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DECAY ESTIMATES OF GLOBAL SOLUTIONS TO 2D INCOMPRESSIBLE
INHOMOGENEOUS NAVIER-STOKES EQUATIONS WITH VARIABLE
VISCOSITY

JINGCHI HUANG AND MARIUS PAICU

ABSTRACT. In this paper, we investigate the time decay behavior to Lions weak solution of 2D
incompressible density-dependent Navier-Stokes equations with variable viscosity.
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1. INTRODUCTION

The main purpose of this paper is to investigate the decay estimates for the global solutions of
the following two-dimensional incompressible inhomogeneous Navier-Stokes equations with viscous
coefficient depending on the density

Op + div(pu) = 0, (t,xr) € RT x R?
(1.1) O (pu) + div(pu @ u) — div(u(p)M(u)) + VII = 0,
divu = 0,

where p, u = (u1,uz) stand for the density and velocity of the fluid respectively, M(u) = Vu+V7Tu,
IT is a scalar pressure function, and in general, the viscosity coefficient p(p) is a smooth positive
function on [0, 00). Such system describes a fluid which is obtained by mixing two immiscible fluids
that are incompressible and that have different densities. It may also describe a fluid containing a
melted substance. One may check [9] for the detailed derivation.

When p(p) is independent of p, i.e. p is a positive constant, and the initial density has a positive
lower bound, Ladyzenskaja and Solonnikov [8] first addressed the question of unique solvability
of (1.1). More precisely, they considered the system (1.1) in a bounded domain 2 with homoge-

neous Dirichlet boundary condition for u. Under the assumption that ug € W2 P (Q) (p>dis
divergence free and vanishes on 99 and that py € C1(Q) is bounded away from zero, then they [8]
proved

e Global well-posedness in dimension d = 2;
2
e Local well-posedness in dimension d = 3. If in addition ug is small in W? »”(Q), then
global well-posedness holds true.

Danchin [3] proved similar well-posedness result of (1.1) in the whole space case and the initial data
in the almost critical spaces. In particular, in two dimension, he proved the global well-posedness of
(1.1) provided the initial data (pg,uo) satisfying po — 1 € H'T*(R?), pg > m > 0, and ug € H?(R?)
for any a € (0,1) and 8 € (0, 1].

In general, Lions [9] (see also the references therein) proved the global existence of weak solutions
to (1.1) with finite energy. More precisely, given 0 < pg € L®(R%), 0 < g < pu(p) and ug satisfying
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2 J. HUANG AND M. PAICU

divug =0, /poug € L? (R%), Lions proved that (1.1) has a global weak solution so that

1 ¢ 1
SIVAOuOIE + o [ V6l dr < 5Vl
Moreover, for any « and (, the Lebesgue measure
u{a: eR% a< p(t,x) < B } is independent of ¢.

In dimension two and under the additional assumption that pg is close enough to a positive constant
and Vug € L?(R?), smoother weak solutions may be built. Their existence stems from a quasi-
conservation law involving the norm of Vu € L>((0,T); L?(R?)) and of d,u, Vp € L2((0,T); L?(R?))
for any T < oco. For both types of weak solutions however, the problem of uniqueness and regularities
of such weak solutions are big open questions even in two space dimensions.

Under the additional assumptions that

(1.2) [1(po) = 1| poor2y <€ and ug € HY(T?),
Desjardins [4] proved the following theorem.

Theorem 1.1. Let py € L°°(T?) and divug = 0. Then there exists ¢ > 0 such that under the
assumption (1.2), Lions weak solutions ([9]) to (1.1) satisfy the following regularity properties hold
forall T > 0:

(1) u e L>®((0,T); HY(T?)) and \/poyu € L*((0,T) x T?),

(2) p and p(p) € L=((0,T) x T?) N C([0,T]; LP(T?)) for all p € [1,00),

(3) V(I = RiR;(nM(u);)) and V(P® Q(uM (u))) € L*((0,T) x T?),

(4) II may be renormalized in such a way that for some universal constant Cy > 0, II and
Vu € L2((0,T); LP(T?)) for all p € [4,p*), where ]% = 2Co||(po) — 1| oe-

In which, we denote R as the Riesz transform: R = VA~3. Q = VA ldivand P = 1-Q
respectively denote the projection on the space of curl-free and divergence-free vector fields.

