ (a0 − ā), λ2 = k̄ (l0 − l̄) (15)

which can be directly computed and correspond to interaction forces between ad-
jacent monomers. Indeed, up to the addition of a constant to potentials U and V,
we can write

U(x) = λ1(x− a0) +
k̄

2
(x− a0)

2, V (x) = λ2(x− l0) +
k̄

2
(x− l0)

2. (16)

Using (16) in (12)-(14) yields
ge
4

[
λ2 + k̄(l1 − l0)− f

]−1
= h1, (17)

l1(h
2
1 + 1/4)1/2 = a1, (18)

2h1(h
2
1 + 1/4)−1/2

[
λ1 + k̄(a1 − a0)

]
= −ge. (19)
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For unstretched actin (f = 0) one has a1 = a0, l1 = l0, h1 = h0 and one finds

λ2 =
ge
4h0

, λ1 = − ge
2h0

(h2
0 + 1/4)1/2,

which yields finally

λ1 = 37.48 pN, λ2 = −13.73 pN.

Now we are ready to determine the stiffness constant k̄ by adjusting the stress-
strain relation resulting from (17)-(19) with an experimental curve. We consider
figure 10-a of reference [15], which corresponds to an unstretched filament with
length Lc = 19.1μm = Nl0. We therefore set N = 3238 in our model with 2N + 1
monomers. In the regime of linear elasticity, experiments yield

f ≈ Ka

Lc
δL, δL = N(l1 − l0), Ka ≈ 35.5 nN.

We recover this result when fixing in (16)

k̄ = 6N.m−1 ≈ N
Ka

Lc
. (20)

Indeed, solving system (17)-(19) for (l1, h1, a1) for different values of f , we obtain
the filament lengthNl1 represented in figure 3. This graph reproduces very precisely
the linear part of figure 10-a of reference [15]. Note that when the concentration of
ions in solution varies, the stiffness constant k̄ computed with our model remains
practically unchanged. Moreover, approximation (20) shows that the contribution
of potential U to actin stiffness is negligible.
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Figure 3. Relation between applied stretching force f and fila-
ment length Nl1 for k̄ = 6 N.m−1, obtained by numerical resolu-
tion of (17)-(19). The concentration in monovalent counterions is
25 mM.l−1. The filament length at rest is 19.1μm (N = 3238).
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Using (15) and the values of λ1, λ2, k̄ previously obtained, we find

ā ≈ 8.053 nm, l̄ ≈ 5.902 nm, l̄ h̄ = (ā2 − l̄2

4
)1/2 ≈ 7.493 nm,

hence the values of l̄ and l̄ h̄ are extremely close to those of l0 and h0l0. More
generally, it is interesting to study how the pitch l and diameter hl at equilibrium
depend on the concentration of ions in solution. For this purpose we numerically
solve system (17)-(19) with f = 0, which can be rewritten

h(l − l̄) =
ge
4k̄

,

l(h2 + 1/4)1/2 = a,

h(h2 + 1/4)−1/2(a− ā) = − ge
2k̄

.

We obtain only very small variations, at most of the order of 0.1 Å for l and 0.4 Å
for hl, when we change the ionic concentration.

4. Lattice model for counterion dynamics. In this section we use the classical
drift-diffusion system [2] to derive a lattice model approximating the quantity of
ionic charges in fixed cells around actin. This model is coupled with the above chain
model because the charge density in the Debye layer depends on the distribution of
surface charges along actin, which is a function of monomer positions.

In what follows, in order to analyze the dynamics of the ions in the continuous
fluid medium that surrounds actin, we look at the system from a different perspec-
tive, at a larger scale. At this level of description we can view the actin filament as a
simple cylinder, which carries charges which are distributed in an extended domain
around the center of each monomer. Therefore we consider now the actin filament
as an infinite cylinder of radius ra = lh/2 and denote by x the axial coordinate.
We begin by constructing an equivalent axisymmetric charge distribution σ(t, x)
associated with monomer positions. The axial coordinate of the center of monomer
n is xn(t)+nl/2 and we consider that the surface charge of the monomer is mainly
contained in a segment of width l/2 around his center [1]. A point with coordinate x

belongs to this segment when |x−xn(t)−nl/2| < l/4, i.e. for | 2(x−xn(t))
l −n| < 1/2.

