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GLOBAL SOLUTIONS TO 2-D INHOMOGENEOUS NAVIER-STOKES
SYSTEM WITH GENERAL VELOCITY

JINGCHI HUANG, MARIUS PAICU, AND PING ZHANG

ABSTRACT. In this paper, we are concerned with the global wellposedness of 2-D density-dependent
incompressible Navier-Stokes equations (1.1) with variable viscosity, in a critical functional frame-
work which is invariant by the scaling of the equations and under a non-linear smallness condition
on fluctuation of the initial density which has to be doubly exponential small compared with the
size of the initial velocity. In the second part of the paper, we apply our methods combined with
the techniques in [10] to prove the global existence of solutions to (1.1) with piecewise constant
initial density which has small jump at the interface and is away from vacuum. In particular, this
latter result removes the smallness condition for the initial velocity in a corresponding theorem of
[10].

Keywords: Inhomogeneous Navier-Stokes Equations, Littlewood-Paley Theory, Wellposedness
AMS Subject Classification (2000): 35Q30, 76D03

1. INTRODUCTION

In this paper, we consider the global existence of solutions to the following 2-D incompressible
inhomogeneous Navier-Stokes equations with initial data in the scaling invariant Besov spaces and
without size restriction for the initial velocity:

Op+u-Vp=0, (t,z) € RT x R?
(1.1) O(pu) + div(pu @ u) — div(pu(p)M) + VII = 0,
divu = 0,

where p, u = (u1, u2) stand for the density and velocity of the fluid respectively, M = %(&uj +0ju;),
IT is a scalar pressure function, and the viscosity coefficient p(p) is a smooth, positive function on
[0,00). Such system describes a fluid which is obtained by mixing two immiscible fluids that are
incompressible and that have different densities. It may also describe a fluid containing a melted
substance.

There is a wide literatures devoted to the mathematical study of the incompressible Navier-
Stokes equations in the homogeneous case (where the density is a constant) or in the more physical
case of inhomogeneous fluids. In the homogeneous case, the celebrated theorem of Leray [20] on
the existence of global weak solutions with finite energy in any space dimension is now a classical
result. Moreover, in the two dimensional space, it is also classical that the Leray weak solution is
in fact a global strong solution. In dimension larger than two, the Fujita-Kato theorem [13] allows
to construct global strong solutions under a smallness condition on the initial data comparing with
the viscosity of the fluid. To obtain those types of results in the inhomogeneous case are the
topics of many recent works dedicated to this system [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 15, 16, 21]...
Our main goal in this paper is to provide a global wellposedness result for the density-dependent
incompressible Navier-Stokes equations with variable viscosity, in a critical functional framework
which is invariant by the scaling of the equations and under a non-linear smallness condition on
fluctuation of the initial density which has to be doubly exponential small compared with the size
of the initial velocity. In the second part of the paper, we apply our methods combined with the
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2 J. HUANG, M. PAICU, AND P. ZHANG

techniques in [10] to prove the global existence of the solution to (1.1) with piecewise constant initial
density, which is away from vacuum and has small jumps at the interface. This latter problem is
of a great interest from physical point of view as it represents the case of a immiscible mixture of
fluids with different densities. We give in this manner a partial response of a question raised by
Lions [21] concerning the propagation of the regularity of the boundary to a ”density-patches”.

We briefly describe in this paragraph some of the classical results for the inhomogeneous Navier-
Stokes system. When the viscous coefficient equals some positive constant, Ladyzenskaja and
Solonnikov [19] first established the unique resolvability of (1.1) in a bounded domain  with
homogeneous Dirichlet boundary condition for u; similar result was obtained by Danchin [9] in R?
with initial data in the almost critical Sobolev spaces; Simon [26] proved the global existence of
weak solutions. In general, the global existence of weak solutions with finite energy to (1.1) with
variable viscosity was proved by Lions in [21] (see also the references therein, and the monograph
[5]). Yet the regularity and uniqueness of such weak solutions is a big open question in the field
of mathematical fluid mechanics, even in two space dimensions when the viscosity depends on the
density. Except under the assumptions:

po € L°°(T?), ianMﬂo) - 1” <e, and wug€ HY(T?),
>0 c L (T2)

Desjardins [12] proved that Lions weak solution (p,u) satisfies u € L>((0,T); H'(T?)) and p €
L>®((0,T) x T?) for any T < oo. Moreover, with additional assumption on the initial density, he
could also prove that u € L2((0,7); H?(T?)) for some short time 7. To understand this problem
further, the third author to this paper proved the global wellposedness to a modified 2-D model
problem of (1.1), which coincides with the 2-D inhomogeneous Navier-Stokes system with constant
viscosity, with general initial data in [27]. Gui and Zhang [16] proved the global wellposedness of
(1.1) with initial data satisfying ||pg — 1|| gs+1 being sufficiently small and ug € H*(R?) N H~(R?)
for some s > 2 and 0 < € < 1. However, the exact size of ||pg — 1||7s+1 was not given in [16].

Very recently, Danchin and Mucha [11] proved that: given initial density pp in L°°() with
a positive lower bound and initial velocity ug € H2(Q2) for some bounded smooth domain of
R?, the system (1.1) with constant viscosity has a unique local solution. Furthermore, with the
initial density being close enough to some positive constant, for any initial velocity in two space
dimensions, and sufficiently small velocity in three space dimensions, they also proved its global
wellposedness. We remark that the Lagrangian formulation for the describing the flow plays a
key role in the analysis in [11]. To prove the 2-D global result, they first applied energy method
to obtain L>®(R™; H'(Q)) estimate for the velocity field u and L?(R"; L%(Q)) estimate for dyu.
Then the authors employed the classical maximal L%.(L?) estimate for the linear Stokes operator to
obtain the second order space derivative estimate for the velocity. Notice that when u(p) depends
on p, and the initial density is sufficiently close to some positive constant in L (R?), one can
recover L (R"; H'(R?)) estimate for the velocity u and L?(RT; L?(R?)) estimate for d;u by using
Desjardins’ techniques from [12]. Yet we do not know then how to recover the second order space
derivatives of the velocity. Therefore, I think it is a very challenging problem to prove Danchin and

Mucha [11] type results for (1.1) with variable viscosity.

def 1 def

When the density p is away from zero, we denote by a = i 1 and pi(a) = u(ﬁ—a), then the

system (1.1) can be equivalently reformulated as

oa+u-Va =0, (t,r) € RT x R?
(1.2) ou~+u-Vu+ (14 a)(VII —div(a(a)M) =0,
divu = 0.

Notice that just as the classical Navier-Stokes system (which corresponds to @ = 0 in (1.2)), the
inhomogeneous Navier-Stokes system (1.2) also has a scaling. In fact, if (a,u) solves (1.2) with
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initial data (ag,ug), then for any ¢ > 0,

(1.3) (a,u)e & (a(@®,0), (e, 2)) and (ag,uo)e % (ao(€), fuo(€-))

(a,u)s is also a solution of (1.2) with 1n1t1al data (ao, uo)¢-

d
It is easy to check that the norm of Bp L(RY) x B (Rd) is scaling invariant under the scaling
transformation (ag, up),s given by (1.3). In [1], Ab1d1 proved in general space dimension d that: if
d

I <p<2d,0<p<p(p),given ay € Blfyl(]Rd) and ug € Bp’1 "(]Rd), (1.2) has a global solution
provided that ||ag|| « + HugH Lpd S0 for some sufficiently small ¢y. Moreover, this solution is
P
p 1 p 1

unique if 1 < p < d. This result generahzed the correspondmg results in [8, 9] and was improved by
d

Abidi and Paicu in [2] with ap € B;J(Rd) and ug € Bp’1 p(Rd) for p, ¢ satisfying some technical

assumptions. Abidi, Gui and Zhang removed the smallness condition for ag in [3, 4]. Notice that

the main feature of the density space is to be a multiplier on the velocity space and this allows to

define the nonlinear terms in the system (1.2). Recently, Danchin and Mucha [10] proved a more

general wellposedness result of (1.1) with u(p) = u > 0 by considering very rough densities in some
d

multiplier spaces on the Besov spaces B, | - (]Rd) for 1 < p < 2d, which in particular completes
the uniqueness result in [1] for p € (d, 2d) in the case when p(p) = p > 0.

