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In this paper, we investigate the time decay behavior to Lions weak solution of 2D incompressible density-dependent Navier-Stokes equations with variable viscosity.

Introduction

The main purpose of this paper is to investigate the decay estimates for the global solutions of the following two-dimensional incompressible inhomogeneous Navier-Stokes equations with viscous coefficient depending on the density (1.1)

   ∂ t ρ + div(ρu) = 0, (t, x) ∈ R + × R 2 , ∂ t (ρu) + div(ρu ⊗ u) -div(µ(ρ)M(u)) + ∇Π = 0, div u = 0,
where ρ, u = (u 1 , u 2 ) stand for the density and velocity of the fluid respectively, M(u) = ∇u+∇ T u, Π is a scalar pressure function, and in general, the viscosity coefficient µ(ρ) is a smooth positive function on [0, ∞). Such system describes a fluid which is obtained by mixing two immiscible fluids that are incompressible and that have different densities. It may also describe a fluid containing a melted substance. One may check [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] for the detailed derivation.

When µ(ρ) is independent of ρ, i.e. µ is a positive constant, and the initial density has a positive lower bound, Ladyženskaja and Solonnikov [START_REF] Ladyženskaja | The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. (Russian) Boundary value problems of mathematical physics, and related questions of the theory of functions, 8[END_REF] first addressed the question of unique solvability of (1.1). More precisely, they considered the system (1.1) in a bounded domain Ω with homogeneous Dirichlet boundary condition for u. Under the assumption that u 0 ∈ W 2-2 p ,p (Ω) (p > d) is divergence free and vanishes on ∂Ω and that ρ 0 ∈ C 1 (Ω) is bounded away from zero, then they [START_REF] Ladyženskaja | The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. (Russian) Boundary value problems of mathematical physics, and related questions of the theory of functions, 8[END_REF] proved

• Global well-posedness in dimension d = 2;

• Local well-posedness in dimension d = 3. If in addition u 0 is small in W 2-2 p ,p (Ω), then global well-posedness holds true.

Danchin [START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF] proved similar well-posedness result of (1.1) in the whole space case and the initial data in the almost critical spaces. In particular, in two dimension, he proved the global well-posedness of (1.1) provided the initial data (ρ 0 , u 0 ) satisfying ρ 0 -1 ∈ H 1+α (R 2 ), ρ 0 ≥ m > 0, and u 0 ∈ H β (R 2 ) for any α ∈ (0, 1) and β ∈ (0, 1].

In general, Lions [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] (see also the references therein) proved the global existence of weak solutions to (1.1) with finite energy. More precisely, given 0

≤ ρ 0 ∈ L ∞ (R d ), 0 < µ 0 ≤ µ(ρ) and u 0 satisfying div u 0 = 0, √ ρ 0 u 0 ∈ L 2 (R d ),
Lions proved that (1.1) has a global weak solution so that

1 2 ρ(t)u(t) 2 L 2 + µ 0 t 0 ∇u(τ ) 2 L 2 dτ ≤ 1 2 √ ρ 0 u 0 2 L 2 .
Moreover, for any α and β, the Lebesgue measure

µ x ∈ R d ; α ≤ ρ(t, x) ≤ β is independent of t.
In dimension two and under the additional assumption that ρ 0 is close enough to a positive constant and ∇u 0 ∈ L 2 (R 2 ), smoother weak solutions may be built. Their existence stems from a quasiconservation law involving the norm of ∇u ∈ L ∞ ((0, T ); L 2 (R 2 )) and of ∂ t u, ∇p ∈ L 2 ((0, T ); L 2 (R 2 )) for any T < ∞. For both types of weak solutions however, the problem of uniqueness and regularities of such weak solutions are big open questions even in two space dimensions.

Under the additional assumptions that

(1.2) µ(ρ 0 ) -1 L ∞ (T 2 ) ≤ ε and u 0 ∈ H 1 (T 2 ),
Desjardins [START_REF] Desjardins | Regularity results for two-dimensional flows of multiphase viscous fluids[END_REF] proved the following theorem.