The modulus of the surface charge density on a monomer (centered at x = 0, for l
renormalized to 2) is assumed proportional to

χ(x) =

{
0, if |x| ≥ 1/2

2− 4|x|, if |x| ≤ 1/2,
(21)

(note that
∫
R
χdx = 1). The equivalent surface charge distribution associated with

polymer positions is then defined by

σ(t, x) =
1

2πra

−2q

l

∑
n

χ[
2(x− xn(t))

l
− n]. (22)

When actin is at equilibrium (xn = 0), the charge density has period l/2 in x and
can be written

σ̄(x) =
1

2πra

−2q

l

∑
n

χ(
2x

l
− n).

Integrating on a segment with N monomers we find∫ 2π

0

∫ (l/4)+(N−1)l/2

−l/4

σ̄ dx ra dθ = −q N.
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We observe that when l ≈ 0, σ ≈ −q
2πra

∑
n δxn(t)+nl/2(x) and we recover the case of

a point charge distribution.
Actin is surrounded by a cloud of counterions which compensates its surface

charge. We will now introduce the drift-diffusion model for these ions and make
simplifying assumptions leading to an equivalent electrical circuit. In the case of a
single ion species, the density of charge ρ(t, x, r) in the Debye layer satisfies [2]

∂ρ

∂t
+ divJ = 0, (23)

where

J = −D∇ρ− ρμ∇φ, (24)

μ denotes the ion mobility, D its diffusion coefficient and φ the electric potential in
the Debye layer due to ions and surface charges. The potential φ satisfies a Poisson
equation Δφ = −ρ/ε.

We neglect from now the ionic charges situated outside the Debye layer and
suppose that the latter compensates the total charge of actin. Furthermore, we
divide the Debye layer in an infinity of cylindrical domains defined by

Ωn = {(r, θ, x)/ra < r < ra + κ−1, an−1 < x < an},
with an = l

2 (n+
1
2 ). This discretization is useful for the analysis of the next section,

which couples the dynamics of the discrete actin model with that of the ionic cloud.
We perform the following approximation in the Debye layer

J ≈ −D∇ρ− ρμ∇φ. (25)

The term ρμ corresponds to an electrical conductivity averaged in the domain Ωn

when the actin is at rest. This approximation is similar to the one used to establish
Ohm’s law for electrical circuits, in which the electrical conductivity is assumed
constant in each resistance. We fix

ρ =
2qκ

lπ(hl + κ−1)
(26)

so that a layer of ions of density ρ in Ωn exactly compensates the charge of monomer
n when actin is at rest.

The ionic charge Qn contained in Ωn is

Qn =

∫∫∫
Ωn

ρ rdrdθdx. (27)

Integrating (23) over Ωn, using (25) and taking into account the no-flux boundary
conditions J.−→n = 0 at r = ra and r = ra + κ−1, we obtain

dQn

dt
= 2πD

∫ ra+κ−1

ra

[
∂ρ

∂x
(an, r)− ∂ρ

∂x
(an−1, r)

]
rdr

+2πμρ

∫ ra+κ−1

ra

[
∂φ

∂x
(an, r)− ∂φ

∂x
(an−1, r)

]
rdr (28)

(we omit dependency in t in notations).
9



Now we approximate each term at the right side of (28). We note that for l ≈ 0

Qn+1 − 2Qn +Qn−1 =

∫∫∫
Ωn

[
ρ(x+

l

2
, r)− 2ρ(x, r) + ρ(x− l

2
, r)

]
rdrdθdx

≈ 2π
l2

4

∫ ra+κ−1

ra

∫ an

an−1

∂2ρ

∂x2
(x, r) dx rdr

= π
l2

2

∫ ra+κ−1

ra

[
∂ρ

∂x
(an, r)− ∂ρ

∂x
(an−1, r)

]
rdr.

Therefore,

2πD

∫ ra+κ−1

ra

[
∂ρ

∂x
(an, r)− ∂ρ

∂x
(an−1, r)

]
rdr ≈ 4D

l2
(Qn+1 − 2Qn +Qn−1). (29)

Also, using the Gauss theorem∫∫
∂Ωn

−∇φ.−→n dS =
Qn

ε
,

with the boundary conditions

∂φ

∂r
(x, ra) = −σ

ε
,

∂φ

∂r
(x, ra + κ−1) = 0,

we get

2πμρ

∫ ra+κ−1

ra

[
∂φ

∂x
(an, r)− ∂φ

∂x
(an−1, r)

]
rdr = −μ

ε
ρ(Qn + 2πra

∫ an

an−1

σdx). (30)

Using (29) and (30) in (28) we obtain finally

dQn

dt
=

4D

l2
(Qn+1 − 2Qn +Qn−1)− μ

ε
ρ(Qn + 2πra

∫ an

an−1

σdx). (31)

