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 is used to represent the actin helix, and calibrated using experimental data on the stiffness constant of actin. Starting from the continuum drift-diffusion model describing counterion dynamics, we derive a discrete damped diffusion equation for the quantity of ionic charges in a one-dimensional grid along actin. The actin and ionic cloud models are coupled via electrostatic effects. Numerical simulations of the coupled system show that mechanical waves propagating along the polymer can generate charge density waves with intensities in the pA range, in agreement with experimental measurements of ionic currents along actin.

1. Introduction. Biopolymers can exhibit a variety of complex dynamical behaviors, such as structural transitions in proteins [START_REF] Karplus | Protein structural transitions and their functional role[END_REF] or the breathing of base pairs in DNA [START_REF] Peyrard | Nonlinear dynamics and statistical physics of DNA[END_REF]. Simulating such phenomena with all-atom models remains a formidable task, due to the large number of degrees of freedom involved and the multiple time scales generated by the dynamics. In addition, realistic models should take into account the effects of the surrounding solvent, which consists in water molecules and ions that greatly influence the physical properties and dynamics of biopolymers. Interestingly, nontrivial dynamical phenomena also occur in the ionic clouds that condense around charged biopolymers. More precisely, experiments performed by Lin and Cantiello have revealed that ionic signals can propagate inside the ionic cloud surrounding actin filaments [START_REF] Lin | A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin[END_REF].

To analyze the dynamics of biopolymers, an alternative to full molecular simulations is the use of simplified lattice models which only retain a small number of essential degrees of freedom per monomer and the main geometrical characteristics of the molecular chain. Despite their relative simplicity, such models qualitatively reproduce experimental observations in different contexts such as DNA breathing [START_REF] Peyrard | Nonlinear analysis of the dynamics of DNA breathing[END_REF] or vibrationnal self-trapping in α-helices [START_REF] Edler | Direct observation of self-trapped vibrational states in α-helices[END_REF].

In most cases, previous lattice models for biopolymers have separately studied on the one side the vibrational and conformational dynamics (see e.g. [START_REF] Peyrard | Nonlinear dynamics and statistical physics of DNA[END_REF][START_REF] Yakushevich | Nonlinear dynamics of topological solitons in DNA[END_REF][START_REF] Salerno | DNA promoters and nonlinear dynamics[END_REF] in the case of DNA), and on the other side the dynamics of condensed ionic charges [START_REF] Lader | Modeling of ionic waves along actin filaments by discrete electrical transmission lines[END_REF][START_REF] Tuszyński | Ionic wave propagation along actin filaments[END_REF][START_REF] Priel | A nonlinear cable-like model of amplified ionic wave propagation along microtubules[END_REF]. However, since the frequency spectrum of internal motions in biopolymers is very large (ranging from picosecond to millisecond periods), a dynamical coupling between slow internal motions and ionic charges may occur and produce interesting phenomena. Along this direction, Perepelytsya and Volkov have introduced a lattice model coupling the vibrational dynamics of DNA and some of its counterions directly bound to phosphate groups (see [START_REF] Perepelytsya | Counterion vibrations in the DNA low-frequency spectra[END_REF] and references therein). Their model reproduces a ion-phosphate mode detected in experiments [START_REF] Bulavin | Observation of the DNA ion-phosphate vibrations[END_REF], and shows that heavy counterions Cs + have an effect on the internal vibrations of DNA. However, their analysis is restricted to alkaline metal ions bound to phosphate groups, treated as a lattice of point charges, and does not take into account the more diffuse ionic cloud surrounding DNA. This other group of ions is usually described by continuum models [START_REF] Fogolari | Biomolecular electrostatics with the linearized Poisson-Boltzmann equation[END_REF][START_REF] Gilson | Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation[END_REF], and it is a challenging task to derive a tractable model that would simultaneously encompass the continuum counterion dynamics and the discrete biopolymer dynamics.

The present paper is a first attempt along this direction. The polymer itself is described by a nonlinear lattice introduced by Zolotaryuk et al consisting in a zig-zag chain [START_REF] Zolotaryuk | Two-dimensional dynamics of a free molecular chain with a secondary structure[END_REF]. In addition, the polymer is embedded in a ionic cloud divided into fixed cells with averaged charge densities, and the resulting sequence of charge densities satisfies a discrete damped diffusion equation. Both models are nonlinearly coupled via electrostatic effects.

