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Rényi-Parry germs of curves and dynamical zeta

functions associated with real algebraic numbers

By

Jean-Louis Verger-Gaugry∗

Abstract

Let β > 1 be an algebraic number. The relations between the coefficient vector of its

minimal polynomial and the digits of the Rényi β-expansion of unity are investigated in terms

of the germ of curve associated with β, which is constructed from the Salem parametrization,

and the Parry Upper function fβ(z). If β is a Parry number, the Parry Upper function fβ(z) is

simply related to the dynamical zeta function ζβ(z) of the dynamical system ([0, 1], Tβ) where

Tβ is the β-transformation. Using the theory of Puiseux several results on the zeros of fβ(z)

and a classification of βs off Parry numbers are suggested.

§ 1. Introduction: digits and algebraicity

The Rényi-Parry numeration system [Re] [Pa] [Fr] uses a real number β > 1 as

base of numeration and inherits the properties of the dynamical system ([0, 1], Tβ),

where Tβ : x → {βx} = βx mod 1 is the β-transformation, for instance given by its

dynamical zeta function ζβ(z) [AM] [Bo2] [FLP] [PP] [Po] [V4] or by the Rényi β-

expansion dβ(1) = 0.t1t2t3 . . . of 1 which controls the language in base β [B-T] [Bl] [Lo].

The analytic function fβ(z) = −1+
∑

i≥1 tiz
i is then fundamental and called the Parry

Upper function (at β). When the base of numeration β > 1 is an algebraic number a

basic question is then to find the relations between the coefficient vector of its minimal

polynomial and the string of digits (ti). The present study gives new solutions and

directions for this study in the geometrical setting of germs of curves. A Parry number

is by definition a real number β > 1 such that dβ(1) is finite (ends in infinitely many
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zeros), then called simple, or eventually periodic. Parry numbers are algebraic integers

which are Perron numbers, and the collection of Parry numbers is dense in (1, +∞)

[Pa]. To β > 1 an algebraic number, given by its minimal polynomial Pβ(X), assumed

to be a Parry number, is associated its Parry polynomial Pβ,P (X) ∈ Pβ(X)Z[X ] (with

P ∗
β,P denoting its reciprocal polynomial), as

(1.1) fβ(z) = −
1

ζβ(z)
= −

P ∗
β,P (z)

(1 − zp+1)
nonsimple β

where p + 1 is the period length, and

(1.2) fβ(z) = −
1 − zm

ζβ(z)
= −P ∗

β,P (z) simple β

where m is the length of dβ(1). The Dynamical Norm Conjecture (S. Akiyama) states:

that, if β is a nonsimple Parry number, then the algebraic norm N(β) of β satisfies

|N(β)| = |tm − tm+p+1| if m the preperiod length and p+ 1 the period length of dβ(1).

Other relations are observed between the coefficients of Pβ(X) and (ti), for instance

for some Pisot numbers and Salem numbers [Bo2] [Bo3] [V2], but their origin remains

still obscure in general, for instance with the distibution of palindromic motives, the

asymptotic strings of zeros, the repetitions, in (ti), with some Diophantine Approxima-

tion questions [AB] [Bu] [Ds] [ABBS] and the Mahler measure of the base β [V1] (cf

Akiyama and Kwon [AD] for a review).

For nonParry numbers β, relations between fβ(z) and ζβ(z) are obscure; and the

unit circle is the natural boundary of fβ(z) by the Szegő-Carlson-Polya Theorem. The

approach which is followed here was introduced in [V4] and overcomes this difficulty. It

is addressed to noninteger algebraic numbers β > 1, Parry or nonParry: it amounts to

write the Parry Upper function fβ(z) as a two-variable Taylor series Gβ(U, Z) ∈ C[[U, Z]]

parametrized by the Salem parametrization [P ∗
β (z), z − 1/β], then to use the theory of