Theorem 1.1. Let ρ 0 ∈ L ∞ (T 2
) and div u 0 = 0. Then there exists ε > 0 such that under the assumption (1.2), Lions weak solutions ( [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF]) to (1.1) satisfy the following regularity properties hold for all T > 0 :

(

1) u ∈ L ∞ ((0, T ); H 1 (T 2 )) and √ ρ∂ t u ∈ L 2 ((0, T ) × T 2 ), (2) ρ and µ(ρ) ∈ L ∞ ((0, T ) × T 2 ) ∩ C([0, T ]; L p (T 2 )) for all p ∈ [1, ∞), (3) ∇(Π -R i R j (µM(u) ij )) and ∇(P ⊗ Q(µM(u) ij )) ∈ L 2 ((0, T ) × T 2 ), (4) 
Π may be renormalized in such a way that for some universal constant C 0 > 0, Π and ∇u ∈ L 2 ((0, T );

L p (T 2 )) for all p ∈ [4, p * ), where 1 p * = 2C 0 µ(ρ 0 ) -1 L ∞ .
In which, we denote R as the Riesz transform: R = ∇△ -1 2 . Q = ∇△ -1 div and P = I -Q respectively denote the projection on the space of curl-free and divergence-free vector fields.

In order to investigate the global well-posedness of thus solutions, we first need to study the global-in-time type estimates. However, because of the difficulties of the continuity equation in (1.1) being of hyperbolic nature and the estimate of the diffusion term in the momentum equation, we shall first study the time decay of the solutions, which is very much motivated by [START_REF] Gui | Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity[END_REF][START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF][START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF].

Theorem 1.2. For 1 < p < 2, let u 0 ∈ L p (R 2 ) ∩ H 1 (R 2 ), ρ 0 -1 ∈ L 2 (R 2 ) and ρ 0 ∈ L ∞ (R 2
) with a positive lower bound. We assume that (ρ, u, ∇p) is a given Lions weak solution of (1.1) with initial data (ρ 0 , u 0 ). Denote µ(1) = µ 0 , then under the assumption

(1.3) µ(ρ) -µ 0 L ∞ (R + ;L ∞ (R 2 )) ≤ ε 0 ,
for a small constant ε 0 , there exists a constant C 1 which depends on ρ 0 -1 L 2 , u 0 L p and u 0 H 1 such that there hold

(1.4) u(t) 2 L 2 ≤ C 1 (t + e) -2β(p) , ∇u(t) 2 L 2 ≤ C 1 (t + e) -1-2β(p)+ε , (1.5) ∞ 0 u t L 2 + div µ(ρ)M(u) L 2 + ∇Π L 2 dt ≤ C 1 , (1.6) 
∞ 0 (t + e) 1+2β(p)-ε u t L 2 + div µ(ρ)M(u) L 2 + ∇Π L 2 2 dt ≤ C 1 , with β(p) = 1 2 ( 2 p -1)
and any ε > 0.

Remark 1.1. The first estimate of (1.4) coincides with the L 2 -norm decay result in [START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF][START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF] for the weak solutions of the two-dimensional classical Navier-Stokes system, and also coincides with the result in [START_REF] Gui | Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity[END_REF] for (1.1). When µ(ρ) be a constant, we can get optimal decay of ∇u 2 L 2 with the order -1 -2β(p), see [START_REF] Huang | Decay estimate for global solutions of 2-D inhomogeneous Navier-Stokes equations[END_REF]. Notice the main ingredients of the proof in [START_REF] Huang | Decay estimate for global solutions of 2-D inhomogeneous Navier-Stokes equations[END_REF][START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF][START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF] are the usual energy estimates and the phase space analysis. In our case, due to the additional difficulties mentioned above, we not only need to apply phase space analysis, but also need more explicit energy estimates, see Proposition 2.1 below. We note also that the 3D case with constant viscosity was studied in [START_REF] Abidi | On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations[END_REF]. Using energy estimates with weight in time and the Fourier splitting method of Schonbek [START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF] we can generalize this decay in time estimates to the 3D case with variable viscosity.

Motivated by Proposition 2.1, we have a more general result. Indeed, using interpolation argument we obtain a similar decay rate of the solution, under a weaker assumption on the initial velocity.

Theorem 1.3. For 1 < p < 2 and 0 < α < 1, let u 0 ∈ L p (R 2 ) ∩ H α (R 2 ), ρ 0 -1 ∈ L 2 (R 2 ) and ρ 0 ∈ L ∞ (R 2
) with a positive lower bound. We assume that (ρ, u, ∇p) is a given Lions weak solution of (1.1) with initial data (ρ 0 , u 0 ). Then under the assumption (1.3), there exists a constant C α which depends on ρ 0 -1 L 2 , u 0 L p and u 0 H α such that there hold

(1.7) u(t) 2 L 2 ≤ C α (t + e) -2β(p) , ∇u(t) 2 L 2 ≤ C α (t + e) -1-2β(p)+ε , (1.8) ∞ 0 u t L 2 + div µ(ρ)M(u) L 2 + ∇Π L 2 dt ≤ C α , (1.9) 
∞ 0 t 1-r (t + e) r+2β(p)-ε u t L 2 + div µ(ρ)M(u) L 2 + ∇Π L 2 2 dt ≤ C α ,
with any ε > 0 and 0 < r < α.