Our contribution consists in three different results. Firstly, we calibrate the mechanical model of Zolotaryuk et al in the case of actin polymers, using available experimental data for the stretching of actin filaments [START_REF] Kojima | Direct measurements of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation[END_REF][START_REF] Liu | Mechanics of F-actin characterized with microfabricated cantilevers[END_REF]. Secondly, starting from the continuum drift-diffusion model for ionic charge densities [START_REF] Ben Abdallah | A note on the long time behavior for the drift-diffusion-Poisson system[END_REF], we derive a spatially averaged lattice model describing charge densities that is coupled to the above mechanical lattice. Our lattice model for charges is thus derived from first principles, and differs from previous models based on physical assumptions that were not completely justified. Indeed, previous models assumed an analogy between actin and a nonlinear transmission line resulting in a KdV equation for ionic signals [START_REF] Lader | Modeling of ionic waves along actin filaments by discrete electrical transmission lines[END_REF], the existence of an induction effect resulting from the possible helical motion of charges around the polymer, and a formally introduced nonlinear capacitance effect [START_REF] Tuszyński | Ionic wave propagation along actin filaments[END_REF][START_REF] Priel | A nonlinear cable-like model of amplified ionic wave propagation along microtubules[END_REF]. Thirdly, we numerically compute the amplitude of charge density waves resulting from an initial localized compression of the polymer. The currents we obtain under low ionic strength conditions lie in the pA range, which is consistent with intensities of ionic signals measured in experiments [START_REF] Lin | A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin[END_REF]. In addition we show that compression solitons propagating along the polymer can generate a localized ionic wave in the pA range, propagating steadily with almost no dispersion (the principle of this phenomenon is depicted in figure 1). This phenomenon could have interesting biological implications since ionic signals play an important role in cellular activities. This work is of course preliminary, in particular because the description of the electrostatic coupling between the surface charges on the polymer and the condensed counterions is oversimplified. However, it yields physically realistic current intensities despite its great simplicity, and provides a general methodology to couple polymer and charge dynamics that will serve as a basis for a more realistic modelling.

The outline of the paper is as follows. The zig-zag chain model is described in section 2 and calibrated in section 3. In section 4 we establish the lattice model for ionic charges, and couple both models in section 5. Section 6 presents numerical simulations of charge density waves generated by a local compression of the polymer. Section 7 sums up our main results, highlights different directions in which the model must be improved and lists some interesting problems that remain to be examined.

Equations of motion of actin monomers.

We begin by describing a very simplified model of the geometry of actin and giving the equations of motion of its monomers.

2.1. Lattice model for an isolated actin filament. The actin filament can be represented by a simple helix of pitch l ≈ 5.9 nm or by a double helix with 72 nm pitch [START_REF] Carlier | Actin: Protein structure and filament dynamics[END_REF][START_REF] Holmes | Atomic model of the actin filament[END_REF]. The helix diameter is hl ≈ 7.5 nm. We approximate the simple helix by a very simplified planar zig-zag chain model introduced in reference [START_REF] Zolotaryuk | Two-dimensional dynamics of a free molecular chain with a secondary structure[END_REF], where each monomer is treated as a material point (see figure 2). The distance between first neighbors on the helix is then a = l(h 2 + 1/4) 1/2 . The different types of interactions between monomers (e.g. covalent bonds, hydrogen bonds, electrostatic forces, contacts interactions) are incorporated in effective potentials. Electrostatic interactions are significant in view of recent results on the distribution of surface charges on actin filaments [START_REF] Angelini | Counterions between charged polymers exhibit liquid-like organization and dynamics[END_REF]. Indeed, each actin monomer has a protuberance that is heavily charged (-10 e, e denoting the elementary charge) compared to the remainder of the monomer on which positive and negative charges almost compensate (the total charge of the monomer is -11 e). As a result, a cloud of positive counterions condenses around the actin filament, forming the Debye layer. We include therefore in the equations of motion of monomers an electrostatic force due to this ionic cloud.

We note M n the nth actin monomer. When n is odd, the monomer M n is represented by a point of cartesian coordinates (x n + nl/2, y nlh/2). If n is even, M n is represented by a point of coordinates (x n + nl/2, -y n + lh/2). We note d m,n the distance between the monomers M m and M n , which is given by

d 2 m,n = (x n -x m + (n -m)l/2) 2 + (y n + y m -lh) 2 , if (n -m) is odd, ( 1 
)
d 2 m,n = (x n -x m + (n -m)l/2) 2 + (y n -y m ) 2 , if (n -m) is even. ( 2 
)
The potential energy resulting from monomer interactions is given by

W = n (V (d n,n+2 ) + U (d n,n+1 )), (3) 
where U and V are effective potentials describing interactions between first and second neighbors respectively (see figure 2). We set

U (x) = k 2 (x -ā) 2 , V (x) = k 2 (x -l) 2 , ( 4 
)
where the potentials are written in terms of the small deviations around the structure in the absence of the ionic cloud. The pitch l and diameter l h in the absence of counterions will be computed in section 3, and ā = l( h2 + 1/4) 1/2 is the distance between first neighbors on the chain. The parameter k will be deduced from experimental data on actin stiffness (see section 3). 2.2. Inclusion of an electrostatic force due to the ionic cloud. We derive here a very crude approximation of the electrostatic force exerted by the ionic cloud on a given actin monomer. A important parameter is the Debye length κ -1 defined by

κ 2 = 2e 2 n 0 k B T (5)
where n 0 is the concentration of monovalent ions far from actin, = 7, 08.10 -10 USI is the solvent permittivity, k B = 1, 38.10 -23 J.K -1 the Boltzmann constant and T the temperature. The Debye length characterizes the thickness of the diffuse layer of counterions that is formed around the polymer. Each monomer carries one negative charge -q with q = 11e. The electrostatic force exerted on a given monomer by the ionic cloud is estimated in a simple way, assimilating the nth monomer to a point charge -q located at M n and the surrounding Debye layer to an uniform distribution of charges contained in a half-sphere of radius κ -1 around M n . This rough approximation only takes into account the electrostatic interactions between each monomer and the cloud of counterions in its immediate vicinity, and yields an electrostatic force normal to the chain. We note (0, g 2k+1 ) the components of the electrostatic force applied to M 2k+1 and (0, -g 2k ) those of the force applied to M 2k . Denoting by Q n the total ionic charge in the Debye layer around M n , we have

g n = -3κ 2 16π q Q n . ( 6 
)
When the layer of ions and actin are at equilibrium, we have in particular Q n = q and g n = g e with

g e = -3κ 2 16π q 2 . ( 7 
)
Note that g e depends on the concentration of ions away from actin. If the ion concentration is

n 0 = c mM.l -1 , we have at 22 • C g e ≈ -2.79 c pN . ( 8 
)
The equations of motion of the monomers are given by