On the other hand, motivated by [17, 23, 28] concerning the global wellposedness of 3-D in-
compressible anisotropic Navier-Stokes system with the third component of the 1n1t1al velocity

field being large, we [24] proved that: given ag € Bq7 (R3) and up = (uf,ud) € B (R3) for
1<g<p<6 and = — l < 1 , (1.2) with pi(a) = p > 0 has a unique global solution as long as

(llaol

3+l _g)exp{ColluI? .5 /u*} < con

qu,1 Bp,l i Bp,l P

for some sufficiently small ¢y. We emphasize that our proof in [24] used in a fundamental way the
algebraical structure of (1.2), namely divu = 0.

The first object of this paper is to improve the global wellposedness result in [16] so that given
initial data in the scaling invariant Besov spaces, for any initial velocity, (1.2) has a global solution
provided that the fluctuation of the initial density is sufficiently small, furthermore, its explicit
dependence on the initial velocity will be given here.

2 2
Theorem 1.1. Let 1 < ¢ < p < 4, and 2 —= § 3. Let ag € B;’l(Rz) and ug € Bp’al(RQ) be a
solenoidal vector field. Then there exist pos1t1ve constants co and Co, which depend on |11’ || e (—1,1),
such that if

(1.4) 1 faol exp{00(1+u (0)) exp(%l!uollz_l+;)} < fiﬁ%)

2 ~ 2 —1+
(1.2) has a global solution a € C([0, 00); B;l(Rz))ﬂLOO(RJF; qu’l(]RQ)) andu € C([0,00); B, ; (RQ))
~ —1+42 142
L(R*;B,, *(R?)NL'R*;B,,” (). If L + 1 > 1, this solution is unique.

Remark 1.1. o The definitions of the functional spaces will be presented in Subsection 2.1.
o We remark that compared with the finite energy solutions constructed in [11], our solution
here is not of finite energy and belongs to the critical spaces related to (1.2). While for the
classical 2-D Navier-Stokes system, large infinite energy solution was proved by Gallagher

and Planchon [14] and Germain [15].
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It turns out that we can apply the main idea to prove Theorem 1.1 combined with the techniques
in [10] to remove the smallness condition for initial velocity in [10] when the space dimension equals
to 2. Toward this, we first recall the definition of multiplier spaces to Besov spaces from [22]:

Definition 1.1. The multiplier space M(B;I(Rd)) of B;’I(Rd) is the set of distributions f such
that fy € Bg’l(Rd) whenever 1) € B;,I(Rd). We endow this space with the norm

def
1 llmess ) = sup [ fllBs,,-
, d )
YEB, 1 (RY): [[Yllps | <1

n [10], Danchin and Mucha proved the following global wellposedness for (1.1) with constant
viscosity:

Theorem 1.2. (Theorem 1 and Theorem 3 of [10]) Let p € [1,2d) and ug be a divergence-free

d

—1+
vector field in B, p(Rd). Assume that the initial density py belongs to the multiplier space
144
M(B,; " (R%)). There exists a constant ¢ depending only on d such that if

oo =10l i +uHluoll a4 <
MB, P

p,1 p,1
144
system (1.1) with u(p) = pu > 0 has a unique global solution (p,u) with p € L>(R™; ./\/l(Bp,lﬂ’ (R%)))
—1+4 1+4
and u € C([0,00); B,; " (R?)) NL'(R™; B, ;” (R?)).

Motivated by [10] and the proof of Theorem 1.1, here we consider similar global wellposedness
of (1.2), which does not require any smallness assumption for ug.

142 2
Theorem 1.3. Let p € (2,4), ay € M(Bp71+p(]R2)) with fi(ag) € M(B;l(]Rz)), and ug €

-1
B +

1 ?(R?). Then there exist positive constants co and Cy such that if

(ullaoll  yiz + liiao) = fO)] 5 )
(1.5) M, ") MBL)
1.5 C
~9 0 2 ~
— <
x exp{Co (14 7(0) exp (s ||U0||B;1+g)} < ¢ofi(0),

(1.2) has a un1que global solution (a,u) witha € L (R™; ./\/l( (]R2)) andu € C([0, 00); Bpi  (R?))
NLARY; BLTF (R2)).

Notice from [10] that: let Qo be a bounded C!' domain of R? and pg = 1 + oxq, for some
sufficiently small constant o, ag = - — 1 = —175X0, and p(ag) — (0) = (u(l + o) — u(1))xe,

00
2

_ 142
belong to M(B,; "(R %)) for 2 < p < 4 and their M(B,; ” (R?)) norm are small as long as |o| is
small. This together with Theorem 1.3 implies that

142
Corollary 1.1. Let p € (2,4) and ug € Bp71+p(]R2) be a solenoidal vector field. Let €y be
a bounded C' domain of R? and py = 1 + oxq, for some small enough constant o (compared

142
to ||u0||B_1+%). Then (1.1) has a unique global solution (p,u) with u € C([O,oo);Bp,1+p(R2)) N

p,1 )
142
LY(RT; B, " (R?)) and
p(t) =1+oxq, for Q= X,(t,Q),
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where X, (t,y) is determined by

(1.6) Xu(t,y) =y + / u(r, X (7, ))dr.

Besides, the measure of ; and the C' regularity of 0 are preserved for all time.

Remark 1.2. o We have considered here the physical case of a density given by a discontin-
uwous function (immiscible fluids) and of a viscous coefficient depending on the density of
the flurd. In particular, our Corollary 1.1 removes the smallness condition for the initial
velocity field in Corollary 1 of [10]. In fact, for Qg being a bounded C? domain of R? and
ug € L2(Q) N Bi72(Q) (which is above the critical reqularity of (1.1)), Danchin and Mucha
[11] can prove a similar global wellposedness result for (1.1) with constant viscosity.

d
e Given initial data ag,ug in the scaling invariant spaces: ag € L”(Rd) and ug € Bprp (Rd)
for1 <p<d,1<r<oo, and which satisfies some nonlinear smallness condition, we [18]
proved that (1.2) with p(a) = p > 0 has a global weak solution. And the uniqueness of such
solution is in progress.

Scheme of the proof and organization of the paper. The strategy to the proof of both
Theorem 1.1 and Theorem 1.3 is to seek a solution of (1.2) with the form v = v + w with (w,p)
solving the classical Navier-Stokes system

ow +w - Vw — pAw + Vp = 0, (t,x) € RT x R,
(1.7) divw = 0,
w‘t:() = Uo,

and (a,v,Il;) solving

oa+ (v+w)-Va=0, (t,r) € RT x R?

ov+v-Vo+w-Vuo+v:-Vw— (1 +a)div(i(a)M(v)) + (1 + a)VIL;
(1.8) = (14 a)div](fi(a) — p)M(w)] + paAw — aVp et F,

dive =0,

(CL, U) |t:0 = (a07 0)7

where and in what follows, we shall always denote z(0) by .

In Section 2, we shall first collect some basic facts on Littlewood-Paley theory, and then present
the estimates to the free transport equation and the pressure function determined by (1.8); in Sec-
2
tion 3, we solve (1.7) for w with ug € Bp,iﬂ’ (R?) for 1 < p < 4. We should mention that because
of the restriction to the index p in (1, 4), the proof here is much simpler than that in [14, 15]. Then
we prove Theorem 1.1 in Section 4. Finally along the same lines to the proof of Theorem 1.1, we

present the proof of Theorem 1.3 in the last section.