Remark 1.2. We note also that the 3D case with constant viscosity was studied in [START_REF] Abidi | On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations[END_REF]. Using energy estimates with weight in time and the Fourier splitting method of Schonbek [START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF] it is possible to generalize this decay in time estimates to the 3D case with variable viscosity.

The organization of the paper. In the second section, we shall present the proof of Theorem 1.2. In Section 3, we shall prove Theorem 1.3.

The Proof of Theorem 1.2

First, we need some calculus inequalities which can be found in [START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF].

Lemma 2.1. Let m ∈ R + , 0 ≤ α < 1 and β > 0. Then (1) 
t 0 (s + e) -1 ln(s + e) -m ds ≤ 1 m-1 for m > 1, (2) there is some γ m > 0 such that t 0 (s + e) -1-β ln(s + e) m ds ≤ γ m β -(m+1) , (3) 
there is some γ m,α > 0 such that, for all t > 0, t 0 (s + e) -α ln(s + e) -m ds ≤ γ m,α (t + e) 1-α ln(t + e) -m . In this section, we will prove Theorem 1.2. First, we have some energy estimates.

Proposition 2.1. Let v ∈ L ∞ (R + ; L 2 ) ∩ L 2 (R + ; Ḣ1 ), div v = 0. Assume that u 0 ∈ H 1 (R 2 ) and ρ 0 ∈ L ∞ (R 2 )
with positive lower bound. f (t) be a positive second-order differentiable function satisfies f ′ (t) ≥ 0 and f ′′ (t) ≥ 0. (ρ, u) be the global weak solution of the linear system:

(2.1)        ∂ t ρ + v∇ρ = 0, ρ∂ t u + ρv∇u -div(µ(ρ)M(u)) + ∇Π = 0, div u = 0, (ρ, u)| t=0 = (ρ 0 , u 0 ).
Then under the assumption (1.3), we have the following estimates:

sup 0<t<∞ f (t) R 2 µ(ρ)|∇u| 2 (t) dx + ∞ 0 f (t) R 2 C| √ ρu t | 2 + | div µ(ρ)M(u) | 2 + |∇Π| 2 dxdt ≤ C(f (0) ∇u 0 2 L 2 + ∞ 0 f ′ (t) R 2 µ(ρ)|∇u| 2 dxdt) exp{C(1 + v 2 L ∞ (L 2 ) ) ∇v 2 L 2 (L 2 ) }, (2.2) (2.3) sup 0<t<∞ f ′ (t) R 2 ρ|u| 2 (t) dx+ ∞ 0 f ′ (t) R 2 µ(ρ)|∇u| 2 dxdt ≤ C(f ′ (0) u 0 2 L 2 + ∞ 0 f ′′ (t) R 2 ρ|u| 2 dxdt),
where C be a large enough constant.

Proof. First, we follow the line of the proof of Theorem 1.1, see [START_REF] Desjardins | Regularity results for two-dimensional flows of multiphase viscous fluids[END_REF]. By taking L 2 inner product of the momentum equation of (2.1) with f (t)u t and using integration by parts, we deduce that

f (t) R 2 | √ ρu t | 2 dx + f (t) R 2 (ρv∇u) • u t dx + f (t) R 2 µ(ρ)∇u : ∇u t dx = 0. Note that f (t) R 2 µ(ρ)∇u : ∇u t dx = 1 2 ∂ t [f (t) R 2 µ(ρ)|∇u| 2 dx] - 1 2 f ′ (t) R 2 µ(ρ)|∇u| 2 dx - 1 2 f (t) R 2 ∂ t µ(ρ)|∇u| 2 dx,
and from the derivation of (29) in [START_REF] Desjardins | Regularity results for two-dimensional flows of multiphase viscous fluids[END_REF] that