M d 2 x n dt 2 = - ∂W ∂x n , ( 9 
)
M d 2 y n dt 2 = - ∂W ∂y n + g n
where M ≈ 7, 18.10 -23 kg is the mass of one actin monomer. Note that system (9) is nonlinear although potentials U, V in (3) are harmonic, due to geometric nonlinearities.

3.

Calibration of the actin model. Experiments [START_REF] Kojima | Direct measurements of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation[END_REF][START_REF] Liu | Mechanics of F-actin characterized with microfabricated cantilevers[END_REF] on the stiffness constant of an actin filament are a good starting point to calibrate our model from experimental data. These works study the elongation δL of a filament under an external force f applied to one end. The stiffness constant K = f (δL) is found almost constant for strong or moderate constraints. However, K decreases sharply with δL when the external force lies below a certain threshold. In this regime, actin behaves like a semi-flexible polymer that undulates as a result of thermal fluctuations and the nonlinear relation giving K can be described using a worm-like chain model [START_REF] Liu | Mechanics of F-actin characterized with microfabricated cantilevers[END_REF][START_REF] Odijk | Stiff chains and filaments under tension[END_REF]. This regime is not correctly described by our model in which we consider a zig-zag chain whose axis is straight when the chain is at rest. Therefore, we restrict ourselves to the parameter regimes for which the stiffness constant of actin remains almost constant. We consider a filament of 2N + 1 monomers M 0 , ..., M 2N . The monomer M 0 is kept fixed (x 0 = 0) while an external force f is exerted on M 2N in the axial direction. To evaluate actin stiffness from our model we consider the case when N is large and neglect boundary effects, i.e. we assume that interaction forces and helix parameters are independent of n. We note respectively l 1 , l 1 h 1 the pitch and diameter of the helix in this configuration. The distance between first neighbors on the chain is then a 1 = l 1 (h 2 1 + 1/4) 1/2 . The total filament length is L = N l 1 (we assimilate the chain to a straight filament corresponding to the axis of the helix). The filament length at rest is N l. The elongation of the filament when applying the force is thus δL = N (l 1l). In this section we shall compute l 1 as a function of f and the unknown stiffness constant k of U, V , and determine the latter by comparison with an experimental stress-strain curve.

The transverse and axial components of the equilibrium equations yield

-2 l 1 h 1 a 1 U (a 1 ) = g e , ( 10 
)
V (l 1 ) + l 1 2a 1 U (a 1 ) = f. ( 11 
)
Using equation ( 10) in ( 11) and expressing a 1 in terms of l 1 and h 1 , we get the system of equations

-2h 1 (h 2 1 + 1/4) -1/2 U (a 1 ) = g e , ( 12 
)
l 1 (h 2 1 + 1/4) 1/2 = a 1 , (13) 
V (l 1 ) - g e 4h 1 = f. ( 14 
)
With this system one can calculate the pitch l 1 and the diameter l 1 h 1 as a function of f and the normal stress g e (which is fixed by the Debye length). Indeed, since U is harmonic, equations ( 12), (13) determine a 1 , l 1 explicitly as functions of h 1 , and then f can be expressed as a function of h 1 using equation [START_REF] Lin | A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin[END_REF].

To estimate the model parameters, we consider a concentration of monovalent counterions of 25 mM.l -1 corresponding to experiments in [START_REF] Kojima | Direct measurements of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation[END_REF][START_REF] Liu | Mechanics of F-actin characterized with microfabricated cantilevers[END_REF]. Using [START_REF] Fogolari | Biomolecular electrostatics with the linearized Poisson-Boltzmann equation[END_REF] we obtain g e ≈ -69.75 pN. We consider the reference values l 0 = 5.9 nm, h 0 l 0 = 7.5 nm, a 0 = 8.06 nm for the parameters of the unstretched actin filament (f = 0) at this ionic concentration.