Let us complete this introduction by the notations we shall use in this context.

Notation. Let A,B be two operators, we denote [A; B] = AB — BA, the commutator between A
and B. For a < b, we mean that there is a uniform constant C', which may be different on different
lines, such that a < Cb. We shall denote by (a | b) the L? inner product of a and b. (d;);ez will
be a generic element of ¢}(Z) so that >_jezdj = 1. For X a Banach space and I an interval of
R, we denote by C(I; X) the set of continuous functions on I with values in X, and by L%(I; X)
stands for the set of measurable functions on I with values in X, such that ¢t — || f(¢)||x belongs
to LY(I).
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2. PRELIMINARY ESTIMATES

2.1. Some Basic Facts on Littlewood-Paley Theory. For the convenience of the readers, we
recall the following basic facts on Littlewood-Paley theory from [6]: for a € S'(R?), we set

(2.1) Nja & F 2 e)a), S Y F (2T eNa),

where Fa and @ denote the Fourier transform of the distribution a, ¢(7) and x(7) are smooth
functions such that

3 8 .
Suppng{TER/1§|T|§§} and VT>O,Z<,0(2 Ir) =1,
JEZ
4 :
Supp x C {7’ eR/ |71 < §} and  x(7)+ Zcp(Q_]T) =1.
Jj=0
We have the formal decomposition
u= ZAj u, Yuc S (R?)/PR?,
JEZL
where P[R?] is the set of polynomials (see [25]). Moreover, the Littlewood-Paley decomposition
satisfies the property of almost orthogonality:
(2.2) AjAu=0 if |j—k|>2 and Aj(Sp_1ulpv) =0 if |j— k| >5.
Definition 2.1. [Definition 2.15 of [6]] Let (p,r) € [1,+00]?, s € R. The homogeneous Besov

space Bj,.(R?) consists of those distributions u € Sj(R?), which means that u € S'(R?) and
limj_,_ ||Sjul|z= = 0 (see Definition 1.26 of [6]), such that

def

lulls;, " (2" 18gullzr), < oo

"(Z)
In order to obtain a better description of the regularizing effect to the transport-diffusion equa-

tion, we will use Chemin-Lerner type spaces E%(B;?T(RQ)) (see [6] for instance).

Definition 2.2. Let (r,\,p) € [1, +c0]® and T € (0, +o0]. We define E%(B;T(RQ)) as the com-
pletion of C([0,T]; S(R?)) by the norm

1

lzycag 2 (S0 ( [ el a) ) <o

qEZ
with the usual change if r = co. For short, we just denote this space by EE},(B;’,,).

We also need the following form of functional framework, which is a sort of generalization to the
weighted Chemin-Lerner type norm defined [23, 24]:

Definition 2.3. Let f(t) € L} (R1), f(t) >0 and X be a Banach space. We define

loc
T
def
g 00 [ O] .

Lemma 2.1. Let B be a ball of R?, and C be a ring of R?; let 1 < py < p1 < co. Then there hold:
If the support of & is included in 2%B, then

1_1
18%| e < 280 2G50 g e
If the support of a is included in 2*C, then

llal|rr < 27kN sup |0Sal|Ler -
la|l=N
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Lemma 2.2. Let 6 be a smooth function supported in an annulus C of R?. There exists a constant
C such that for any C%' measure-preserving global diffeomorphism 1) over R? with inverse ¢, any
tempered distribution u with @ supported in AC, any p € [1,00] and any (X, 1) € (0,00)%, we have

_ . A
10~ D) (wo ¢)||r < Cllull e min(3 [V L, ;HVQM\LM)-

Lemma 2.3. If the support of 4 is included in AC, then there exists a positive constant c, such
that

e ullr S e N|ulls  for any p € [1,00].

Lemma 2.4. Let p;1 > py > 1, and s; < p%, s9 < p% with s1 +s9 > 0. Let a € B;i,l(Rz),
s2 2 81+82_% 2
be B>, (R*). Thenabe B, , (R*) and

bl yora— & Nl Wl
Pl

Proposition 2.1. Let p € (1,00), € [1,00] and s € R. Let uy € B;J(RQ) be a divergence-free
field and g € LY(B3,.). Then the following system

Oyu — vAu + VII = g, (t,z) € RT x R?,
divu = 0,
uli=0 = uo,

has a unique solution (u, VII) so that

lellz g + el g2y + 19Ty ey < Cllluollsg, +llallzy 5y )
2.2. Estimates of the transport equation. The goal of this section is to investigate the trans-
port equation in (1.8)
(2.3) Oa+ (v+w)-Va =0, ali=o = ag.
More precisely, we shall prove the following proposition:

1+2

Proposition 2.2. Let 1 < ¢ < p with %—% < % Letv,w € L'((0,T), Bp71p(]R2)) be divergence free
2
vector fields, and ay € B;l(RQ). We denote f(t) def |lw(®)|| 1.2 and ay d:efaexp{—)\ fg f(r)dr}.
) B P

p,1

2
Then (2.3) has a unique solution a € C([0,T]; qu’l(]R2)) so that

A
(2.4) ol z +50aal  a <laoll g +Clol gl s
L?o(Bq,l) Lt,f(Bq,l) Bq,l Lt(Bp,l ) Ltoo(Bq,l)
for any t € (0,T] and A large enough, and where ||a, || .2 sgiven by Definition 2.3.
Ly ;(Bg1)

Proof. As both the existence and uniqueness of solution to (2.3) basically follows from (2.4). For
simplicity, we just present the a priori estimate (2.4) for smooth enough solutions of (2.3). Indeed
thanks to (2.3), we have

dray + Af(t)ar + (v+w) - Vay = 0.
Applying A; to the above equation and taking the L? inner product of the resulting equation with
|Ajax|?72Ajay (in the case when ¢ € (1,2), we need a small modification to make this argument
rigorous, which we omit here), we obtain

1d _
(2.5) gg\lﬁjax(t)\\%q +AFO1A7a0 )70 + (A5((v +w) - Vay) | [Ajan]T72Aja) = 0.
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Applying Bony’s decomposition to (v 4+ w) - Vay gives rise to
(v+w) - Vax = Tiyrw)Var + Tya, (v +w) + R((v + w), Vay).
One gets by using a standard commutator argument that
(Aj(T(Hw)Va)\) ’ ]AjaA|q72Aja)\)

— Z {([Aj;sz_l(v+w)]Aj/Va,\ ‘ |Aja,\|q_2Aja>\)
l7—3"1<5

+ ((Sy-1(v +w) = Sj-1(v +w))A;A;Vay | |Aja>\|q_2Aja>\)}
+ (Sj_l(?} + w)VAja,\ | ]Aja,\|q*2Aja)\),
as divv = divw = 0, the last term equals 0, from which and (2.5), we infer
t
1Ajax(®)] La +)\/ fFONAjax(7) || Ladr
0
< 1agaollze + {30 (1145 Sy v+ w) Ay Vel o

i—4'I<5
+|(Sj—1(v +w) = Sj—1(v +w))AjAyVar| L1 1))

(2.6)

+ 1T9a, (v + W)l L1 (1) + [ R((v + w), va}\)HL}(LQ)}'

We first get by applying the classical estimate on commutator (see [6] for instance) and Definition
2.3 that

> A Si—1 (v + w)] Ay Vasl| gy zay

li—4'1<5

t
< D> (||V5j'—1UHLg(Loo)||Aj'aAHLoo(Lq)+/0 IVSjr—1w(T)|| e[| Ajrax(r) || LadT)

li—4'1<5
S Y (a2 qllvH g flaall ) / [w ()] 1+2HA rax ()| Ladr)
=<5 BT B

Sd2 (IlvH 3, laxll

p,1 t

2 Alaall 2
(Bg1) Ly s(Bga)

Applying Lemma 2.1 leads to
Yo ISya(v 4+ w) = Sjoi (v +w)AjA;Var| Ly gay
l7—4"1<5
S Y (ISi1Vo = 81Vl peey 1A ax ]| oo 2oy

li—3'1<5

t
+/ 1081 Vw = Sj1Vw)(7)lzee | Ajrax(r)| edr)