- R 2 ∂ t µ(ρ)|∇u| 2 dx = R 2 div(µ(ρ)v)|∇u| 2 dx = R 2 (v∇)u • div(µ(ρ)M(u)) dx + R 2 µ(ρ)tr(∇v∇uM(u)) dx = R 2 (v∇)u • (ρu t + ρv∇u + ∇Π) dx + R 2 µ(ρ)tr(∇v∇uM(u)) dx, we have d dt [f (t) R 2 µ(ρ)|∇u| 2 dx] + f (t) R 2 | √ ρu t | 2 dx f ′ (t) R 2 µ(ρ)|∇u| 2 dx + f (t) R 2 | √ ρv∇u| 2 dx +f (t) R 2 µ(ρ)|∇v||∇u| 2 dx + f (t) R 2 Π∂ i v j ∂ j u i dx .
Recall that -µ 0 △u = div (µ(ρ)µ 0 )M(u) -div µ(ρ)M(u) , so that we have

µ 0 ∂ i u j = R i P j R (µ(ρ) -µ 0 )M(u) -R i P j R µ(ρ)M(u) .
Estimating it in the L 4 (R 2 ) and using the Gagliardo-Nirenberg inequality, we can write

∇u L 4 P ⊗ Q (µ(ρ) -µ 0 )M(u) L 4 + P ⊗ Q µ(ρ)M(u) L 4 µ(ρ) -µ 0 L ∞ (R + ;L ∞ ) ∇u L 4 + P ⊗ Q µ(ρ)M(u) 1 2 L 2 ∇ P ⊗ Q µ(ρ)M(u) 1 2 L 2
Finally, using (1.3) and the conservation of the momentum, we obtain that

∇u L 4 ∇u 1 2
L 2 P(ρu t + ρv∇u)

1 2 L 2 ,
Now letting (-△) -1 2 R operate on the equation of momentum, we get that

Π = R i R j µ(ρ)(∂ i u j + ∂ j u i ) + (-△) -1 2 R(ρu t + ρv∇u). It follows that Π -R i R j (µ(ρ)M(u)) BM O ∇(Π -R i R j (µ(ρ)M(u))) L 2 ρu t + ρv∇u L 2 .
We obtain that

R 2 Π∂ i v j ∂ j u i dx ≤ ∇v L 2 ∇u 2 L 4 + Π -R i R j (µ(ρ)M(u)) BM O ∂ i v j ∂ j u i H 1 ≤ ∇v L 2 ∇u L 2 ρu t + ρv∇u L 2 , so that f (t) R 2 Π∂ i u j ∂ j u i dx ≤ C ε f (t) ∇v 2 L 2 ∇u 2 L 2 + εf (t)( √ ρu t 2 L 2 + v∇u 2 L 2 ). f (t) R 2 µ(ρ)|∇v||∇u| 2 dx ≤ Cf (t) ∇v L 2 ∇u 2 L 4 ≤ C ε f (t) ∇v 2 L 2 ∇u 2 L 2 + εf (t)( √ ρu t 2 L 2 + v∇u 2 L 2 ). Also v∇u 2 L 2 ≤ v 2 L 4 ∇u 2 L 4 ≤ v L 2 ∇v L 2 ∇u L 2 ρu t + ρv∇u L 2 , f (t) R 2 | √ ρv∇u| 2 dx ≤ C ε f (t) v 2 L 2 ∇v 2 L 2 ∇u 2 L 2 + εf (t) √ ρu t 2 L 2 .
Consequently,

d dt [f (t) R 2 µ(ρ)|∇u| 2 dx] + f (t) R 2 | √ ρu t | 2 dx f ′ (t) R 2 µ(ρ)|∇u| 2 dx + f (t) ∇u 2 L 2 ∇v 2 L 2 (1 + v 2 L 2 ). (2.4) 
Second, we multiply -1 ρ f (t) div µ(ρ)M(u) with the momentum equation of (2.1) and integrate in R 2 to get that

f (t) R 2 µ(ρ)∇u : ∇u t dx + f (t) R 2 | div µ(ρ)M(u) | 2 dx = f (t) R 2 v∇u div µ(ρ)M(u) dx + f (t) R 2 1 ρ ∇Π div µ(ρ)M(u) dx.
The first term of both side have been dealt in previous. For the last term, we have