In order to investigate the global well-posedness of thus solutions, we first need to study the
global-in-time type estimates. However, because of the difficulties of the continuity equation in
(1.1) being of hyperbolic nature and the estimate of the diffusion term in the momentum equation,
we shall first study the time decay of the solutions, which is very much motivated by [5, 10, 12].

Theorem 1.2. For 1 < p < 2, let ug € LP(R*) N H(R?), pg — 1 € L*(R?) and py € L>®(R?) with a
positive lower bound. We assume that (p,u, Vp) is a given Lions weak solution of (1.1) with initial
data (pg, up). Denote (1) = pg, then under the assumption

(1.3) 11(p) = b0l oo (m+; 100 (R2)) < €05

for a small constant €, there exists a constant C1 which depends on ||po —1||12, ||uol|r and ||ugl| g1
such that there hold

(1.4) lu(t) 22 < Ca(t+¢) 5P, [ Vu(t)|3e < Crt +¢) 20
(15) | e + 1 o) M) 52 + 9T 2 e < o
o0 2
(16) (t+ €250 (|2 + || div ((0) M(w)) | 2 + [ VT 2) e < Cr,
0

with f(p) = %(% — 1) and any € > 0.
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Remark 1.1. The first estimate of (1.4) coincides with the L?>-norm decay result in [10, 12] for
the weak solutions of the two-dimensional classical Navier-Stokes system, and also coincides with
the result in [5] for (1.1). When u(p) be a constant, we can get optimal decay of ||Vul|3. with the
order —1—20(p), see [6]. Notice the main ingredients of the proof in [6, 10, 12] are the usual energy
estimates and the phase space analysis. In our case, due to the additional difficulties mentioned
above, we not only need to apply phase space analysis, but also need more explicit energy estimates,
see Proposition 2.1 below. We note also that the 3D case with constant viscosity was studied in [1].
Using energy estimates with weight in time and the Fourier splitting method of Schonbek [10] we
can generalize this decay in time estimates to the 3D case with variable viscosity.

Motivated by Proposition 2.1, we have a more general result. Indeed, using interpolation ar-
gument we obtain a similar decay rate of the solution, under a weaker assumption on the initial
velocity.

Theorem 1.3. For 1 < p < 2 and 0 < a < 1, let uy € LP(R?) N H*(R?), po — 1 € L*(R?)
and py € L™(R?) with a positive lower bound. We assume that (p,u, Vp) is a given Lions weak
solution of (1.1) with initial data (po,uo). Then under the assumption (1.3), there exists a constant
C,, which depends on ||pg — 1|12, |[uo||r» and ||ug| g« such that there hold

(L.7) lu()l72 < Calt +¢)72°@,|[Vu(t)|f2 < Calt + )~ 2@,

(18) [ Tlee + v ()2 (0) L2+ 97T 52 < o

o0 2
(19) [ P (o [ v (M) 12 + [ VT2t < Con
0

with any ¢ > 0 and 0 < r < a.

Remark 1.2. We note also that the 3D case with constant viscosity was studied in [1]. Using
energy estimates with weight in time and the Fourier splitting method of Schonbek [10] it is possible
to generalize this decay in time estimates to the 3D case with variable viscosity.

The organization of the paper. In the second section, we shall present the proof of Theorem
1.2. In Section 3, we shall prove Theorem 1.3.

2. THE PROOF OF THEOREM 1.2
First, we need some calculus inequalities which can be found in [12].

Lemma 2.1. Let m € R, 0 < a < 1 and 3 > 0. Then
(1) fi(s+e) (s +e)™ds < L for m>1,
(2) there is some 7y, > 0 such that fot(s +e) Pln(s 4 )™ ds < MY,
(3) there is some Yy, o > 0 such that, for all t > 0,
fot(s +e) “In(s+e) ™ ds < Ymalt +e)l 7 In(t +e)~™.