<d2 i v a 2+ / w(T Aja dr
Bl et ot 4 30 [l el

P
pat) )

<d2 J (HUH 142 ||CL,\H~ 2 + [|axll . 2 )

t plp) t q,1 t,f( q,l)



GLOBAL SOLUTIONS OF 2—D INHOMOGENEOUS NS EQUATIONS

On the other hand, as ¢ < p, let r be determined by % = % — 119. Then we get that

1T9a, (v +w)ll L2 ey S Z (”S"—IVCLAHL?(LT)HAJ”’UHLg(LP)
l7—3'1<5

t
+ [ 1851V ar(m) e 18w (r)1sdr),
0

< one has

1
2

*s\»—‘

now as -
q

2
1S -1Vax| ey < Z 24(1+p)”Aga,\HLtoo(Lq)

0<j'—2

(1422 (1422
S > A2 e s 20T ey
Lg(Bg1) L (Bg4)

Applying Lemma 2.1 and Definition 2.3 once again gives, if % — % < %

> [ 18 aVasler 18 w(ldr

li=3'I<5
$270 3 5 D [l g

lj—7'|<BL<j'—2

DS d2 e s
£<5+3 Li s (Bga)

Sdiz7ila s
L q

In the case when + — 1 = 1
g p 2

t

2
S2S [ Isiavale 1y wmlsds
JEZL

|. ,/| 5 0
(1+2
<> 3 20 [ a@iamOlulel . pdr
JET 0<j+3 By
S 2 ddaill oz Sl e
0<j+3 q 1) Lz,f(Bq,1)

As a consequence, we obtain

1790, (v + W)l L3 (La) < d52 4 a(|lv]l 2 HCLAH~ 2+ [lax| 2 ).
> ) L) M s L (B
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For the last term in (2.6), we deduce from Lemma 2.1 that

2j -
IR+ w, Va)llprzay S27 Y (1850 i oy 1A Vax ] ge 2oy
Jj'>2j—No

t ~
+ / ||Aj/w(7')||Lp||Aj/Va,\(T)||qu7')
0

2J 4/ 2+2
<20 3 (@277l s el
Jj'2j—No Li(Bp.”) L (Bg1)

t
2 ~
I3 [ o313 () o)
p,1

<9% dy2 7 G >(||v\| g ol Hlaall )
J/g:No Li(B, " LE(Bgy L ;(Bgy)
<d;277 E(Ilvll 2 HQAH 2+ HGAH 2 ).
~Y ] 7
sl et L, (B1)

Substituting the above estimates into (2.6) and taking summation for j € Z, we arrive at

laxll. 2+ Allaa] 2 <laofl 2 + C(HUH 2 llaall 2+ llaal 2 ).
LBl L} (Bl Bl LB,y ") LBl 11 ,(B1)
Taking A > 2C' in the above inequality, we conclude the proof of (2.4). ]

2.3. Estimates of the pressure function. In this subsection, we aim at providing the a priori
estimate for VII; determined by (1.8). We first get by taking div to the momentum equation of
(1.8) that

—All; =div(aVII}) +div F — div(v - Vo +w - Vo + v - V)

(27) +div[(1 + a) div ((i(a) — )M (v))] + pdiv(adv),

where F' is given by (1.8).

= 2 142 —1+2
Proposition 2.3. Let 1 < ¢ < p < 4. Let a € LF(B,,), w,v € L} 7(B,1") N LOO(B]D1 ?) and

2

142
Vp e L%(Bp,lJr"). For A1, Ay > 0, we denote

A1) )] . +f|er<>|| 2y fo(t) Ew(o)?

B

ST

1

(2.8)
def
H;\zHleXp )\1/ fi(r dT—)\g/ fa(r dT

42
and similar notations for ax and vy. Then (2.7) has a unique solution VII; € L%“(BPJ ) so that
for any € > 0, there holds

C
IVIS) | < {ellosll | voz + Dol ooz losll | 1as
LH(B,, ) L=Cllall,__ 2 LiBL7) =B, 7y LB
t q;
(2.9) + lloxl L —1+2 +EHU)\” L —14+2
t,f1\psl t,f2( p,1 )

Fluretlal s Nl 2 ol el g}

2
L (Bg 1) Li 5, (Bg1) L (Bh) Li(B,,")
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provided that C’HaH > < 3, where |jvy]| 142 Is given by Definition 2.3 and the positive

L; (B ) Ltl,f(Bpal
constant ¢ depends on ||u | Loe(=1,1)-

The proof of this proposition will mainly be based on the following lemmas:

Lemma 2.5. Under the assumptions of Proposition 2.3, one has for any € > 0
[v-Vw+w- Vo L om1tE S elv]] vz T+l

B P 1 P 1

t\p,1 t\"p,1 t,f1\ p,1 t,fo\"p,1

Proof. As dive = divw = 0, we have

|v-Vw+w- Vo 42 S < |lowl]| 2 .
Li(B,1 ") Li(By,)

While we get by applying Bony’s decomposition that
vw = Tyw + Tyv + R(v, w).
Notice that applying Lemma 2.1 leads to

1A (Tvw)| L1 Ly / > ISk-1vllz< | Agw| v dT
|k—3]<5

t
S [ a2t Dol g X2 1) o dr

pl 1<j
a2 [ ol el g
Bp,1

and

14 (B (v, w)llpy ey S / Z 1Akl Lol Agw]| o dr

0 k>j—
t
i2 _k4
$20 [0 5 a2 el g lw)] g dr
0 k>i—No By By

t
2
S 427 [ o)l iz llw(n)] e dr
0 Bp’1 pr1
It follows from the same line that

NGRS s / Z ISkl l Aol dr < Y / il 18550l
P

—j|<5 |k: jl<5
Z / Fhwl? 5 [ Agvledr)* (3 / z’fmkuumm)
p

|k—j|<5 By |[k—j|<5

<d2 / W@ 5 I iz dr e / ol 1.3 dr).
0 prl
The above estimates together with Definition 2.3 rove the lemma. O

g p

Lemma 2.6. Let F' be determined by (1.8). Then under the assumptions of Proposition 2.3, one
has

17l vz < (Cpt €1+ all
LB, , P Lge

2 ))lla] 2
p,1 t qq, L (B(;I,I)

for some positive constant € depending on Hﬁ/HLoo(_l,l).
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Proof. Note that ¢ < p and l + l > %, we deduce by the product laws in Besov space that

lnaAw — aVpl|| 142 5#/ [lall
LY(B

p,1

g(IIwH 1wz + - IIVpH e
B P
q p,1 pl

Sellall 2

Ltl,fl (qu,l)

Along the same line, we get that

||(1+a)diV[(ﬂ(a)—M)M(w)]HBfH% S+ la H ) (Aa) = )M(w)HBg
p,1 q,1 p,1
S A+ llall 2 )l[a(a) = pll 2 M) 2
qu,l By, By,
<€A+ flall 2 )[all 2 fwl 2,
Bq,l Bq,l BPJ

for some positive constant € depending on |[iZ’|| oo (—1,1) as long as ||a =~ < 1. This gives rise to
¢

1+ a)divi(ia) — M@ | - avz <€+ lall 2 ) [ llall 2 llwll o.zdr
( p,1 ) (quyl) 0 qu,1 p,lp
CL+flal._ 2 )lall 2
Lge qu,1) tl,fl (qu1)
This finishes the proof of Lemma 2.6. O

Now let us turn to the proof of Proposition 2.3.