The potentials defined in (4) are expressed using parameters ā, l of the chain in the absence of counterions (i.e. for g e = 0), which cannot be directly computed at this stage from the equilibrium equations since k is not yet determined. Consequently, it is useful to introduce intermediate parameters

λ 1 = k (a 0 -ā), λ 2 = k (l 0 -l) ( 15 
)
which can be directly computed and correspond to interaction forces between adjacent monomers. Indeed, up to the addition of a constant to potentials U and V, we can write

U (x) = λ 1 (x -a 0 ) + k 2 (x -a 0 ) 2 , V (x) = λ 2 (x -l 0 ) + k 2 (x -l 0 ) 2 . ( 16 
)
Using ( 16) in ( 12)-( 14) yields

g e 4 λ 2 + k(l 1 -l 0 ) -f -1 = h 1 , ( 17 
)
l 1 (h 2 1 + 1/4) 1/2 = a 1 , ( 18 
)
2h 1 (h 2 1 + 1/4) -1/2 λ 1 + k(a 1 -a 0 ) = -g e . ( 19 
)
For unstretched actin (f = 0) one has a 1 = a 0 , l 1 = l 0 , h 1 = h 0 and one finds

λ 2 = g e 4h 0 , λ 1 = - g e 2h 0 (h 2 0 + 1/4) 1/2 ,
which yields finally λ 1 = 37.48 pN, λ 2 = -13.73 pN. Now we are ready to determine the stiffness constant k by adjusting the stressstrain relation resulting from ( 17)-( 19) with an experimental curve. We consider figure 10-a of reference [START_REF] Liu | Mechanics of F-actin characterized with microfabricated cantilevers[END_REF], which corresponds to an unstretched filament with length L c = 19.1 μm = N l 0 . We therefore set N = 3238 in our model with 2N + 1 monomers. In the regime of linear elasticity, experiments yield

f ≈ K a L c δL, δL = N (l 1 -l 0 ), K a ≈ 35.5 nN.
We recover this result when fixing in ( 16)

k = 6 N.m -1 ≈ N K a L c . ( 20 
)
Indeed, solving system ( 17)-( 19) for (l 1 , h 1 , a 1 ) for different values of f , we obtain the filament length N l 1 represented in figure 3. This graph reproduces very precisely the linear part of figure 10-a of reference [START_REF] Liu | Mechanics of F-actin characterized with microfabricated cantilevers[END_REF]. Note that when the concentration of ions in solution varies, the stiffness constant k computed with our model remains practically unchanged. Moreover, approximation [START_REF] Peyrard | Nonlinear analysis of the dynamics of DNA breathing[END_REF] shows that the contribution of potential U to actin stiffness is negligible. Actin filament length ( µ m) Force (pN) Figure 3. Relation between applied stretching force f and filament length N l 1 for k = 6 N.m -1 , obtained by numerical resolution of ( 17)- [START_REF] Peyrard | Nonlinear dynamics and statistical physics of DNA[END_REF]. The concentration in monovalent counterions is 25 mM.l -1 . The filament length at rest is 19.1 μm (N = 3238).

Using [START_REF] Liu | Mechanics of F-actin characterized with microfabricated cantilevers[END_REF] and the values of λ 1 , λ 2 , k previously obtained, we find ā ≈ 8.053 nm, l ≈ 5.902 nm, l h = (ā 2 -l2 4

) 1/2 ≈ 7.493 nm, hence the values of l and l h are extremely close to those of l 0 and h 0 l 0 . More generally, it is interesting to study how the pitch l and diameter hl at equilibrium depend on the concentration of ions in solution. For this purpose we numerically solve system ( 17)-( 19) with f = 0, which can be rewritten

h(l -l) = g e 4 k , l(h 2 + 1/4) 1/2 = a, h(h 2 + 1/4) -1/2 (a -ā) = - g e 2 k .
We obtain only very small variations, at most of the order of 0.1 Å for l and 0.4 Å for hl, when we change the ionic concentration.

Lattice model for counterion dynamics.

In this section we use the classical drift-diffusion system [START_REF] Ben Abdallah | A note on the long time behavior for the drift-diffusion-Poisson system[END_REF] to derive a lattice model approximating the quantity of ionic charges in fixed cells around actin. This model is coupled with the above chain model because the charge density in the Debye layer depends on the distribution of surface charges along actin, which is a function of monomer positions.

In what follows, in order to analyze the dynamics of the ions in the continuous fluid medium that surrounds actin, we look at the system from a different perspective, at a larger scale. At this level of description we can view the actin filament as a simple cylinder, which carries charges which are distributed in an extended domain around the center of each monomer. Therefore we consider now the actin filament as an infinite cylinder of radius r a = lh/2 and denote by x the axial coordinate. We begin by constructing an equivalent axisymmetric charge distribution σ(t, x) associated with monomer positions. The axial coordinate of the center of monomer n is x n (t) + nl/2 and we consider that the surface charge of the monomer is mainly contained in a segment of width l/2 around his center [START_REF] Angelini | Counterions between charged polymers exhibit liquid-like organization and dynamics[END_REF]. A point with coordinate x belongs to this segment when |xx n (t)nl/2| < l/4, i.e. for | 2(x-x n (t)) l -n| < 1/2. The modulus of the surface charge density on a monomer (centered at x = 0, for l renormalized to 2) is assumed proportional to

χ(x) = 0, if |x| ≥ 1/2 2 -4|x|, if |x| ≤ 1/2, (21) 
(note that R χdx = 1). The equivalent surface charge distribution associated with polymer positions is then defined by

σ(t, x) = 1 2πr a -2q l n χ[ 2(x -x n (t)) l -n]. ( 22 
)
When actin is at equilibrium (x n = 0), the charge density has period l/2 in x and can be written

σ(x) = 1 2πr a -2q l n χ( 2x l -n).
Integrating on a segment with N monomers we find 2π 0

(l/4)+(N -1)l/2 -l/4
σ dx r a dθ = -q N.