In this section, we will prove Theorem 1.2. First, we have some energy estimates.

Proposition 2.1. Let v € L®(RT; L?) N L*(R*; H'), dive = 0. Assume that ug € H'(R?) and
po € L>®(R?) with positive lower bound. f(t) be a positive second-order differentiable function
satisfies f'(t) > 0 and f”(t) > 0. (p,u) be the global weak solution of the linear system:

Op +vVp =0,

poru + pvVu — div(u(p)M(u)) + VII = 0,
divu = 0,

(p,w)li=0 = (po, uo)-

(2.1)
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Then under the assumption (1.3), we have the following estimates:

swp f0) [ oIV de+ [T 10 [ Ol + div(upM@) + (V17 dode

0<t<oo
22) <CUOIVulta+ [~ 7O [ n)IVul? dodt) exsplCl + [0l ) V012 s
(2.3)
swp f1(0) [ ol das [ 10 [ ol Vufded < OO wldr [ 510) [ plul? dod)

0<t<oo

where C' be a large enough constant.

Proof. First, we follow the line of the proof of Theorem 1.1, see [4]. By taking L? inner product of
the momentum equation of (2.1) with f(¢)u; and using integration by parts, we deduce that

t) /1R2 |/pue|* d + £(t) /R2(vau) ~updx + f(t) /R2 w(p)Vu : Vugdx = 0.
Note that

1) [ ulo)Vu: Ve = 50000) [ o) VuP da) = 370) [ o)Vl da
—3f<t> |, o)V da.

and from the derivation of (29) in [4] that

—/Qatu(pﬂVu\Qdm = div(u(p)v)|Vul? dx
R

o

RQ

= /2 (vV)u - div(u(p) M (u)) dm+/2,u(p)tr(VvVuM(u))dx
R R

Il
\

(put + pvVu + VII) dz + / p(p)tr(VoVuM (u)) de,

R2 R2

we have

GO [ uovufdsl+ 50 [ | 1Vpulda

! U2 X v 'LL2 xr

£ [ o) vulde+ £ [ | 1VmTaa

() /R w(p) V| Vul>da -+ £(0) /R 11050,y dr|

AN

Recall that
—polu = div((u(p) — po) M(u)) — div(u(p) M(u)),

so that we have
podiu; = RiP; R((u(p) — po) M(u)) — Ri P R(u(p)M(u)).
Estimating it in the L* (RQ) and using the Gagliardo-Nirenberg inequality, we can write
IVulle < IP@Q((1(p) — o) M (W)l + [P Q(u(p) M (w)) |4
< 10) — poll et ey [Vl + PO Qo) M) 1219 (P& Qu() M) ) 122

Finally, using (1.3) and the conservation of the momentum, we obtain that

1 1
IVulla S IVullz2 | P(pur + poVu)| 7.,
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Now letting (—A)féR operate on the equation of momentum, we get that
I = RiR; (1(p) (Oru; + Djus)) + (—2) "2 R(pus + puVu).
It follows that
ITT = RiR; (1(p) M () [ 5310 S IV (T — RaR; (o) M) 2 S llpue + puu .
We obtain that

| [ mow0yuda] < [0l Vulfs + 1T = RaR (o) M) as0 1000,

IN

Vol 2 [[Vull 2 [l pur + poVul| g2,
so that

1] [ Moagdjusds] < CopIVelaIValite + fOpuls + [0,

f(t)/Rzu(p)IWHVUIQde < CfOIVl el VullFa

< CfONIVlFIVulTe + ef @) ([Vpuel 72 + [[vVull72).
Also
loVull2s < o3 Vull2e < [0l 2l Voll 2l Vel 2 | ous + poVul| 2,
o) /R poVult de < Cof(t)|[o]| 72l Vol 3l Vulfe + <f (8) Ve 72
Consequently,
d
GU@ [ uIvuPds)+ 1) [ 1wl ds
(2.4) R? R