Proof of Proposition 2.3. As both the existence and uniqueness parts of Proposition 2.3 basi-
cally follows from the uniform estimate (2.9) for appropriate approximate solutions of (2.7). For
simplicity, we just prove (2.9) for smooth enough solutions of (2.7). Indeed thanks to (2.7), we
have

VII; = V(-A) ™! (div(aVH;\) + div Fy — div(v - Voy + vy - Vw + w - Voy)
+div ((1+ a) div(((a) — p)M(vy))) + udiv(aAW),
from which, we deduce that

VIS sz SC{IIGVH;H vt TR, g Fllo- Vsl oz

t p,1 t p,1 t p,1 t p,1 )
+ |vs - Vw 4+ w - Vox p2 4 pllaAwvs 142
(2.10) lvx AHL}(B,,,T’Z’) | N ) p71+§
+ 11+ @) divi(ia) — M@ | s |-
Lt(Bp,l )

However as ¢ < p and % + % > %, applying standard product laws in Besov space leads to

v - Vg ez S _ v 2
o 9ol ovog, S I
oVl g Sl VIR

t p,1 t q,1 t p,1

pllados|l iy MHGIL SN 2,
Mo, YT ey N st
1+ a)div((z(a) — p)M(v < &1+ |a 2 )la v ,
[(1+ a)div((z(a) — p)M( A))H Lie p1+2) 1+ H oo <B;‘,1))H HZ w5, )|| )\HL (B;t’%)

for some positive constant € depending on ||fi[|zeo(—1,1) as long as |lal|pe < 1. This along with

Lemmas 2.5 to 2.6 implies Proposition 2.3 provided that C|al| _ <i [

2
L (Bgy)



GLOBAL SOLUTIONS OF 2—D INHOMOGENEOUS NS EQUATIONS 13

3. THE GLOBAL INFINITE ENERGY SOLUTIONS TO CLASSICAL 2-D NAVIER-STOKES SYSTEM
In this section, we shall solve the global wellposedness of the classical Navier-Stokes system (1.7)

142
with initial data ug € B,,; ” (R?) for 1 < p < 4, which is not of finite energy. In general, the global
wellposedness to 2-D classical Navier-Stokes system with initial data in the scaling invariant Besov

spaces and of infinite energy was solved in [14, 15]. However considering the special structure of

142
B,,7 (R?) for 1 < p < 4, we shall provide a much simpler proof than that in [14, 15], furthermore,

more detailed information to this solution will be given here. More precisely, we shall split the

solution w to (1.7) as wr, + w with wy, def eH*Aqq. Then it follows from (1.7) and Lemma 2.3 that

(3.1) el vz ] e < Clluoll e,
too p,1 Lt p,1 Bp,l

and w solves

Ow+w-Vw+w-Vwr +wy, - Vo + wy, - Vwp — pAw + Vp =0,
(3.2) div = 0,
1D|t:0:0.

The main result of this section is as follows:
142
Proposition 3.1. Given solenoidal vector filed up € B, ; * (R?) for p € (1,4), (1.7) has a unique
solution w of the form: wr,+w, withw € C([0, 00); BS’I(R2))HEO‘°(R+; Bg?l(RQ))ﬂLl(RJF; B%’I(R2)),
and there holds

142
1 1+P
t p,1

w||_ a2 Fullw 2 + ||V
( ol oieg, ool g+ 190
3.3) C
2
<Cluoll 13+ ol _vp)esp ol .5}

p,1 p,1 p,1

We start the proof of Proposition 3.1 by the following two technical lemmas.
Foorp 15 1 plth — = Too(RO 1/ 132
Lemma 3.1. Let p € [1,00], wy, € L®(B,; ") N Li(B,;") and w € Ly°(By;) N Ly (B3;) be
divergence free vector fields, then for any € > 0, one has

2

- )Hw”Bgl dr.

t
_ _ _ 1
|@- Vo, +ws - Volyegy S @l + /O (wzll veg + ¢l
p,1 1

SIS

Proof. The proof of this lemma basically follows from that of Lemma 2.5. Note that divw =
divwy, = 0, we have

|- Vwr +wp - Volgg ) S lowelpys; ),
and we get by applying Bony’s decomposition
wwr, = Ty, w + Tpwr, + R(w,wr,).
Applying Lemma 2.1 yields

t
||Aj(TwwL)HLt1(L2)§/O > 1Sk—1| 2l Apwp || oo dr
k—j|<5

t
< dja / lwzll 1.z @lpe dr,
0 B I 2,1
p,1
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and

b, N
18R w0 ggzn) S [ 2 g B

k> —
= —k(1

< [0 Dl g ol dr
k>j—No B,."

<2 / hwell .z ol sy d.
0 B, ’
Along the same line, one has

N / Z 1Sk 1wzl | Al p2dr S S0 / sl 5 v de
P

—j|<5 |k <5

1
Z JE sl I8l ar)* (3 [ 218l ar)’
|[k—j|<5 By |[k—j|<5

t t
4292 [ Il 5 1lag, i+ [ Il ar).
€.Jo BY, ’ 0 Y

By summing up the above estimates, we finish the proof of Lemma 3.1. ([l

Lemma 3.2. Let p € (1,4) and wy, be given at the beginning of this section, one has

1
(3.4) lwr - Vsl sy < ~lluoll? 2
' H B,y 7

Proof. Indeed due to divwy, = 0, one has
Jwg, - vaHL}(Bgl) S llwp ® wL”L%(B%’l)a
and thanks to Bony’s decomposition, we get
wr, @ w, = 2Ty, wi, + R(wr,wr).

We first deal with (3.4) for the case when 2 < p < 4. In this case, we have p < ;%5 < o0, so that
applying Lemma 2.1 gives

ISkl <SS 2267 | Al oo
Z<k 2
2k 2k
A2 w2 Sdr27 |uoll u.a,
too Bp,l P p,1 P

where we used (3.1) in the last step. Then applying Lemma 2.1 once again leads to

1A;(Tw, wr)llLyzey S kZ HSlcfleHL?o(L%)HAkwL”L%(LP)
—71<5

(3.5) \1 Jjl<

< 24.9°7 2

~ ,de]2 HUOH ;i+%‘
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Similarly as 2 < p < 4, we get by applying Lemma 2.1 that

2i(2_1 ~
1A (R(wr, wi))ll ey S27077 7 | Apwr e o | Akwill 1o

k>j*N0
1 4.
< =26 Z di2” ”llUOH v}
H k>j—
S Ld2 ol .,
1 .

This together with (3.5) proves (3.4) for p € [2,4).
On the other hand, when p € (1,2), let p’ be determined by 2 = =1— =, we deduce from Lemma

2.1 that

2_
[Sk—1well peo 1y S Z 2%t 1)HAWL”L,‘?"(U”)

(<k—2
2 2
<2 GV wgll e S k26T fuoll s,
oo p B p
t p,1 p,1
and
1A (Tw,wi)ll sy S22 [Sk—1wL | oo 1oy | AkwLll L2 (1r)
k—j]<5
(3.6) L
< =di27 |uel® -
1% o1 P

Along the same line, one has

18 (R(wr, wp)) | pr 2y S27 Z HEkwL”L%)O(LP’)HAkwLHL}(LP)

k:>j
Z dr2” 2k1|u0||2 1+2

k>j7—No
1 .
g —d;277|ug 2 .
L2l g
This together with (3.6) ensures (3.4) for p € (1,2). O

With the above two technical lemmas, we now present the proof of Proposition 3.1.