We observe that when l ≈ 0, σ ≈ -q 2πr a n δ x n (t)+nl/2 (x) and we recover the case of a point charge distribution.

Actin is surrounded by a cloud of counterions which compensates its surface charge. We will now introduce the drift-diffusion model for these ions and make simplifying assumptions leading to an equivalent electrical circuit. In the case of a single ion species, the density of charge ρ(t, x, r) in the Debye layer satisfies [START_REF] Ben Abdallah | A note on the long time behavior for the drift-diffusion-Poisson system[END_REF] ∂ρ ∂t

+ divJ = 0, (23) 
where

J = -D∇ρ -ρμ∇φ, ( 24 
)
μ denotes the ion mobility, D its diffusion coefficient and φ the electric potential in the Debye layer due to ions and surface charges. The potential φ satisfies a Poisson equation Δφ = -ρ/ . We neglect from now the ionic charges situated outside the Debye layer and suppose that the latter compensates the total charge of actin. Furthermore, we divide the Debye layer in an infinity of cylindrical domains defined by

Ω n = {(r, θ, x)/r a < r < r a + κ -1 , a n-1 < x < a n }, with a n = l 2 (n + 1 2
). This discretization is useful for the analysis of the next section, which couples the dynamics of the discrete actin model with that of the ionic cloud. We perform the following approximation in the Debye layer

J ≈ -D∇ρ -ρμ∇φ. ( 25 
)
The term ρμ corresponds to an electrical conductivity averaged in the domain Ω n when the actin is at rest. This approximation is similar to the one used to establish Ohm's law for electrical circuits, in which the electrical conductivity is assumed constant in each resistance. We fix

ρ = 2qκ lπ(hl + κ -1 ) (26) 
so that a layer of ions of density ρ in Ω n exactly compensates the charge of monomer n when actin is at rest. The ionic charge Q n contained in Ω n is

Q n = Ω n ρ rdrdθdx. ( 27 
)
Integrating [START_REF] Priel | A nonlinear cable-like model of amplified ionic wave propagation along microtubules[END_REF] over Ω n , using [START_REF] Savin | Nonlinear dynamics of zigzag molecular chains[END_REF] and taking into account the no-flux boundary conditions J. -→ n = 0 at r = r a and r = r a + κ -1 , we obtain

dQ n dt = 2πD r a +κ -1 r a ∂ρ ∂x (a n , r) - ∂ρ ∂x (a n-1 , r) rdr +2πμρ r a +κ -1 r a ∂φ ∂x (a n , r) - ∂φ ∂x (a n-1 , r) rdr (28) 
(we omit dependency in t in notations).

Now we approximate each term at the right side of [START_REF] Zolotaryuk | Two-dimensional dynamics of a free molecular chain with a secondary structure[END_REF]. We note that for l ≈ 0

Q n+1 -2Q n + Q n-1 = Ω n ρ(x + l 2 , r) -2ρ(x, r) + ρ(x - l 2 , r) rdrdθdx ≈ 2π l 2 4 r a +κ -1 r a a n a n-1 ∂ 2 ρ ∂x 2 (x, r) dx rdr = π l 2 2 r a +κ -1 r a ∂ρ ∂x (a n , r) - ∂ρ ∂x (a n-1 , r) rdr.
Therefore, 2πD

r a +κ -1 r a ∂ρ ∂x (a n , r) - ∂ρ ∂x (a n-1 , r) rdr ≈ 4D l 2 (Q n+1 -2Q n + Q n-1 ). ( 29 
)
Also, using the Gauss theorem

∂Ω n -∇φ. - → n dS = Q n ,
with the boundary conditions ∂φ ∂r (x, r a ) = -σ , ∂φ ∂r (x, r a + κ -1 ) = 0, we get 2πμρ

r a +κ -1 r a ∂φ ∂x (a n , r) - ∂φ ∂x (a n-1 , r) rdr = - μ ρ(Q n + 2πr a a n a n-1 σdx). ( 30 
)
Using ( 29) and ( 30) in ( 28) we obtain finally

dQ n dt = 4D l 2 (Q n+1 -2Q n + Q n-1 ) - μ ρ(Q n + 2πr a a n a n-1 σdx). ( 31 
)
Note that if x n is independent of n (i.e. actin is simply translated) we have 2πr a a n a n-1 σdx = -q and Q n = q is an equilibrium solution of (31). We note in the sequel Q n = q + q n . Using definition [START_REF] Priel | A biopolymer transistor: Electrical amplification by microtubules[END_REF], problem (31) can be rewritten

dq n dt = 4D l 2 (q n+1 -2q n + q n-1 ) - μ ρ q n + q -q p 1 2 +p -1 2 +p χ(x - 2 l x n-p )dx . ( 32 
)
To simplify equation (32) we assume small monomer displacements with |x n | < l/4, so that the center of monomer n (for which x = x n (t) + nl/2) is inside the domain Ω n at r = r a . In equation (32), the coupling term involving monomer displacements is then reduced to a sum of three terms. Then (after a change of variables in the integrals) problem (32) can be rewritten

dq n dt = 4D l 2 (q n+1 -2q n +q n-1 )- μ ρq n +q μ ρ(F (-x n+1 )-F (x n )-F (-x n )+F (x n-1 )) (33) with F (x) = 1 2 1 2 -2 l x χ(y)dy. ( 34 
)
We recall that the function χ appearing in (34) is defined by [START_REF] Portet | Elastic vibrations in seamless microtubules[END_REF]. Note that to maintain the conservation of charge in (33) we are restricted to initial conditions satisfying n q n = 0, i.e. to neutral electrical systems.