R 2 1 ρ ∇Π div µ(ρ)M(u) dx R 2 |∇Π -div µ(ρ)M(u) | 2 dx R 2 |ρu t + ρv∇u| 2 dx. So we get d dt [f (t) R 2 µ(ρ)|∇u| 2 dx] + f (t) R 2 | div µ(ρ)M(u) | 2 dx f ′ (t) R 2 µ(ρ)|∇u| 2 dx + f (t) √ ρu t 2 L 2 + f (t) ∇u 2 L 2 ∇v 2 L 2 (1 + v 2 L 2 ),
along with (2.4), for a large constant C

d dt [f (t) R 2 µ(ρ)|∇u| 2 dx] + f (t) R 2 C| √ ρu t | 2 + | div µ(ρ)M(u) | 2 dx ≤ C(f ′ (t) R 2 µ(ρ)|∇u| 2 dx + f (t) ∇u 2 L 2 ∇v 2 L 2 (1 + v 2 L 2 )).
Recall that ∇Π = div µ(ρ)M(u)ρu t -ρv∇u,

and note that v ∈ L ∞ (L 2 ) ∩ L 2 ( Ḣ1 ), so that ∞ 0 (1 + v 2 L 2 ) ∇v 2 L 2 dt ≤ (1 + v 2 L ∞ (L 2 ) ) ∇v 2 L 2 (L 2 ) ,
and (2.2) holds.

The same strategy can be held for f ′ (t)u, we have

1 2 d dt [f ′ (t) R 2 | √ ρu| 2 dx] + f ′ (t) R 2 µ(ρ)|∇u| 2 dx = 1 2 f ′′ (t) R 2 | √ ρu| 2 dx, so that sup 0<t<∞ f ′ (t) R 2 ρ|u| 2 (t) dx+ ∞ 0 f ′ (t) R 2 µ(ρ)|∇u| 2 dxdt ≤ C(f ′ (0) u 0 2 L 2 + ∞ 0 f ′′ (t) R 2 ρ|u| 2 dxdt).
According these two energy estimates, letting v = u, we can prove Theorem 1.2.

Proof of Theorem 1.2: We get the standard energy estimate to (1.1) that

d dt √ ρu(t) 2 L 2 + ∇u(t) 2 L 2 ≤ 0. Using Schonbek's strategy, we obtain (2.5) d dt √ ρu(t) 2 L 2 + g 2 (t) √ ρu(t) 2 L 2 ≤ M g 2 (t) S(t) |û(t, ξ)| 2 dξ,
where S(t) def = {ξ : |ξ| ≤ M 2 g(t)} and g(t) satisfying g(t) (1 + t) -1 2 . We rewrite the momentum equation of (1.1) as u(t) = e µ 0 t△ u 0 + t 0 e µ 0 (t-s)△ P div (µ(ρ)µ 0 )M(u) + (1ρ)u t -ρu∇u (s) ds.

Taking Fourier transform with respect to x variables leads to

|û(t, ξ)| e -µ 0 t|ξ| 2 | û0 (ξ)| + t 0 e -µ 0 (t-s)|ξ| 2 |ξ||F x (µ(ρ) -µ 0 )M(u) | + |F x (1 -ρ)u t -ρu∇u | ds, which implies that S(t) |û(t, ξ)| 2 dξ S(t) e -2µ 0 t|ξ| 2 |û 0 (ξ)| 2 dξ + g 4 (t)( t 0 F x (µ(ρ) -µ 0 )M(u) L ∞ ξ ds) 2 +g 2 (t)( t 0 F x (1 -ρ)u t -ρu∇u L ∞ ξ ds) 2 . (2.6) Note that u 0 ∈ L p for 1 < p < 2, one has (2.7) S(t) e -2µ 0 t|ξ| 2 | û0 (ξ)| 2 dξ ( S(t) e -2µ 0 qt|ξ| 2 dξ) 1 q û0 (ξ) 2 L p ′ u 0 2 L p (1 + t) -2β(p) , where 1 q = 2 p -1, 1 p + 1 p ′ = 1. Note that u ∈ L ∞ (L 2 ) ∩ L 2 ( Ḣ1 ) and u t ∈ L 2 (L 2 ), we have ( t 0 F x (µ(ρ) -µ 0 )M(u) L ∞ ξ ds) 2 ≤ ( t 0 (µ(ρ) -µ 0 )M(u) L 1 ds) 2 ≤ µ(ρ) -µ 0 2 L ∞ t (L 2 ) ( t 0 ∇u L 2 ds) 2 ≤ C ρ 0 -1 2 L 2 u 0 2 L 2 (1 + t), ( t 0 F x (1 -ρ)u t L ∞ ξ ds) 2 ≤ 1 -ρ 2 L ∞ t (L 2 ) ( t 0 u t L 2 ds) 2 ≤ C ρ 0 -1 2 L 2 ∇u 0 2 L 2 (1 + t), ( t 0 F x ρu∇u L ∞ ξ ds) 2 ≤ ρu 2 L ∞ t (L 2 ) ( t 0 ∇u L 2 ds) 2 ≤ C u 0 4 L 2 (1 + t).
Then we deduce from (2.5) to (2.7) that

d dt √ ρu(t) 2 L 2 + g 2 (t) √ ρu(t) 2 L 2 g 2 (t)(1 + t) -2β(p) + g 6 (t)(1 + t) + g 4 (t)(1 + t) g 2 (t)(1 + t) -2β(p) + g 4 (t)(1 + t).
Taking g 2 (t) = 