Note that if xn is independent of n (i.e. actin is simply translated) we have

2πra

∫ an

an−1

σdx = −q

and Qn = q is an equilibrium solution of (31).
We note in the sequel Qn = q + qn. Using definition (22), problem (31) can be

rewritten

dqn
dt

=
4D

l2
(qn+1−2qn+qn−1)− μ

ε
ρ
(
qn+q−q

∑
p

[ ∫ 1
2+p

− 1
2+p

χ(x− 2

l
xn−p)dx

])
. (32)

To simplify equation (32) we assume small monomer displacements with |xn| < l/4,
so that the center of monomer n (for which x = xn(t) + nl/2) is inside the domain
Ωn at r = ra. In equation (32), the coupling term involving monomer displacements
is then reduced to a sum of three terms. Then (after a change of variables in the
integrals) problem (32) can be rewritten

dqn
dt

=
4D

l2
(qn+1−2qn+qn−1)−μ

ε
ρqn+q

μ

ε
ρ(F (−xn+1)−F (xn)−F (−xn)+F (xn−1))

(33)
with

F (x) =

∫ 1
2

1
2− 2

l x

χ(y)dy. (34)
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We recall that the function χ appearing in (34) is defined by (21). Note that to
maintain the conservation of charge in (33) we are restricted to initial conditions
satisfying

∑
n qn = 0, i.e. to neutral electrical systems.

5. Coupled model for actin and condensed counterions. In this section we
sum up the main features of the two models established in the previous sections, pre-
cise certains points concerning their coupling and briefly compare them to existing
models.

We consider harmonic interaction potentials U and V corresponding to nearest
neighbors and next nearest neighbors interactions along the chain, defined by

U(x) =
k̄

2
(x− ā)2, V (x) =

k̄

2
(x− l̄)2,

k̄ = 6N.m−1, l̄ ≈ 5.9 nm, ā ≈ 8.1 nm.

We fix a Debye length κ−1 and consider the characteristic lengths l, hl, a of actin
at equilibrium determined by the system

h(l − l̄) = − 3κ2

64πk̄ε
q2, (35)

l(h2 + 1/4)1/2 = a, (36)

h(h2 + 1/4)−1/2(a− ā) =
3κ2

32πk̄ε
q2. (37)

The dependency of l, h and a with respect to the Debye length is in fact negligible.
We consider the case of small monomer displacements with |xn| < l/4. In that

case, the center of monomer Mn is located within the domain Ωn at r = ra, but

the monomer also intersects the cell Ωn+1 or Ωn−1. The amount of charge Q̃n

condensed on Mn depends consequently on the charges Qn contained in the fixed

cells Ωn,Ωn±1 and on the displacements xn. We determine Q̃n with the following
simple expression

Q̃n(xn, Qn−1, Qn, Qn+1) =

⎧⎨
⎩

αQn+1 + (1− α)Qn if xn = l
2 (n+ α), α ∈ [0, 1

2 ],

αQn−1 + (1− α)Qn if xn = l
2 (n− α), α ∈ [0, 1

2 ].

The equations of motion of the monomers read

M
d2xn

dt2
= −∂Wn

∂xn
, (38)

M
d2yn
dt2

= −∂Wn

∂yn
− 3κ2

16πε
qQ̃n(xn, Qn−1, Qn, Qn+1)

where

Wn = V (dn−2,n) + V (dn,n+2) + U(dn−1,n) + U(dn,n+1).

We set M ≈ 7, 18.10−23 kg and distances dm,n are defined in equations (1)-(2). The
ionic charges Qn = q + qn in the cells Ωn partitioning the Debye layer satisfy

dqn
dt

=
4D

l2
(qn+1−2qn+qn−1)−μ

ε
ρqn+q

μ

ε
ρ(F (−xn+1)−F (xn)−F (−xn)+F (xn−1)),

(39)
where the nonlinearity F is defined by (34). Constants μ,D denote respectively the
mobility and diffusion coefficient of the counterion species, and ρ is determined by
the Debye length via equation (26).
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System (38)-(39) has a family of equilibria defined by xn = x0 (x0 arbitrary
constant), yn = 0, ẋn = 0, ẏn = 0 and qn = 0, corresponding to translations of the
chain at rest.