Coupled model for actin and condensed counterions.

In this section we sum up the main features of the two models established in the previous sections, precise certains points concerning their coupling and briefly compare them to existing models.

We consider harmonic interaction potentials U and V corresponding to nearest neighbors and next nearest neighbors interactions along the chain, defined by

U (x) = k 2 (x -ā) 2 , V (x) = k 2 (x -l) 2 , k = 6 N.m -1 , l ≈ 5.9 nm, ā ≈ 8.1 nm.
We fix a Debye length κ -1 and consider the characteristic lengths l, hl, a of actin at equilibrium determined by the system

h(l -l) = - 3κ 2 64π k q 2 , ( 35 
)
l(h 2 + 1/4) 1/2 = a, ( 36 
)
h(h 2 + 1/4) -1/2 (a -ā) = 3κ 2 32π k q 2 . ( 37 
)
The dependency of l, h and a with respect to the Debye length is in fact negligible. We consider the case of small monomer displacements with |x n | < l/4. In that case, the center of monomer M n is located within the domain Ω n at r = r a , but the monomer also intersects the cell Ω n+1 or Ω n-1 . The amount of charge Q n condensed on M n depends consequently on the charges Q n contained in the fixed cells Ω n , Ω n±1 and on the displacements x n . We determine Q n with the following simple expression 1 2 ]. The equations of motion of the monomers read

Q n (x n , Q n-1 , Q n , Q n+1 ) = ⎧ ⎨ ⎩ αQ n+1 + (1 -α)Q n if x n = l 2 (n + α), α ∈ [0, 1 2 ], αQ n-1 + (1 -α)Q n if x n = l 2 (n -α), α ∈ [0,
M d 2 x n dt 2 = - ∂W n ∂x n , ( 38 
) M d 2 y n dt 2 = - ∂W n ∂y n - 3κ 2 16π q Q n (x n , Q n-1 , Q n , Q n+1 )
where

W n = V (d n-2,n ) + V (d n,n+2 ) + U (d n-1,n ) + U (d n,n+1 ).
We set M ≈ 7, 18.10 -23 kg and distances d m,n are defined in equations ( 1)-( 2). The ionic charges Q n = q + q n in the cells Ω n partitioning the Debye layer satisfy

dq n dt = 4D l 2 (q n+1 -2q n +q n-1 )- μ ρq n +q μ ρ(F (-x n+1 )-F (x n )-F (-x n )+F (x n-1 )),
(39) where the nonlinearity F is defined by (34). Constants μ, D denote respectively the mobility and diffusion coefficient of the counterion species, and ρ is determined by the Debye length via equation [START_REF] Tuszyński | Ionic wave propagation along actin filaments[END_REF]. System (38)-(39) has a family of equilibria defined by x n = x 0 (x 0 arbitrary constant), y n = 0, ẋn = 0, ẏn = 0 and q n = 0, corresponding to translations of the chain at rest.

It is interesting to compare the dispersion relation of the model ( 38) with κ = 0 (uncoupled limit) to that obtained by ben-Avraham and Tirion [START_REF] Ben-Avraham | Dynamic and elastic properties of F-actin: A normal mode analysis[END_REF] with a much more realistic three-dimensional model of actin. Model (38) linearized at the ground state has acoustic and optical modes whose dispersion relations are shown in reference [START_REF] Zolotaryuk | Two-dimensional dynamics of a free molecular chain with a secondary structure[END_REF] (figure 2-b p.3886). The acoustic branch of this figure reproduces qualitatively the acoustic branch obtained in [START_REF] Ben-Avraham | Dynamic and elastic properties of F-actin: A normal mode analysis[END_REF] (figure 3 p.1236, branch noted "a"). The optical branch of [START_REF] Zolotaryuk | Two-dimensional dynamics of a free molecular chain with a secondary structure[END_REF] also reproduces an optical branch of [START_REF] Ben-Avraham | Dynamic and elastic properties of F-actin: A normal mode analysis[END_REF] (branch marked "d" in figure 3 p.1236). We will now compare these branches in a more quantitative way. We first compare the optical branches. Linearizing equation (38) and looking for solutions in the form of normal modes whose components are proportional to e i( k 2 n-ωt) , Zolotaryuk et al obtain for k ≈ 0 the dispersion relation

ω opt = 10 12 (0, 73 - k 2 100 )
when ω opt is expressed in s -1 . The model of ben-Avraham and Tirion gives ω opt = 0, 35.10 12 s -1 when k = 0, which is of the same order of magnitude. The comparison is quite satisfactory and it should be possible to match even more these two results by allocating nonequal stiffness constants to the potentials U and V in our model. Moreover, the slope at the origin on the acoustic branch gives the longitudinal sound velocity c g in actin. Using equation ( 53) of [START_REF] Zolotaryuk | Two-dimensional dynamics of a free molecular chain with a secondary structure[END_REF] we get c g ≈ 1705 m.s -1 . The value obtained by ben-Avraham and Tirion is c g ≈ 1310 m.s -1 . Both results are again of the same order of magnitude. These comparisons with the more realistic model [START_REF] Ben-Avraham | Dynamic and elastic properties of F-actin: A normal mode analysis[END_REF] are therefore quite good given the simplicity of the zig-zag chain model. Concerning ionic charges, equation (39) without the configurational coupling terms consists in a linear and spatially discrete damped diffusion equation. The nonlinearity resides therefore in the coupling to longitudinal actin deformation, and in the nonlinear dynamics of actin itself which influences the surrounding ionic charges. Previously derived equivalent circuit models for actin are of a different type, including an inertial term accouting for an induction effect, as well as a nonlinear capacitance effect [START_REF] Tuszyński | Ionic wave propagation along actin filaments[END_REF].