Proof of Proposition 3.1. As the existence part of Proposition 3.1 essentially follows from (3.3).
Again for simplicity, we just present the detailed proof to (3.3) for smooth enough solutions of
(1.7). We first get by taking the L? inner product of (3.1) with w that

S o7z + plVao)l7z <|@)7:lVwrl e + [1o]| g2 ]lw - Vwr |-
Applying Gronwall’s inequality and then using (3.1), Lemma 3.2, we get that

10| oo 12y <llwr - Vwrl Ly 2y exp{[Vwr |y poo) }

(3.7) C 9 C C
SE‘|UOHB;1+% eXp{EHUOHBfu%} < CHUOHBfH% eXp{ﬁ”uOHBfH% }7

p,1 p,1 p,1



16 J. HUANG, M. PAICU, AND P. ZHANG

and
IV 1 < 1013y IV 0 gy + 10l ey o - e
< Sl 3 e ol 113 )
>~ —||Uo _142 €XPy — U0 142
(3.8) pl g p gt

C
<C 2 {— }
< Cl|ug| ip2 exp |luol| 142

p,1 p,1

On the other hand, we notice that

t t
i Vially s,y <C [ o~ Vllsg, dr < C [ ol 41Vl 1y dr

t
<0 [ alaIValelal 3y, o
So that it follows from (3.2), Proposition 2.1 and Lemma 3.1 that
905 s, + Bl gcez,) + 19l
< O{llw- Vol py ) + 1 Vur +wg - Vil pg ) + o - Vol e,

< C{ el ng,) + 1l e 0 I V123 12

t C
+/0 (IIwLH 1+2 +4\le|2 )IIIDHBgJ dT+;||UoH2_1+%}~

p 1 p,1

Taking € = 45 in the above inequality and using (3.1), (3.8), we infer

1@l 7e0 g ) + #ll@llzrcmz ) + VPN LB,

t
1
< C’exp{C’/ (HwLH 1+% + 7HwLH2
0

2 )d’r}
p
(3.9) c A
(Sl g exp{ Cluoll gy + > luol? . )
K B, B, .1
< Clluoll _uug 1+ loll_vp)exn{ ol 5}
pl Bp,l H p,1

Therefore, summing up (3.1) and (3.9) results in

l[wll . i +u||w|| 2 +1vel |
L (B, 1B,

_1+2
t ) p,1
(Y — +u||wLH ey
Le(B,) ) Li(B,,")
F (ol er ol s 190 )
?0 Bpl ) t(Bp,lp) tl( p,1
c 2
<Cluoll 131+ luoll_oz)espf luol® .5 }.
pl p,l H p,1

which gives rise to (3.3). The uniqueness part of Proposition 3.1 has been proved in [14, 15]. This
completes the proof of the proposition.
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4. THE PROOF OF THEOREM 1.1

2
The goal of this section is to present the proof of Theorem 1.1. In fact, given ag € B;}l(R2),
142
ug € B, 1+” (R?) with |jag|| 2 being sufficiently small and p, ¢ satisfying the conditions listed in
k) Bq
q,1
Theorem 1.1, it follows by a similar argument as that in [2] that there exists a positive time T' so
that (1.2) has a unique solution (a,u, VII) with
P w2 —1+3 o 1 1+2 2
wy  CECOTEBLE),  weC(0TLB, ) NLI(O.1): B, B)
' —142
VITe LY((0,T); B,, " (R?)).

Moreover, if % + % > 1, this solution is unique. We denote T™ to be the largest possible time so
that there holds (4.1). Hence the proof of Theorem 1.1 is reduced to show that 7™ = co under the
assumption of (1.4). Toward this, we split the velocity u as w + v, with (w,p), (a,v,1I;) solving
(1.7) and (1.8) respectively. Then thanks to Proposition 3.1, it remains to solve (1.8) globally.

4.1. The estimate of v. First we reformulate the v equation of (1.8) to be

0w — pAv =F — (1 + a)VIL + paAv + (1 + a) div](p(a) — p)M(v)]

4.2
(42) —(v-Vo+v-Vw+w- Vo).

Let fi(t), fa(t), ax, vy, VII; be given by (2.8), and ay, d:efaexp{—)\l fot fl(T)dT}. Then it follows
from (4.2) tha
Oz + (Afi(t) + Ao fa(t))vx — pAvy = Fx — (1 4+ a) VI + palwvy
+ (14 a)div[(z(a) — p)M(vy)] = (v - Vg + vy - Vo + w - Voy).
Applying A; to the above equation and taking the L? inner product of the resulting equation with

A;vs[P72Av5 (in the case when p € (1,2), we need a small modification to make this argument
VADN VADN b ) g
rigorous, which we omit here), we obtain

;thAmH’ip + (A1) + A fo () 1Aos T — m(AAGUs | |1 Ajvs P72 Avy)
(4.3) S{HA]'FS\HLP +12;((1 4 a)VII) || zv + [|A5((1 + a) div[(fi(a) — )M (vs)])]l e

A (@) o + 1800 - Vg +vs - V-t w - Toy) s 1 A0 25"
While applying Lemma A.5 of [7] that
—(AAjuy [ [Ajus P24 vx) = @2 | Aoy,
for some positive constant ¢, from which and (4.3), we deduce that
t
1Ajvsll Lo (Lry + /O A1) + X2 fo ()| AjvsllLe d' + cull Ajusll Ly oy

{18 Fxll o) + 185 (0 + VIR Ly oy + 1851+ a) div[(Ga(a) — i) M) pcer)

A5 (@A0) g (1o + 180 - Vg + v3 - Voo + w0 Yoyl oo }-
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This gives rise to

”UZ\H~ —142 +)‘1HU5\|| —142 +)‘2HUS\” —142 +ENH7);\” 142
too Bp,l P %,fl p,1 P %,fz p,1 P Ltl(Bp,lp)

gy <O{IBI, g HIOQVISL g ol e ol

t t\Bp1 t p,1 ”) # ( p,1 )

t(uretlal s Nl s llosll | s s Verw Vel
Lge Lg°

2 )
(qu,l) t (Bq,l) Lt (Bp,l ) Ltl(Bp,l )}

where the norm ||vs| o142 is given by Definition 2.3 and € is a positive constant depending

" t,f(Bp,l
on [[7] (o102 long as fla]z= < 1.
Let
= def *
(4.5) T=sup{t<T" afl. 2 <c }

L (Bh)
for some ¢ sufficiently small. Then (2.9) ensures that for ¢t < T

|0 +a) ViG]

Lt (Bp,l p)

§€{6 vy 2 +v||l. 2 [us 2
sl oot 0 o sl
1
+||U§\|| 1 —1+% +E”U5\|| . —1+%
t,f1 p,1 t,fo p,1
+ptllal e (sl s el e sl )}
Lp(B1)) L}, (B LBl Lk,

from which, Lemma 2.5, we infer from (4.4) that

sl ooty F ARl g #dallsll g el s
t p,1 t,f1 p,1 t,fo p,1 t p,1
1
S¢{6HU;H 2+l e sl 2+ sl Sipz sl C142
(4.6) L}(B;j”) L?O(Bp;rp) Ltl(B;jp) 1 p,iﬂ’) € L} 4, ( p1+”)
+ A+ p+lall. 2 )(llaxll 2 +lall_ 2 ol z)}
LeBY,) L, (BY) LeBI) " LkB,L)

for t < T and some positive constant ¢ depending on 17" M| oo (—1,1)-

4.2. The proof of Theorem 1.1. We get by taking A = A; in Proposition 2.2 that

A1
(4.7) laxdl. 2+ —llax 2 <llaol| 2 +C|ov] 2 flaxl. 2 .
Vrsly 20, sl Bl IO R XN
Note that
laxll 2 < lay, || 2
%yh Btfl) ' Ll%yh(qul)7
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By summing up (4.6) and (4.7) % (14-u) and choosing €, A1, Ag satisfying €e = S, \; = 8€, Ay = 2&

cu ’
we obtain
Ao 1+p
Ut mlland. 2 +llosl ez + Sl o sl s
Ly(BY,) LeB,, ) Ll (BI) LB
Ao cl
+ 20l ez sl
(4.8) tf2( p,1 t( p,1 )
< @+ plaol z + {0+ mll ol o ol g sl g
ql t 1 t q,1 t p,1 t\Bp1