Puiseux [C] to deduce its decomposition as a finite product of factors and the coefficients

involved in the formal series and Puiseux series in them, relating (ti) and the values

of the derivatives of the minimal polynomial of β. The adding of a second variable,

most notably introduced differently by Boyd in several articles, is typical of studies

on moduli of curves in algebraic geometry (Lefshetz [Lf], Duval [Dl]). The theory of

Puiseux is used for desingularizing curves locally, for instance for algebraic functions

(i.e. polynomiality with the two variables). Here, the canonical method we follow

gives rise to a germ of curve (the “Rényi-Parry germ of curve associated with β”)

whose equation Gβ is analytic in U and polynomial in Z; this method uses the Salem

parametrization introduced by Salem in his 1945 article, inthere as a basic ingredient

in the so-called “Salem construction” for convergent families of Salem numbers (M.J.

Bertin, M. Pathiaux-Delefosse [BPD]).
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This note is conceived as a short introduction, without proofs, to [V5].

§ 2. Rényi-Parry germ of curve

§ 2.1. Equation

Let β > 1 be an algebraic number and Pβ(X) = ad(X − β(0))(X − β(1)) . . . (X −

β(d−1)) =
∑d

j=0 ajX
j its minimal polynomial, with β = β(0), P ∗

β (X) = Xdeg βPβ(1/X),

its reciprocal polynomial, d := deg β assumed ≥ 2, dβ(1) = 0.t1t2t3 . . . the Rényi β-

expansion of unity, equivalently β = t1 +
∑

i≥2 tiβ
−i+1 with t1 = ⌈β − 1⌉ = ⌊β⌋,

ti := ⌊βT i−1
β (1)⌋, i ≥ 2, and T i

β := Tβ(T i−1
β ), i ≥ 1, T 0

β :=Id. The digits ti be-

long to {0, 1, . . . , ⌊β⌋}. The subrings C{U}[Z] ⊂ C{U, Z} ⊂ C[[U, Z]] denote the

sets of convergent formal series, the first one with polynomiality in Z. For g =∑
n≥0,m≥0 cn,mUnZm ∈ C[[U, Z]], ordUg denotes the greatest integer j ≥ 0 such that

g =
∑

n≥j,m≥0 cn,mUnZm (i.e. with no nonzero term cn,mUnZm indexed by n < j).

Theorem 2.1. There exists a unique Gβ(U, Z) ∈ C{U}[Z] such that

Gβ(P ∗
β (z), z −

1

β
) = fβ(z)

for z in a neighbourhood of 1/β, with degZ Gβ(U, Z) < deg β. Gβ(U, Z) decomposes into

one of the four following possibilities : (i) either Gβ(U, Z) = U ×e, where e = e(U, Z) is

a unit in C{U, Z}, (ii) or it is equal to e×W , where e = e(U, Z) is a unit in C{U, Z}, and

(ii-1) degZW (U, Z) = 1, ordUW (U, Z) > 1, or (ii-2) degZW (U, Z) = 1, ordUW (U, Z) =

1, or (ii-3) degZW (U, Z) > 1, ordUW (U, Z) = 1 and W is an irreducible Weierstrass

polynomial.

Denote

(2.1) Gβ(U, Z) := bd−1(U)Zd−1 + bd−2(U)Zd−2 + . . . + b1(U)Z + b0(U),

with bj(U) :=
∑

r≥0 bj,r(U)Us. The four possibilities define four types of Newton

polygon of Gβ . The last three cases come from the Weierstrass preparation theorem

applied to Gβ and the fact that 1/β is a simple zero of fβ . In the last case, the theory

of Puiseux applies to provide a unique decomposition of the Weierstrass polynomial W

as a finite product

W =
∏

ξ

(
Z −

∑

i≥0

αiξ
iU

i

w

)

over all the Puiseux factors forming a unique conjugacy class. The Puiseux series,

involved in the Puiseux factors, deduced from the Newton polygon,
∑

i≥0

αiU
i

w with conjugates
∑

i≥0

αiξ
iU

i

w
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are fractionary power series for which the exponents are rational integers with common

denominator w := degZW , with ξ running over the wth-roots of unity. The polynomial

Gβ defines a plane affine curve

Cβ := {(U, Z) ∈ C2 | Gβ(U, Z) =
∑

m,n≥0

Am,n UnZm = 0}

with coefficients Am,n in a field extension of Q(β), along with a ramified covering πβ :

Cβ → C, the first projection map, of C (i.e. the U -plane).