6. Numerical simulations. In this section we perform some numerical simulations of the coupled system actin-ionic cloud (38)-(39) introduced in section 5. Simulations are done for a chain of 1000 monomers with periodic boundary conditions. We consider the case of K + counterions with mobility μ = 7, 62.10

-8 m 2 (V.s) -1 .
Their diffusion coefficient is D = 1, 96.10 -9 m 2 s -1 at 25 • C. The Debye length is set to κ -1 = 10 nm, which corresponds to low ionic strength experimental conditions considered in reference [START_REF] Lin | A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin[END_REF]. The Debye layer is considered initially at equilibrium and the initial conditions taken for the chain are described below.

6.1. Single monomer compression. We fix x n = l/5 if n = 1...499, x 500 = 0 and x n = -l/5 if n = 501...1000. Consequently the bonds between the monomers 499, 500 and 501 are compressed, which corresponds to a compression of the central monomer at n = 500. Figure 4 shows the system state after a very short time of 1, 8.10 -11 s. We can see that the chain perturbation gives rise to a localized perturbation of the ionic charges. This initial condition produces two dispersive elastic shock waves that propagate in opposite directions along the chain. These waves and their dispersive tail (figure 5, top) generate in turn charge density waves (figure 5, bottom). The propagation of these charge density waves is clearly visible on the space-time diagram shown in figure 6. Lastly, figure 7 depicts the temporal evolution of the ionic current at monomer n = 450. The main shock is followed by charge density waves with intensities of the order of 1 pA, in agreement with experimental measurements of ionic currents along actin performed by Lin and Cantiello [START_REF] Lin | A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin[END_REF].

Note however that ionic currents measured in [START_REF] Lin | A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin[END_REF] appear as transient states over tenths of milliseconds, whereas our computations are performed on the ns time scale, which lies well below the experimental resolution available from [START_REF] Lin | A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin[END_REF]. The charge density waves we compute here are much faster and excited by elastic waves, whereas the ionic signals observed in [START_REF] Lin | A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin[END_REF] result from an initial voltage pulse applied to actin in solution. It is therefore not possible to compare the charge dynamics in both cases, but we can however conclude that the current intensities we obtain are physically realistic. 6.2. Compression soliton. Solitons form an interesting class of nonlinear waves due to their ability to transport energy or information over long distances without changing form. Zolotaryuk et al have shown that the zig-zag chain model supports soliton solutions, using both numerical computations and amplitude equations based on multiscale expansions [START_REF] Zolotaryuk | Two-dimensional dynamics of a free molecular chain with a secondary structure[END_REF] (see also [START_REF] Christiansen | Soliton analysis in complex molecular systems: A zig-zag chain[END_REF][START_REF] Savin | Nonlinear dynamics of zigzag molecular chains[END_REF]). Such solutions exist in particular in our model with harmonic interaction potentials due to the geometric nonlinearity of the system. Our previous numerical simulations have shown that elastic waves generated by a localized polymer compression can serve as carrier waves for charge density waves. We will now consider an initial condition corresponding to a compression soliton, and show its ability to generate a localized ionic wave with an intensity relevant at the biological scale, propagating steadily with almost no dispersion.

Figure 8 represents an initial condition that generates a compression soliton (velocities are not represented and are chosen such that the soliton propagates rightwise). This initial condition is given by an analytical approximation of the soliton profile computed in reference [START_REF] Zolotaryuk | Two-dimensional dynamics of a free molecular chain with a secondary structure[END_REF]. As previously the cloud of counterions is chosen initially at rest. As shown by figure 9 (upper plot), the soliton propagates rightwise accompanied by a small dispersion and a much smaller soliton propagating to the left. We attribute these effects to the imperfect initial condition, and to the coupling of the soliton with the charge perturbation generated at the initial stage. The ionic waves produced by the solitons are shown in figure 9 (lower plot). The main soliton generates a charge density wave in the pA range, propagating steadily with almost no dispersion, while the electric signature of the smaller soliton remains negligible.

Conclusion.