Ftptlal s el s sl s
Bewl) Il LB
for + < T and some positive constant C depending on ||u | zoo(=1,1)-

Now let co be a small enough positive constant, which will be determined later on. We define T
by
def
49 vZswpli<r il _ a4l oz bulel gz <en )
L?O(Bq,l) L?O(Bp,l ) t( p,1 )
(4.9) together with (4.5) implies that T < T, if we take cy < 01 We shall prove that T = co under
the assumption of (1.4). Otherwise, taking ¢y < mln(mc , 20 ), we deduce form (4.8) that
T+p

losll. vz == llax ]
(B

cu
2+ —|lvsl| 2 (1+M)Haoll 2,
B P 2 Iemiy) 40 N ns)y T

t p,1 ql

for t < Y. This together with (2.8) gives rise to

1+p cu
ol g =g lal s+ Elel e
LtOO(B ) Bq,l) Lt(Bp,l )
(4.10) . 1 1
< (14 ol ; exp{Co / @l 1oz +=N9PON iz + = w()]? 5 ) dr},
Bl 0 B, 1Y B, 2 BY,
fort < 7.
Combining (4.10) with (3.3), we reach
14w Clt
ol s == Llall s+ Pl
£ (Bpa Lge(Bgy) Li(B,1")
Cs
< (L4 p)llaoll 2 exp{[—Huoll 2 (14 [luoll —1y2)
ql ,LL pl Bp,l

C'3 2 2 Cs 2 }
+ FHUOHB,H%Q + HUOHB,H%)] eXP(?HUOH ,H%)

p,1 p,1 p,1

C
(1+u)||ao|! 2 exp 04(1+H1m||2 )exp(%llwl!2_1+z)
W B | P

ql pl p,1
< (4 wlaol 5 exp{ OO+ ) esp(Gllwol? | 5)]
B} K B,, *

for t < T and some positive constants C which depends on ||i7'|| Leo(—1,1)- If we take C large enough
and ¢y sufficiently small in (1.4), which depend on [|fi'|| (1,1, there holds

C2
A+l 2 vl 2 +plv || L
L?O(Bq,l 1?0 Bpl p,1 )
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for ¢ <Y, which contradicts with (4.9). Whence we conclude that T = T = co. This completes
the proof of Theorem 1.1 |

5. THE PROOF OF THEOREM 1.3

The proof of Theorem 1.3 basically follows the same line of the proof to Theorem 1.1. More
precisely,

5.1. Estimates of the transport equation. As we shall not use Lagrange approach in [10], we
need first to investigate the following transport equation

(5.1) Of +u-Vf=0, fli=o = fo

with initial data fy in multiplier space of B 1(R2)

Lemma 5.1. Let f € By, (R?Y) with —1 < s <1, and u € L*((0,T); Lip(R?)). Let X, be the flow
map determined by (1.6). Then f o X, € L((0,T); B;vl(Rd)), and there holds

t
(5.2) 15 0 Xallzegs < ANz, exp{C’/O |Vu(r) |z~ dr} for 1<T.

Proof. Let fg Ag f, we deduce from Lemma 2.2 that

t
1800 X)lgequn < O™ 5y, min(2~,29) exp{C [ [Vu(r)=ar .
from which and —1 < s < 1, we infer for any j € Z

145(f o Xu)llzgory <O+ D A (feo Xu) L)

l<j £>j5

(5-3) <CIfllsz, (O de2~2"7 + > " dg27%27 ") exp / [Vu(r)]| oo dT}

l<j >3
SCd]27]S||f||B;’1 eXp{C/ ”VU(T)”LOO dT},
0
this together with Definition 2.2 implies (5.2), and we complete the proof of the lemma. O

d
Remark 5.1. The case when % >1,s€e (-1, %), and uw € LY((0,T); B % (R%)), we have a similar

version of Lemma 5.1. For simplicity, we just present the case when g = 1. Instead of (5.2), we
shall prove

(5.4) 1f © Xullzgo s ) = CllAllsy, (1 llull Ly a2, ))eXP / Vu(7)l| Lo dT}
We first deduce from (5.3) that
t
(55) I o Xl < €U sy, exo{C [ I19u()1 ar}.
While we get by taking V to (1.6) that

t
Y, Xu(t,y) = Id + / Va7, Xo(r,9))V,y Xult, y) dr.
0
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from which, and the standard product laws in Besov spaces, we infer

t
19X, = Tl gy ) <C [ (IVutr Xu(r g (1 19, X))
+IVu(r, )= Vy Xy — Idl| gy ) dr.
Applying Gronwall’s inequality and (5.5) gives

t
(5.6) VX = Tl 5y ) < Clellgesgy exo{C [ V(o)1 ar}.
On the other hand, notice that
Vy(foXy) =VfoX,(VyXy—1Id)+VfolX,,
from which and Bony’s decomposition, we infer
an Ml = I Xl
<C||Vfo Xu||z§o(32’1)(1 + I Vy Xy — Id|| oo o0y + | Vy Xy — Id||z?o(3;m)).

While applying (5.2) yields

t
V5 0 Xull o, < Cllflly, eso{C [ 1901 e},
This together with (5.6) and (5.7) enures (5.4).

The main result of this subsection is as follows:

1+2
Proposition 5.1. Let 2 <p <4, -1 <s < % and u € Ll((O,T),BpJP(RQ)) be a divergence free

vector fields. Then given fy € M(B;l(RQ)), (5.1) has a unique solution f € LOO((O,T);M(B;J(R%)),
moreover, there holds

t
(5.8) I < Cllollaga exo{C [ IVl i}
for any t € (0,T.

Proof. Both the existence and uniqueness part of Proposition 5.1 follows from (5.8). Indeed let X,
be the flow map determined by (1.6). Then we infer from (5.1) that f(t,z) = fo(X, '(t,2)), from
which, Definition 1.1 and Lemma 5.1, we infer

Hf(t)HM(B;,l): sup  [[vf(t)|ss

lss =1
D,

= sup (%o Xu(t)fo) o Xi ' (Bl
Il5s , =1

t
<C  sup meu(t)fonB;lexp{c/o IVu(r) s dr |

lllzs =1
ps

applying Lemma 5.1 once again leads to

t
LF@Ollass,y <Cllfollmss ) exp{C /0 IVa(m)liz=}  sup oo Xu®)ll;,

6lms =1

t
<Clfallasy exo{C [ IVu(li~} s [l

Il BS .=

t
<Cllollaceyesp{C [ IVur)lie} forany ¢<1T.
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This completes the proof of Proposition 5.1. g

5.2. Estimates of the pressure. In this subsectlon we aim at providing similar version of Propo-

sition 2.3 in the case when a € L*°((0, T)7M(B (RQ))) and fi(a)—p € LOO((O,T),M(BZZ (R?))).

~1+2 _
Proposition 5.2. Let p € [2,4), a € L*>((0,T); M(B,, ?(R?))) and fi(a) — pu € L=((0,T);
2 ~ 142 1+2 142
M(B? | (R?))). Let w,v € L¥(B, | *)NLL(B,,”) and Vp € LL(B, | ). Then (2.7) has a unique
2

—1+2
solution with VII; € L%(Bpf—”)7 and for any € > 0, t < T, there holds

C
VI 2 < {EIIU*II z vl iz [yl 2
M, T 1-Cllall 2 Muatny U ew, ) M sl
LT ( p,1
+Jlosl + Ljosl
Ux —ivz t—|lvx S1+2
(5.9) Lt1,f1(Bp,1+p) € L%,fz(Bpier
t
sl g [ Al
( Muain o )l LEMB,, 7))
+@tllall s )lEGa) —u : 1}
LeM(B,, 7)) L (M(BE))
provided that C||a|] Lz < 1, where f1(t), f2(t) and Ily, vy are defined by (2.8).
FTWM(B,; ?)