(t + e) u t 2 
L 2 dt ≤ C u 0 2 H 1 exp{C u 0 4 L 2 }, so that ( t 0 F x (1 -ρ)u t L ∞ ξ ds) 2 ≤ 1 -ρ 2 L ∞ t (L 2 ) ( t 0 u t L 2 ds) 2 ≤ C ρ 0 -1 2 L 2 t 0 (s + e) u t 2 L 2 ds t 0 (s + e) -1 ds ln(t + e). ( t 0 F x ρu∇u L ∞ ξ ds) 2 ≤ ( t 0 u(s) L 2 ∇u(s) L 2 ds) 2 (t + e) ln -1 (t + e).
We plug these estimate into (2.6) and take g 2 (t) = 

≤ C u 0 2 L 2 + ∞ 0 (t + e) -1 u 2 L 2 dt ≤ C 1 .
Consequently, we take f (t) = (t + e) ln(t + e) in ( 2 

u(t) 2 L 2 ln -4 (t + e).
We choose

f ′ (t) = ln 2 (t + e) in (2.3), then sup 0<t<∞ ln 2 (t + e) u(t) 2 L 2 + ∞ 0 ln 2 (t + e) ∇u 2 L 2 dt ≤ C( u 0 2 L 2 + ∞ 0 (t + e) -1 ln(t + e) u(t) 2 L 2 dt) ≤ C( u 0 2 L 2 + ∞ 0 (t + e) -1 ln -3 (t + e) dt) ≤ C 1 .
Finally, we take f (t) = (t + e) ln 2 (t + e) in (2.2) to get that sup 0<t<∞

(t + e) ln 2 (t + e) ∇u(t) 2 L 2 + ∞ 0 (t + e) ln 2 (t + e) u t 2 L 2 dt ≤ C ∇u 0 2 L 2 + ∞ 0 ln(t + e) + ln 2 (t + e) ∇u 2 L 2 dt exp{C u 0 4 L 2 } ≤ C 1 .
Consequently, we obtain

( ∞ 0 u t L 2 dt) 2 ≤ ( ∞ 0 (t + e) ln 2 (t + e) u t 2 L 2 dt)( ∞ 0 (t + e) -1 ln -2 (t + e) dt) ≤ C 1 .
Which is the same for ∇Π, div µ(ρ)M(u) ∈ L 1 (R + ; L 2 ), and gives (1.5). Recall that

( t 0 u L 2 ∇u L 2 ds) 2 ≤ ( t 0 u 2 L 2 ds)( t 0 ∇u 2 L 2 ds) t 0 u 2 L 2 ds,
substituting these estimates into (2.6), noting that 2β(p) ∈ (0, 1), and taking g 2 (t) = α t+e with α large enough, then we get

(t + e) α u(t) 2 L 2 u 0 2 L 2 + t 0 (s + e) α-2 s 0 u(τ ) 2 L 2 dτ ds + t 0 (s + e) α-1-2β(p) ds + t 0 (s + e) α-2 ds (t + e) α-2β(p) + t 0 (s + e) α-2 s 0 u(τ ) 2 L 2 dτ ds.
For t ≥ 1, we define

y(t) def = t t-1 (s + e) α u(s) 2 L 2 ds, Y (t) def = max{y(s) 
: 1 ≤ s ≤ t}, I(t) def = t 0 u(s) 2 L 2 ds.
Then one has

I(t) = t-[t] 0 u(s) 2 L 2 ds + t t-[t] u(s) 2 L 2 ds ≤ C + [t]-1 j=0 t-j t-j-1 u(s) 2 L 2 (s + e) α (s + e) -α ds ≤ C + [t]-1 j=0 Y (t)(t -j) -α C + Y (t)(t + e) 1-α , (2.12 
) from which, we infer that

y(t) (t + e) α-2β(p) + t 0 (s + e) -1 Y (s) ds.
Then, applying Gronwall's inequality, we have Plunging (2.13) into (2.12) gives rise to I(t) (t + e) 1-2β(p) , we obtain