S £ [ oIVl do + FOITul V0l + [olF)

Second, we multiply —% f(t) div(u(p)M(u)) with the momentum equation of (2.1) and integrate
in R? to get that

70) [ o)V Vurds+ £0) [ | 1aiv(uto) M00) P o

— o) /R o5 udiv (o) M(w) da + 1(1) [ ;vn div (j(p) M (w) da.
The first term of both side have been dealt in previous. For the last term, we have
| 5 ;vn div(p(p)M(w)) da| < [ IV div () M) da
< /R2 |pus + pvVul? dz.

So we get

GO [ uIvaldal + £0) [ |1 (u(o M) P da

S f /R2 wp)IVul? de + f(O) ol zz + FOIVul 7l Voll72 (1 + [[v]172),
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along with (2.4), for a large constant C

G [ noVuP ds)+ 10) [ Clpul -+ div (M) P do

< Q) [, iIVal o+ FOITal Tl + [o]E2)).

Recall that
VII = div(u(p)M(u)) — puy — pvVu,

and note that v € L>°(L?) N L?(H"), so that
/O (1 02 IV0l22 dt < (14 02 g I0]22 00,

and (2.2) holds.
The same strategy can be held for f’(t)u, we have

sl O [kl 7@ [ vl de =510 [ |1k
so that

/ 2 > !/ 2 > 4 2
swp £1(0) [ ol das [T 10 [ ol Vu dedt < OO wldr [ 510) [ plul? doa).

0<t<oo

g

According these two energy estimates, letting v = u, we can prove Theorem 1.2.
Proof of Theorem 1.2: We get the standard energy estimate to (1.1) that

d
ZIVPu® |7z + [Vu®)llz: <0.

Using Schonbek’s strategy, we obtain
d N
(25) GV + PO < Mg [ fit P e

where S(t) et {£: €] < \/%g(t)} and ¢(t) satisfying g(t) < (1 +t)_%. We rewrite the momentum
equation of (1.1) as

u(t) = BIZA +/ euo(t—s)A[[D(div((,u(p) - ,uo)/\/l(u)) +(1—plug — puVu) (s)ds.
0

Taking Fourier transform with respect to x variables leads to

la(t, )| S e HoEF 4go (€)] + / e PP M€\ 7, ((1p) — o) M(w)) |+ | Fo (1 = p)us — puVa) ] ds,

which implies that

| giterde s [ e BRag©R d+ ' [ 17 ((1le) - o) M) 1 ds)
S(t) S(t) 0

t
(2.6 O 1720 = e = puV) - s
Note that ug € LP for 1 < p < 2, one has
1o
en L i@ de 5 ¢ / o O S ol (1407,

here 1 =2 -1 144 =1
where | =7 vy T
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Note that v € L®(L?) N L?>(H"') and u; € L*(L?), we have

(17 (00) = o) M) s 49 < (o) = pd M)l s
< 1l = ol | 192 s
< Clipo — e uollZ(1 + ),

t t
( /0 12 (1 = pu) e d5)% < I = ol /0 el zz ds)® < Cllpo — 12 [ Vuola(1 + ),

t t
(17 (Tl as)? < ol oy [ [Vl 9 < Clunlfa(1+1)

Then we deduce from (2.5) to (2.7) that

%H\/EU(t)HiQ + g7 () 1/put) |7
< PO+ L S ()1 +1) + g )1+ 1)
< G+ 4 gl )1+ ).

Taking ¢%(t) , then elo 9°(s)ds — In?(t + €) and

_ 2
— (e+t) In(e+t)
In?( + €) u(t) |72

! In(s+e _
||u0||%2+/0 [(<9—|—(e)1+2;(7’)+(5+e) 1]d$

N

< In(t+e),
which gives
(2.8) [u@®)]2: < In~L(t 4+ e).