Proof. Similar to the proof of Proposition 2.3, we just present the proof of (5.9) for smooth enough
solutions of (2.7). Indeed along the same line to the proof of Proposition 2.3, we have (2.10). While
applying Definition 1.1 and standard product laws in Besov spaces leads to

v - Vs < |v vy ,
o Pl g S sl e
HQVHS\H L mlt2 <||a” —1+2 HVHAH —14+2
t\Bp1 LEM(B,, 7)) i ( p,1
alAvy a vy
ol oveg el o sl e
ol =Vl g Sl / fi(r)dr,
Lt(Bpl )
and
(1 +a)div((a(a) — M) 2
L%(Bp,l P)
<14 |a .2 w(a) — 2 ||vy 2,
1+ ||L?O(M(BP;+§)))||M() MllL?O(M(le))H AllL%(B;jg)
(14 ) div((f@) - M@ 1,2
Lt( p,1 )
t
S+ all _ivz )llata) — pll 2 /fl(T)dT
LeM(B,; *)) Le(M(BE ) Jo
so that
IS oz <lla(pAw =Vp)|| 2 +[|(1+a)div((u(a) — M) 1y
L%(Bp,l p) Ltl(Bp,l p) Ll(B )
(5.10)

Slullal ez (1A lal] 2 )lla(a) = pll 2 }/ fu(r)dr
LEM(B,, P LEM(B,, P LEM(By 1)) Jo

t p,1 t 1 )
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Substituting the above estimates and Lemma 2.5 into (2.10) ensures (5.9) provided that

1
Clal_ 3 <5

T p,1

This completes the proof of Proposition 5.2. O

_142
5.3. The proof of Theorem 1.3. For p € (2,4), given ag € M(Bp71+p(]R2)) with fi(ag) — p €
2 142
M(B;l(R2)), ug € B, 1+p(]R2) with [lao|l|  _..2 4+ ||#(ao) —pll 2 being sufficiently small,
’ ’ M(B 1 p p

s p,1
it follows from Theorem 2 in [10] and Proposition 5.1 that there exists a positive time 7' so that

(1.2) has a unique solution (a,u, VII) with

sy *ELTODMEBIIEY), ) e (0T MOB] ),

—1+3 2 1 1+2 o 1 —1+3 o
wec(0.T]: By, P E)) N L(0.7): By (RY).  VILE L'(0.1): B, " (BY).

We denote by T* the largest possible time so that there holds (5.11). Hence the proof of Theorem
1.3 is reduced to show that 7™ = oo provided that there holds (1.5). Toward this, as in the proof of
Theorem 1.1, we split the velocity field u as w+v, with w, (a,v) solving (1.7) and (1.8) respectively.
Then thanks to Proposition 3.1, it remains to solve (1.8) globally. In order to do so, let fi(t), fa(?),
vy, VII5 be given by (2.8), along the same line to the proof of Theorem 1.1, we deduce from (4.3)
that

sl g £ Ms g delusl, e el e
t p,1 t,f1 p,1 t,fo p,1 t p,1
<C{UESI, g FIO+@VTSL g ol g sl g
12 Jus - Vo0 Vg ulal gl g
+ vy - Vw +w - Vouy _1p2 T pla _1p2 |lox 2
HE LEMB,, ) LB, )
11+ @) div((ila) = M@ | i b,
Lt(Bp,l )
where the norm ||lvy|| _1,2 is given by Definition 2.3.
L%,f(BpJ P
We denote
= def * ~
(5.13) T = sup{ t <T* pla| Lz A+ llaa) — pll 2 <ep
L (M(B,, 7)) L (M(By1))

for some ¢; being sufficiently small. Then we get by substituting (5.9) and (5.10) into (5.12) that
fort<T

losll. vz A Mllosll 0 gz +Aellosll 0 e +eplusll e
1?0 Bp,l t,f1 p,1 t,fo p,1 Lt Bp,l )
SC{GHUXH 2 H ol e oyl 2+ [lugl Lip2
(5.14) LB 7) L, 7)) M)t Li, (B P)

1 t
+ —||vx .2+ a a2 +lp(a) — 2 T)VdT ¢.
sl e el #1R@ ) G )

t,fo " p,1 p,1
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Choosing &, A\; and Ay in (5.14) so that Ce = £ A\ =20, Ao = u ® and c < 45, we obtain
)\1 )\2
||UX||~OO —1+% + = HUAH —1+% + - HU)\H —1-‘-2 + HUAH 1+%
t Bp,l ) tfl Bp,l t,fg p,1 t( p,1 )
5.15 <cflvl oz ol v+ Gellall s
(5.15) LB, 7) " LMB,,?) LE(M(B,, 7))

Now let ¢5 be a small enough positive constant, which will be determined later on. We define T by

def * -

TS suplt < Tl g @ —pl g

(5.16) “(Bpr 7) 2 (M(B})
+ M(HaHLoo (B71+% + HU”L ( 1+2 S CQN}

t p,1 t

(5.13) and (5.16) implies that T < T if we take ¢ < ¢1. We shall prove that T = co under the
assumption (1.5). Otherwise, taking co < s¢» we deduce form (5.15) that

Uy a2 + v 2
sl et ISl e

(5.17) t
< C(MHQH 142 T ||,L~L(CL) - M|| 2 )/ fl(T)dT for ¢ <T.
L&(M(B, | 7)) Ly (M(By1) Jo

t p,1

On the other hand, notice from (1.8) that both a and u(a) — p satisfy (5.1) so that applying
Proposition 5.1 gives rise to

618)  lal  ooep S Claoll g exp{CUl g ol g )

t (M( p,1 p,1 t\Bp1 ) t( p,1

and

(.19)  |lale) - MHLW( < Clln(ao) — u

2 expy C(|lv 2 +||lw .
coniehy = (eI T S),

1 t\Pp1 # ( plp)

S 5o

Then we get by summing up (5.17) with (5.18)xu and (5.19) that

7
+ Z(”CLH 142t HUS\H 1+2 )

1) LE(M(B,, 7)) Li(B, ")

t
C ) dr +1),
pespfClol, g Y[ A )

vl _ii2 4 ||p(a) —
L L O

SRS

< Cpllaoll vz +a(ao) — pl|
M(B, | P)

2
p,1 M(B;),I)
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for t <. This together with (2.8) gives rise to

- [
ol 2 4 la(a) — 2+ —(|lall 2 ] 2 )
©(B,, ) LEMBP) 4 LB, ) LB, ?)
< Clullaol v +lia) —pll 3 )
M(Bp,l ) M(Bp,l)

142 }

%(Bp,lp)

)d’r}

1

t
1
() ROy + 9901, o) +1) exp{Cll,

t 1 1
xexp{4C/ w(T 2 4+ —[|[Vp(D)|| _i2 + —|w(n)|?
; (flw( )”B;jp MH ( )HBpfp u” ( )HB

)

B

< Clpllaoll  1y2 +lla(ao) — pll
M P

2
(Bp1 ") M(B,)

t 1 1 9
<exp{dC [ ()l oz + 2192 1ig + ()]

p,1 p,1 B

)dT},

1

SEST)

from which and (3.3), we infer

loll. 2+ [lp(a) — pll
L°(B | P) Lo (M(

t p,1

n
el g I g )

2
p
Bp,l t p,1 t p,1 )

(5.20) é
s 2 o 2
)GXP{C(l +u )eXp(MQHUOHB;iJ,_Z)}

< Clullaoll  “yy2 +llmlao) —pll 2
M(B,; *) M(B))
for t < Y and some positive constants C' which depends on ¢ and cy. If we take Cy large enough
and co sufficiently small in (1.5), there holds

~ (&)
ol iz +la(a) = pll 2+ p(llal ez ] 2 )< Sp
LF(B,, ") Ly (M(B]) LEMB,, )Lk, ) T 2
for t <Y, which contradicts with (5.16). Whence we conclude that T = T = oco. This completes
the proof of Theorem 1.3 [ |
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