(t + e) α u(t) 2 L 2 (t + e) α-2β(p) + t 0 (s + e) α-2β(p)-1 ds (t + e) α-2β(p) ,
which gives the first inequality of (1.4). Go back to (2.3), we choose f ′′ (t) such that ∞ 0 f ′′ (t) u(t) 2 L 2 dt is finite. For example, we let f ′′ (t) = (t + e) -1+2β(p)-ε for any ε > 0, (or f ′′ (t) = (t + e) -1+2β(p) ln -α (t + e) for any α > 1,) then f (t) = (t + e) 1+2β(p)-ε . Finally, we get (1.6) and the second inequality of (1.4).

The Proof of Theorem 1.3

The proof of Theorem 1.3 is very similar to Theorem 1.2. We should estimate every term in terms of u 0 H α instead of u 0 H 1 . First, we choose f (t) = t + e and t in (2.2), get that sup

0<t<∞ (t + e) ∇u(t) 2 L 2 + ∞ 0 (t + e) u t 2 
L 2 dt ≤ C u 0 2 H 1 exp{C(1 + v 2 L ∞ (L 2 ) ) ∇v 2 L 2 (L 2 ) }, and 
sup 0<t<∞ t ∇u(t) 2 L 2 + ∞ 0 t u t 2 L 2 dt ≤ C u 0 2 L 2 exp{C(1 + v 2 L ∞ (L 2 ) ) ∇v 2 L 2 (L 2 ) }.
By interpolation, and let v = u, we get that

(3.1) sup 0<t<∞ (t + e) α t 1-α ∇u(t) 2 L 2 + ∞ 0 (t + e) α t 1-α u t 2 L 2 dt ≤ C u 0 2 H α exp{C u 0 4 L 2 }.
So that

( t 0 F x (1 -ρ)u t L ∞ ξ ds) 2 ≤ 1 -ρ 2 L ∞ t (L 2 ) ( t 0 u t L 2 ds) 2 ≤ C ρ 0 -1 2 L 2 t 0 s 1-α (s + e) α u t 2 L 2 ds t 0 s α-1 (s + e) -α ds ≤ C α t α , ( t 0 F x (µ(ρ) -µ 0 )M(u) L ∞ ξ ds) 2 ≤ ( t 0 (µ(ρ) -µ 0 )M(u) L 1 ds) 2 ≤ µ(ρ) -µ 0 2 L ∞ t (L 2 ) ( t 0 ∇u L 2 ds) 2 ≤ C ρ 0 -1 2 L 2 u 0 2 L 2 (1 + t), ( t 0 F x ρu∇u L ∞ ξ ds) 2 ≤ ρu 2 L ∞ t (L 2 ) ( t 0 ∇u L 2 ds) 2 ≤ C u 0 4 L 2 (1 + t).
From which, we can deduce that

d dt √ ρu(t) 2 L 2 + g 2 (t) √ ρu(t) 2 L 2 ≤ C α g 2 (t)(1 + t) -2β(p) + g 6 (t)(1 + t) + g 4 (t)(1 + t) + g 4 (t)t α ≤ C α g 2 (t)(1 + t) -2β(p) + g 4 (t)(1 + t) + g 4 (t)t α .
Taking g 2 (t) = 

( t 0 F x ρu∇u L ∞ ξ ds) 2 ≤ C( t 0 u L 2 ∇u L 2 ds) 2 ≤ C α ( t 0 s α-1 2 (s + e) -α 2 ln -1 2 (s + e) ds) 2 ≤ C α 1 + (t + e) ln -1 (t + e) ≤ C α (t + e) ln -1 (t + e).
We take g 2 (t) = 

≤ C u 0 2 L 2 + ∞ 0 (t + e) -1 u 2 L 2 dt ≤ C α .
Consequently, for any 0 < r < α, we take f (t) = t 1-r (t + e) r ln(t + e) in (2.2), obtain that

sup 0<t<∞ t 1-r (t + e) r ln(t + e) ∇u(t) 2 L 2 + ∞ 0 t 1-r (t + e) r ln(t + e) u t 2 L 2 dt ≤ C ∞ 0 ( t t + e ) 1-r + ln(t + e) ( t t + e ) 1-r + ( t + e t ) r ∇u 2 L 2 dt exp{C u 0 4 L 2 }.
Using (3.1), we get that 

1 0 t -r ∇u(t) 2 L 2 dt ≤ C α 1 0 t α-r-1 (t + e) -α dt ≤ C α , which implies (3.4) ∇u(t) 2 L 2 ≤ C α t r-1 (t + e) -r
≤ C α .
Which is the same for ∇Π, div µ(ρ)M(u) ∈ L 1 (R + ; L 2 ), and gives (1.8).