Now we improve the estimate (2.8).
We choose f(t) =t + e in (2.2), then we have

o
sup (t+e)[|[Vu(t)||72 + / (t+ €)lluell7z dt < Cllug|| 3 exp{Clluol|72},
0<t<oo 0

so that

t t
170 = Pl < 1= pleqaey( [ e o

t t

< Cllm 113 [ (s ulBads [ (s 0)ds
0 0

< In(t+e).

( /O I (puv) | ds)? < ( /0 ()| 2| V() [ 2 ds)? S (¢ + ) (¢ + ).

We plug these estimate into (2.6) and take g*(t) = 1 then eo 9°(3)ds — In3(t + e) and

3
e+t) In(e+t)?

t 112 S € 1'12 S €
Wl utlfs S [ [ + e+ (s ) s

S In(t+e),
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which implies
(2.9) lu()[[7: S 2 (t +e).
So that -

/O (t+ ) Vul2s dt < O

We choose f'(t) = In(t + ¢) in (2.3), then get

o0
sup Inft+o)u(®)3:+ [ n(t+ o) [Val de
0<t<oo 0

Cllunls + [ ¢+ el )
< (.
Consequently, we take f(t) = (t +e)In(t + e) in (2.2), obtain that

IN

sup (¢ )t + ) Vu(t)[F: + [ ¢+ )t +o)ulde
0<t<oo 0

O(|[Vuol72 + / (In(t + e) + 1)[|Vul 72 dt) exp{Clluo| 7.}
0

S Clv

IN

which implies
(2.10) IVu®)||3: S (t+e) T In~Ht +e).
Combining (2.9) and (2.10), we get the revised estimates,
t t
([ Ml Ve ds? 5 ([ (s ) nE s+ s
0 0

< (4ot +e),

t 2 ¢ 2 ¢ -1 —1
(AW—NMMMM$ sgﬁwmmm+ﬁmmmméw+@lnw+@w
< In(In(t+e)).

Substituting these two estimates in (2.6), and taking g2(¢) , then elo 9*(8)ds = In®(t+e)

and

_ 5
~ (t+e) In(t+e)

t 1n4(s +e) lng(s +e) ln(ln(t + e)) 1
R e (= B

< In(t+e),

|ds

from which, we obtain
(2.11) [u(®)]|7: < In~*(t +e).
We choose f/(t) = In%(t + e) in (2.3), then

sup Inz(t+e)||u(t)]%2+/ n?(t + e)||Vul|72 dt
0

0<t<oo

Cllluole + [ (t+ ey tn(e-+ €) u(o) 3 do)
0

IN

IN

cww;+/<ﬂw*m*Wme
0
.

IN
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Finally, we take f(t) = (t +¢)In(t + ¢) in (2.2) to get that

sup (t+e) 1n2(t+e)\|vu(t)|@2+/ (t + ) In?(t + e)||ug |72 dt
0<t<oo 0

o0

< O(IVula+ [ (nlt +0)+ e+ ) [Vuls de) exp{Cluollf:)
0

< (.

Consequently, we obtain

[e.e] [e.e]
(/ (||| 2 dt)? < (/ (t + e) In%(t + €)||ug |22 dt)( / (t+e) ' In"2(t +e) dt) < Cy.
0 0 0

Which is the same for VIL, div(u(p)M(u)) € L*(R*; L?), and gives (1.5). Recall that

[ el Vlzn ds)? < [l do)( [ 19ul3ds) < [l ds,

substituting these estimates into (2.6), noting that 24(p) € (0,1), and taking g(t) = e
large enough, then we get

t s
(t+e)fu®)z: < HUOH%2+/(S+€)°‘2 ()17 drds
0 0
t t
+ /(s+e)°‘125(p) ds+/ (s+e)* 2ds
0 0

t s
< (b4 ey / (s + ) / (7|12 drds.
0 0

For t > 1, we define

def

y(t) /tl(s +e)*||u(s)||72 ds, Y (t) def max{y(s) : 1 < s < t},

t
def
ey /0 u(s)|2. ds.