§ 2.2. Perron-Frobenius operator and Eigenvalues

Let C((U)) :=
⋃

n∈N∗ U−n C[[U ]] be the field of formal Laurent series of the variable

U , and denote C((U))∗ :=
⋃

m∈N∗ C((U1/m)) the field of Laurent-Puiseux series with

coefficients in C. The ring C[[U ]]∗ :=
⋃

m∈N∗ C[[U1/m]] of the Puiseux series contains

the ring of formal series C[[U ]]. By the Theorem of Puiseux [C] C((U))∗ is algebraically

closed, and any polynomial in C[[U ]][X ] has at least one X-root in C[[U ]]∗. By the

change of origin, with f̃β(Z) := fβ(z) and P̃ ∗
β (Z) := P ∗

β (z), we obtain new coefficients

vectors. Denoting Kβ := Q(β), and by KG
β the smallest Galois extension containing

Kβ , f̃β(Z) =
∑

j≥1 λjZ
j with λj = λj(β) :=

∑
q≥0 tj+q

(
j+q

j

) (
1
β

)q

, j ≥ 1, and

P̃ ∗
β (Z) = Z

(
γ1 + γ2Z + . . . + γdZ

d−1
)

, with γq =
∑d

j=q ad−j

(
j
q

) (
1
β

)j−q

∈ Kβ . Let

(2.2) M = MU :=




0 0 . . . 0 U
γd

1 0 . . . 0 − γ1

γd

0 1

0 0 1 −
γd−1

γd




.

The d × d square matrix M , with coefficients in Q(γ±1
1 , γ±1

2 , . . . , γ±1
d )[U ] = Kβ [U ], is

the matrix of an operator on the vector space
(
C[[U ]]∗

)d
. This vector space splits into a

direct sum of d Eigenspaces of dimension one, with a priori Puiseux series as Eigenvalues,

since F = F (U, X) = det(XId − MU ) ∈ Kβ [U ][X ]. In fact, only one Eigenvalue of MU

lies in the maximal ideal UC[[U ]]∗ (this Eigenvalue even belongs to UKβ [[U ]]).

Theorem 2.2. With the above-mentioned notations, the characteristic polyno-

mial

(2.3) F (U, X) = Xd +
γd−1

γd
Xd−1 + . . . +

γ2

γd
X2 +

γ1

γd
X −

1

γd
U

is uniquely decomposed as eM × WM , with eM ∈ Kβ [[U ]][X ] a unit and WM (U, X) :=

(X − σ1(U)) the corresponding Weierstrass polynomial, with σ1 ∈ Kβ [[U ]],

(2.4) σ1(U) =
( 1

γ1

)
U −

(γ2

γ3
1

)
U2 +

(2γ2
2 − γ1γ3

γ5
1

)
U3 + . . .
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The other X-roots σ2, σ3, . . . , σd ∈ C[[U ]]∗ of F , as eM = (X−σ2)(X−σ3)(. . .)(X−σd),

are distinct, have the respective constant terms

c0,j := σj(0) =
1

β(j−1)
−

1

β
for 2 ≤ j ≤ d,

and are such that σj(U) ∈ KG
β [[U ]], with coefficients in the algebra over Q generated by

the derivatives of the polynomial P̃ ∗
β (X) at c0,j, as

(2.5) σj(U) = c0,j +
1

P̃ ∗
β

′
(c0,j)

U −
P̃ ∗

β

′′
(c0,j)

2 (P̃ ∗
β

′
(c0,j))3

U2 + . . .