It is interesting to compare the dispersion relation of the model (38) with κ = 0
(uncoupled limit) to that obtained by ben-Avraham and Tirion [3] with a much more
realistic three-dimensional model of actin. Model (38) linearized at the ground state
has acoustic and optical modes whose dispersion relations are shown in reference
[28] (figure 2-b p.3886). The acoustic branch of this figure reproduces qualitatively
the acoustic branch obtained in [3] (figure 3 p.1236, branch noted “a”). The optical
branch of [28] also reproduces an optical branch of [3] (branch marked “d” in figure
3 p.1236). We will now compare these branches in a more quantitative way. We
first compare the optical branches. Linearizing equation (38) and looking for solu-

tions in the form of normal modes whose components are proportional to ei(
k
2n−ωt),

Zolotaryuk et al obtain for k ≈ 0 the dispersion relation

ωopt = 1012(0, 73− k2

100
)

when ωopt is expressed in s−1. The model of ben-Avraham and Tirion gives ωopt =
0, 35.1012 s−1 when k = 0, which is of the same order of magnitude. The comparison
is quite satisfactory and it should be possible to match even more these two results
by allocating nonequal stiffness constants to the potentials U and V in our model.
Moreover, the slope at the origin on the acoustic branch gives the longitudinal sound
velocity cg in actin. Using equation (53) of [28] we get cg ≈ 1705 m.s−1. The value
obtained by ben-Avraham and Tirion is cg ≈ 1310 m.s−1. Both results are again of
the same order of magnitude. These comparisons with the more realistic model [3]
are therefore quite good given the simplicity of the zig-zag chain model.

Concerning ionic charges, equation (39) without the configurational coupling
terms consists in a linear and spatially discrete damped diffusion equation. The
nonlinearity resides therefore in the coupling to longitudinal actin deformation,
and in the nonlinear dynamics of actin itself which influences the surrounding ionic
charges. Previously derived equivalent circuit models for actin are of a different type,
including an inertial term accouting for an induction effect, as well as a nonlinear
capacitance effect [26].

6. Numerical simulations. In this section we perform some numerical simula-
tions of the coupled system actin-ionic cloud (38)-(39) introduced in section 5. Sim-
ulations are done for a chain of 1000 monomers with periodic boundary conditions.
We consider the case of K+ counterions with mobility μ = 7, 62.10−8 m2(V.s)

−1
.

Their diffusion coefficient is D = 1, 96.10−9 m2s−1 at 25◦C. The Debye length is set
to κ−1 = 10 nm, which corresponds to low ionic strength experimental conditions
considered in reference [14]. The Debye layer is considered initially at equilibrium
and the initial conditions taken for the chain are described below.

6.1. Single monomer compression. We fix xn = l/5 if n = 1...499, x500 = 0
and xn = −l/5 if n = 501...1000. Consequently the bonds between the monomers
499, 500 and 501 are compressed, which corresponds to a compression of the central
monomer at n = 500.

Figure 4 shows the system state after a very short time of 1, 8.10−11s. We can see
that the chain perturbation gives rise to a localized perturbation of the ionic charges.
This initial condition produces two dispersive elastic shock waves that propagate

12



in opposite directions along the chain. These waves and their dispersive tail (figure
5, top) generate in turn charge density waves (figure 5, bottom). The propagation
of these charge density waves is clearly visible on the space-time diagram shown
in figure 6. Lastly, figure 7 depicts the temporal evolution of the ionic current
at monomer n = 450. The main shock is followed by charge density waves with
intensities of the order of 1 pA, in agreement with experimental measurements of
ionic currents along actin performed by Lin and Cantiello [14].

Note however that ionic currents measured in [14] appear as transient states over
tenths of milliseconds, whereas our computations are performed on the ns time
scale, which lies well below the experimental resolution available from [14]. The
charge density waves we compute here are much faster and excited by elastic waves,
whereas the ionic signals observed in [14] result from an initial voltage pulse applied
to actin in solution. It is therefore not possible to compare the charge dynamics in
both cases, but we can however conclude that the current intensities we obtain are
physically realistic.

6.2. Compression soliton. Solitons form an interesting class of nonlinear waves
due to their ability to transport energy or information over long distances without
changing form. Zolotaryuk et al have shown that the zig-zag chain model supports
soliton solutions, using both numerical computations and amplitude equations based
on multiscale expansions [28] (see also [6, 25]). Such solutions exist in particular
in our model with harmonic interaction potentials due to the geometric nonlin-
earity of the system. Our previous numerical simulations have shown that elastic
waves generated by a localized polymer compression can serve as carrier waves for
charge density waves. We will now consider an initial condition corresponding to
a compression soliton, and show its ability to generate a localized ionic wave with
an intensity relevant at the biological scale, propagating steadily with almost no
dispersion.