t—[t] t
1) = / ()12 ds + / lu(s)]2 ds
0 1]
-1

< C-i—Z/ [u(s)||32(s +€)%(s +e)"*ds

[t]-1
(2.12) < C’+ZY Jt—5) " <SCH+Y ()t +e)l ™,

Then one has

from which, we infer that
t
y(t) S (t+ )20 / (s + €)1V (s) ds.
0
Then, applying Gronwall’s inequality, we have

t
(2.13) YV(t) S (t+e)2 280 4 / (s + )2 2801 gs < (1 + €)@ 7280),
0

with «
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Plunging (2.13) into (2.12) gives rise to I(t) < (t + €)'=28®) we obtain

t
(t+ e Nul)P < (t4e)> % 4 /0 (5 + )2 2801 g

< (4o,

which gives the first inequality of (1.4).

Go back to (2.3), we choose f”(t) such that [° f”(t)||u(t)||3. dt is finite. For example, we let
() = (t+e)~1H28@) = for any € > 0, (or f"(t) = (t+ €)@ In=%(t + ¢) for any o > 1,) then

f(t) = (t+e)' 28~ Finally, we get (1.6) and the second inequality of (1.4).

3. THE PROOF OF THEOREM 1.3

The proof of Theorem 1.3 is very similar to Theorem 1.2. We should estimate every term in

terms of ||ug|| g instead of ||ug|| 1. First, we choose f(t) =t + e and ¢ in (2.2), get that

sup (t-+6)|[Vu(t)[F: + /0 (t + )22 dt < Clluolr expfC + [0l (12 V0l 2212

and

o
sup ¢ Vu(t)| 7. +/ tlluell?2 dt < Clluoll72 exp{C (L + [[v]| 712 IV V1 F2(r2)}-
0<t<oo 0
By interpolation, and let v = u, we get that
o0
(3.1)  suwp (t+ &)t | Vu(t) |72 + / (t+ €)™ ue| 72 dt < ClluolFre exp{Clluo|72}.
<t<oo 0

So that

(170 = o) a5

IN

t
11 = ey Nl )®

< Cllpo — 1112 /tsl_a(s+e)a||ut||2L2 ds/tsa_1(3+e)_ads
B 0 0
t t
(17 (0l0) = m) M) i a7 < (o) = )M d)?
< ile) = ol [ 19l s
< Cllpo = 72 lluoll72(1+1),

t t
([ 17Tl a5 < ol ooy [ IVl 092 < Clunlfa(1+1)
From which, we can deduce that
d
%Hﬁw)lliz S A O NZAG
Ca (PO +D7W + PEA+1) + g ()1 +1) + g* ()

Ca (911 + 1)) 4+ g (1 +1) + ' (1)t

IN

IN
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Taking ¢%(t) = m, then elo 9°() ds = In%(t +€) and
In®(t + e)[|u(t) |72
In(s +e) 1 1
< Cluollzz + Ca / s+ e)1+26(p) T +e * (s+ 6)2—0‘] ds
< Cqln(t +e),

which gives
(3.2) [u(®)][22 < CoIn™2(t +e).

Now, for t > 1, we have

([ 175 0) - )

IN

t
el /0 il 2V 2 dis)?

< Ca(/o 52 (s+e) %lrf%(s—i—e)ds)2
< Co(l+(t+e)ln"(t+e) <Colt+e)ln'(t+e).

We take g%(t) = then elo 9°(9)ds = ln3(t +e) and

3
(e+t) In(e+t) >
(s+e) (s*+1)In(s +e) 1

e+ Ol < Clluolie+ 0, [ (T DIEED Ly,
< Cyln(t+e),
which implies
Ju)||32 < Coln™2(t +e),  fort>1.
And for 0 < ¢ < 1, it is obvious, so that
(3-3) lu(®)172 < Caln™(t +e),

and
/ (t 4 ) Hul2, dt < Ca/ (t4+e) ' In"2(t+e)dt < C,.
0 0
We choose f'(t) = In(t + ) in (2.3), then get

sup Inft+o)u(®): + [ n(t+ o) |ValF de
0

0<t<oo

C (ol + /0 (4 )2 di)
< C,.