We have proposed a new methodology to couple a lattice model for the vibrations of a charged biopolymer and the dynamics of its ionic cloud. We have considered the case of a single actin filament, and used a zig-zag chain model introduced by Zolotaryuk et al [START_REF] Zolotaryuk | Two-dimensional dynamics of a free molecular chain with a secondary structure[END_REF] to account for the helical structure of actin. We have calibrated this model using experimental data on the stiffness constant of actin filaments [START_REF] Liu | Mechanics of F-actin characterized with microfabricated cantilevers[END_REF], and found a good agreement between the optical and acoustic mode frequencies of the zig-zag chain and those of a more realistic three-dimensional model of actin [START_REF] Ben-Avraham | Dynamic and elastic properties of F-actin: A normal mode analysis[END_REF]. In addition we have derived a discrete damped diffusion equation for the quantity of surrounding ionic charges, obtained using a drift-diffusion model after an initial localized compression of the chain (see text). The upper plot gives the variation along the chain of the axial distance between adjacent monomer centers, and the lower plot shows the localized charge perturbation q n induced in the ionic cloud.

averaged in a one-dimensional grid along actin. The actin and ionic cloud models have been coupled via electrostatic effects. Numerical simulations have shown that mechanical waves propagating along the polymer can generate charge density waves with intensities in the pA range, in agreement with experimental measurements of ionic currents [START_REF] Lin | A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin[END_REF].

The challenge of this study was to simultaneously include the discrete character of actin dynamics and the dynamics of the counterions in solvent, which is intrinsically continuous. This has been done by dividing the continuous ionic cloud system into domains and determining an equation for the evolution of the charges in these domains. This allowed us to reconcile the discrete and continuous aspects of the system, and to derive a law for their coupled dynamics, but this has been done at the expense of introducing some approximations. This work will be extended in several directions. Firstly, although the current intensities we obtain with such a simple model are encouraging, our approximation of the electrostatic forces exerted on actin by the solvent is oversimplified. A more realistic coupling term will be derived using the Poisson-Boltzmann equation as described in reference [START_REF] Gilson | Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation[END_REF], taking into account dielectric boundary forces that were neglected in our model. In addition a realistic modelling should incorporate the effects of viscous damping and thermal fluctuations due to the solvent.

Secondly, we have focused in this paper on the derivation and calibration of the model, and on the intensity of charge density waves generated by elastic waves. It will now be interesting to investigate the dynamics of the model in more details, and determine in particular if the coupling with surrounding charges could affect the dynamics of the polymer itself.

In addition, our approach could be applied to other charged biopolymers like DNA or microtubules. The dynamics of ionic charges around microtubules can result in interesting phenomena, e.g. an amplification of electrical signals detected in recent experiments [START_REF] Priel | A biopolymer transistor: Electrical amplification by microtubules[END_REF]. A lattice model for elastic vibrations of microtubules is available [START_REF] Portet | Elastic vibrations in seamless microtubules[END_REF], and could be coupled to a model for ionic charges similar to ours. This model for charge propagation gives an interesting alternative to existing ones [START_REF] Priel | A nonlinear cable-like model of amplified ionic wave propagation along microtubules[END_REF] because it relies on the physically well-established drift-diffusion equations.

Lastly, it will be interesting to generalize our approach to include other modes of actin like bending and twisting. In particular, modes acting on a slower timescale may lead to interesting coupling effects with counterion dynamics. This problem could be considered e.g. for torsional motions, which are able to generate transient states that persist for several seconds [START_REF] Orlova | F-actin retains a memory of angular order[END_REF]. Since twisting and stretching modes are coupled, twisting will affect the counterion dynamics via an electrostatic coupling similar to the one described in this paper. In particular, it would be interesting to see if torsion waves could generate charge density waves along actin with periods of the order of a few ms. Electrical signals of this type have been experimentally detected by Lin and Cantiello [START_REF] Lin | A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin[END_REF], and this phenomenon is still lacking a wellestablished physical explanation. 

Figure 1 .

 1 Figure 1. Schematic representation of a compression soliton propagating along a biopolymer, and accompanied by a localized charge density wave in the cloud of condensed counterions. Black circles represent surface charges on the polymer, and white circles denote counterions in solution.

Figure 2 .

 2 Figure 2. Schematic representation of a zig-zag molecular chain.

Figure 4 .

 4 Figure 4. State of the system at an early stage (t = 1, 8.10 -11 s) after an initial localized compression of the chain (see text). The upper plot gives the variation along the chain of the axial distance between adjacent monomer centers, and the lower plot shows the localized charge perturbation q n induced in the ionic cloud.

Figure 5 .

 5 Figure 5. Top figure : same plot as figure 4, at a later time t = 0, 36.10 -9 s. Two shock waves and their dispersive tail are clearly visible. Bottom figure : current dq n /dt in the ionic cloud induced by these elastic waves.

Figure 6 .

 6 Figure 6. Space-time diagram showing |dq n /dt| in grey levels, for the same initial condition as figure 4. White regions correspond to a vanishing current, and black ones to intensities > 2,5 pA.

Figure 7 .

 7 Figure 7. Temporal evolution of the current intensity dq n /dt at monomer n = 450, for the same initial condition as figure 4. The bottom figure provides a zoom of the profile after the main shock.

Figure 8 .

 8 Figure 8. Initial horizontal (upper plot) and vertical (lower plot) perturbations of the polymer configuration corresponding to a compression soliton.

Figure 9 .

 9 Figure 9. Top figure : solitary wave propagating rightwise, generated by the initial perturbation of the chain given in figure 8. The larger soliton is accompanied by a smaller one propagating in the opposite direction. Bottom figure : intensity dq n /dt of the localized charge density wave generated by the main soliton. Both plots correspond to t = 0, 33.10 -9 s.
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