Figure 8 represents an initial condition that generates a compression soliton
(velocities are not represented and are chosen such that the soliton propagates
rightwise). This initial condition is given by an analytical approximation of the
soliton profile computed in reference [28]. As previously the cloud of counterions is
chosen initially at rest. As shown by figure 9 (upper plot), the soliton propagates
rightwise accompanied by a small dispersion and a much smaller soliton propagating
to the left. We attribute these effects to the imperfect initial condition, and to the
coupling of the soliton with the charge perturbation generated at the initial stage.
The ionic waves produced by the solitons are shown in figure 9 (lower plot). The
main soliton generates a charge density wave in the pA range, propagating steadily
with almost no dispersion, while the electric signature of the smaller soliton remains
negligible.

7. Conclusion. We have proposed a new methodology to couple a lattice model
for the vibrations of a charged biopolymer and the dynamics of its ionic cloud. We
have considered the case of a single actin filament, and used a zig-zag chain model
introduced by Zolotaryuk et al [28] to account for the helical structure of actin.
We have calibrated this model using experimental data on the stiffness constant of
actin filaments [15], and found a good agreement between the optical and acoustic
mode frequencies of the zig-zag chain and those of a more realistic three-dimensional
model of actin [3]. In addition we have derived a discrete damped diffusion equation
for the quantity of surrounding ionic charges, obtained using a drift-diffusion model
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Figure 4. State of the system at an early stage (t = 1, 8.10−11s)
after an initial localized compression of the chain (see text). The
upper plot gives the variation along the chain of the axial distance
between adjacent monomer centers, and the lower plot shows the
localized charge perturbation qn induced in the ionic cloud.

averaged in a one-dimensional grid along actin. The actin and ionic cloud models
have been coupled via electrostatic effects. Numerical simulations have shown that
mechanical waves propagating along the polymer can generate charge density waves
with intensities in the pA range, in agreement with experimental measurements of
ionic currents [14].

The challenge of this study was to simultaneously include the discrete character of
actin dynamics and the dynamics of the counterions in solvent, which is intrinsically
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Figure 5. Top figure : same plot as figure 4, at a later time
t = 0, 36.10−9s. Two shock waves and their dispersive tail are
clearly visible. Bottom figure : current dqn/dt in the ionic cloud
induced by these elastic waves.

continuous. This has been done by dividing the continuous ionic cloud system into
domains and determining an equation for the evolution of the charges in these
domains. This allowed us to reconcile the discrete and continuous aspects of the
system, and to derive a law for their coupled dynamics, but this has been done at
the expense of introducing some approximations.

This work will be extended in several directions. Firstly, although the current
intensities we obtain with such a simple model are encouraging, our approximation
of the electrostatic forces exerted on actin by the solvent is oversimplified. A more
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Figure 6. Space-time diagram showing |dqn/dt| in grey levels, for
the same initial condition as figure 4. White regions correspond to
a vanishing current, and black ones to intensities > 2,5 pA.

realistic coupling term will be derived using the Poisson-Boltzmann equation as
described in reference [9], taking into account dielectric boundary forces that were
neglected in our model. In addition a realistic modelling should incorporate the
effects of viscous damping and thermal fluctuations due to the solvent.

Secondly, we have focused in this paper on the derivation and calibration of the
model, and on the intensity of charge density waves generated by elastic waves. It
will now be interesting to investigate the dynamics of the model in more details,
and determine in particular if the coupling with surrounding charges could affect
the dynamics of the polymer itself.

In addition, our approach could be applied to other charged biopolymers like
DNA or microtubules. The dynamics of ionic charges around microtubules can
result in interesting phenomena, e.g. an amplification of electrical signals detected
in recent experiments [22]. A lattice model for elastic vibrations of microtubules
is available [21], and could be coupled to a model for ionic charges similar to ours.
This model for charge propagation gives an interesting alternative to existing ones
[23] because it relies on the physically well-established drift-diffusion equations.

Lastly, it will be interesting to generalize our approach to include other modes of
actin like bending and twisting. In particular, modes acting on a slower timescale
may lead to interesting coupling effects with counterion dynamics. This problem
could be considered e.g. for torsional motions, which are able to generate transient
states that persist for several seconds [17]. Since twisting and stretching modes are
coupled, twisting will affect the counterion dynamics via an electrostatic coupling
similar to the one described in this paper. In particular, it would be interesting to
see if torsion waves could generate charge density waves along actin with periods
of the order of a few ms. Electrical signals of this type have been experimentally
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Figure 7. Temporal evolution of the current intensity dqn/dt at
monomer n = 450, for the same initial condition as figure 4. The
bottom figure provides a zoom of the profile after the main shock.

detected by Lin and Cantiello [14], and this phenomenon is still lacking a well-
established physical explanation.
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