Consequently, for any 0 < r < «, we take f(t) = t'="(t + )" In(t + e) in (2.2), obtain that

IN

sm>ﬂru+eym@+ewvuﬂﬁy+/ T+ )" In(t + e) ||u|| 2o dt
0<t<oo 0

t+e
t

)+ () IVullZ: dt exp{Clluollz:}-

< c/‘ t+)1T+m@+6MQ+

Using (3.1), we get that

1 1
/ t_T||vu(t)|’%2 dt S Ca/ ta—T'—l(t+ e)—a dt S Ca,
0 0
which implies
(3.4) HVu(t)||2L2 < Cut™ Yt +e) " In "t +e).

11
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Combining (3.3) and (3.4), for any t > 1, we get the revised estimates,

t
<Auwpwwpwﬁ

r—1

1 t
C’a(/ s%l(s+e)_%ln_%(s—|—e) ds)2+Ca(/ ST(8+6)_%1H_%(S+€)dS)2
0 1

IN

IN

Co(l+(t+e)In™?(t+e)) < Colt+e)In"?(t +e),

t
pém—mmmmm#

IN

C“(/o ST (s 4+ ) Ins + €) gl 2 ds)(/o 5 1(s + ¢) " In"Y(s + ¢) ds)

Coln(In(t +¢)).

IN

For t > 1, taking ¢%(t) = ( then elo 9°()ds — In®(t + e) and

5
t+e) In(t+e)’
In®(t + e) [Ju(t)|2
b In*(s+e) In®(s + ¢) In(In(t + ¢)) 1
< 2
< Clwla +Co [ (5 Gt e st
< CuIn(t+e),

| ds

from which, we obtain
(3.5) lu()]7> < Caln™(t +e).
We choose f'(t) = In%(t + e) in (2.3), then

sup 1n2(t+e)|]u(t)||%z+/ 1D2(t+6)||vu||2L2dt
0

0<t<oo

Clluols + [ ¢+ ) ne + )t 2 de)
0

IN

1 [e]

< Ca(1+/ (t+e)—1dt+/ (t+e) tIn73(t + e) dt)
0 1

< Ca.

Finally, we take f(t) = t'~"(t 4+ ¢)" In?(t + ¢) in (2.2) to get that

o
sup 17 (¢4 €)Wt + Va7 (4 e e+ )l
0<t<oo 0
) t a t _ t+e
< C | {mt+e)(—) 7+t +e) () + (
0 t+e t

t+e
< O,

) 1HIVull72 dt exp{Clluo|l72}

Consequently, we obtain

</|mmmw
0

(/OOO 277 (4 €)" In2(t + €)|ug 2 dt)(/ooo 1t + e) " In"2(t + ) dt)

IN

< Ca.
Which is the same for VIL, div(p(p)M(u)) € L*(R*; L?), and gives (1.8).
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Then follow the same line to the proof of Theorem 1.2, we get the first inequality of (1.7). We
choose f'(t) = (t + €)?/~¢ in (2.3), obtain that

o0
sup (¢ + €27 [u(®)|2 + / (t + €252Vl dt
0

0<t<oo
o0
< O(JluolZ2 + /O (t+ €)= |u12, di)
< C,.

Then taking f(t) = t'="(t + €)"+26=¢ in (2.2), we deduce that

o0
sup 177 (¢ + ) Vu(t)17 +/0 (4 ) 2 g 72 it

0<t<oo
o _ t ., t+e,
< O[T Pl (Il deexp{Cluala)
0 +€ t
< Cas

which implies (1.9) and the second inequality of (1.7). This completes the proof of Theorem 1.3.
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