Then follow the same line to the proof of Theorem 1.2, we get the first inequality of (1.7). We choose f ′ (t) = (t + e) 2β-ε in (2.3) 

L 2 } ≤ C α ,
which implies (1.9) and the second inequality of (1.7). This completes the proof of Theorem 1.3.

( 2 .

 2 13) Y (t) (t + e) α-2β(p) + t 0 (s + e) α-2β(p)-1 ds (t + e) α-2β(p) .

  ln -1 (t + e).≤ C α 1 + (t + e) ln -3 (t + e) ≤ C α (t + e) ln -3 (t + e), (s + e) -r ln -1 (s + e) ds)≤ C α ln ln(t + e) . L 2 ≤ C α ln -4 (t + e).We choose f ′ (t) = ln 2 (t + e) in (2.3), then (t + e) -r ln -2 (t + e) dt)

	Combining (3.3) and (3.4), for any t > 1, we get the revised estimates,
			(	0	t	u L 2 ∇u L 2 ds) 2
	≤ C α (	0	1	s	r-1 2 (s + e) -r 2 ln -1 2 (s + e) ds) 2 + C α (	1	t	s	r-1 2 (s + e) -r 2 ln -3 2 (s + e) ds) 2
					(	0	t		1 -ρ L 2 u t L 2 ds) 2
	≤ C α ( s r-1 For t > 1, taking g 2 (t) = t 0 s 1-r (s + e) r ln(s + e) u t 2 L 2 ds)( t 0 5 (t+e) ln(t+e) , then e t 0 g 2 (s) ds = ln 5 (t + e) and
					ln 5 (t + e) u(t) 2 L 2
			≤ C u 0	2 L 2 + C α	0	t	[	ln 4 (s + e) (s + e) 1+2β(p) +	ln 3 (s + e) ln ln(t + e) (s + e) 2	+	1 s + e	] ds
			≤ C α ln(t + e),
	from which, we obtain	
	(3.5)											u(t) 2
												sup 0<t<∞	ln 2 (t + e) u(t) 2 L 2 +	0	∞	ln 2 (t + e) ∇u 2 L 2 dt
										≤ C( u 0	2 L 2 +	0	∞	(t + e) -1 ln(t + e) u(t) 2 L 2 dt)
										≤ C α (1 +	0	1	(t + e) -1 dt +
												2 L 2 dt
	≤ C	0	∞		ln(t + e)(	t t + e	) 1-r + ln 2 (t + e)[(	t t + e	) 1-r + (	t + e t	) r ] ∇u 2 L 2 dt exp{C u 0	4 L 2 }
	≤ C α .									
	Consequently, we obtain
					(			∞	u t L 2 dt) 2
			≤ (	0 0	∞	t 1-r (t + e) r ln 2 (t + e) u t	2 L 2 dt)(	0	∞	t r-1

∞ 1 (t + e) -1 ln -3 (t + e) dt)

≤ C α .

Finally, we take f (t) = t 1-r (t + e) r ln 2 (t + e) in (2.2) to get that sup 0<t<∞ t 1-r (t + e) r ln 2 (t + e) ∇u(t) 2 L 2 + ∞ 0 t 1-r (t + e) r ln 2 (t + e) u t

  Then taking f (t) = t 1-r (t + e) r+2β-ε in (2.2), we deduce that

						, obtain that
				sup 0<t<∞	(t + e) 2β-ε u(t) 2 L 2 +	0	∞	(t + e) 2β-ε ∇u 2 L 2 dt
		≤ C u 0	2 L 2 +	0	∞	(t + e) -1+2β-ε u 2 L 2 dt
		≤ C α .					
	sup 0<t<∞	t 1-r (t + e) r+2β-ε ∇u(t) 2 L 2 +	0	∞	t 1-r (t + e) r+2β-ε u t	2 L 2 dt
	≤ C	0	∞	(t + e) 2β-ε (	t t + e	) 1-r + (	t + e t	) r ] ∇u 2 L 2 dt exp{C u 0	4