§ 2.3. Main Theorems

Let us turn to the explicit computation of the Rényi-Parry germ of curve associated

with β. let us consider t(0 pj,1 pj,2 . . . pj,d−1), j ≥ 1, the last column vector of

the matrix γj
d M j

0 . By convention we put: pj,0 = 0, for all j ≥ 1. The polynomials

pj,i ∈ Z[γ1, γ2, . . . , γd] are homogeneous, of degree j, and satisfy, for i = 1, 2, . . . , d − 1,

p1,i = −γi,

pj+1,i = −γi pj,d−1 + γd pj,i−1 j ≥ 1.

Theorem 2.3. The constant coefficients of the Rényi-Parry germ of curve given

by (2.1) are: b0,0 = 0 and

bj,0 = λj−1 +
∑

q≥d

λq
pq−d+1,j−1

γq−d
d

, for all 1 ≤ j ≤ d − 1.

The other coefficients bj,r, j ≥ 0, r ≥ 1, are deduced from the derivatives of the

characteristic polynomial F and the formal series σj(U).

The case (ii-3) of Newton polygon, in Theorem 2.1, corresponds to the geometrical

steming of conjugated irreducible curves in a neighbourhood of the origin (U = 0, z =

1/β) parametrized by the conjugated Puiseux series involved in the decomposition of

the germ of curve (2.1). When these curves cross the U -plane in C2 of equation U = 0,

then their intersection with this plane is one point, for which the inverse is called a beta-

conjugate of β. The conjugation over irreducibles curves transports onto the collection

of the beta-conjugates of β. Another consequence of the decomposition of Gβ as in

Theorem 2.1 is the following.

Theorem 2.4. If β > 1 is an algebraic number, which is not a Parry number,

the analytic function fβ(z) does not cancel at the (Galois-) conjugates of 1/β.
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§ 3. Diophantine Approximation and a possible classification of nonParry

numbers

Case (i) in Theorem 2.1 exactly corresponds to β being a Parry number, and this

case can be expressed in terms of the constant coefficients bj,0.

Theorem 3.1. With the above-mentioned notations, the algebraic number β >

1, of degree d (assumed ≥ 2), is a Parry number if and only if:

bj,0 = 0, for all 1 ≤ j ≤ d − 1.

Since 0 is an algebraic number and that the constant coefficients bj,0 are given by

summations, it means that the number and asymptotic density of the “missing terms”

in these summations, when equal to 0, is “weak”, in some sense, by easy Liouville

arguments. So that if all the coefficients bj,0 are equal to 0, then the eventual periodicity

of the sequence (ti) is obtained: in this case, eventual periodicity is forced.

The other cases (ii-1), (ii-2), (ii-3) in Theorem 2.1 correspond to weaker arguments.

It suggests to attribute the rational number

wβ := 1 −
δ

d
∈ [0, 1]

to the algebraic number β, where δ ∈ {1, 2, . . . , d − 1} is the degree of the Weierstrass

polynomial associated with Gβ (it is the greatest integer ≤ d − 1 such that bδ,0 6= 0

with bm,0 = 0 for 1 ≤ m < δ). The rational integer wβ is close to 0 if Gβ admits a

Weierstrass polynomial of high degree, and close to 1 if β is at large departure off the

set of Parry numbers, i.e. with degrees δ small, or equal to 1. By convention, say that

wβ = 0 if and only if β is a Parry number. These conditions are not strong enough

to force the eventual periodicity ot the sequence of digits (ti), but certainly a possible

ordering/correlation of (ti).

The topology of the set {wβ | β > 1 nonParry algebraic number } probably merits

attention, in particular the subset of it formed when β runs over a neighbourhood of

unity. The rational number wβ may be used as a classifying parameter defined on

the set of the real algebraic numbers β > 1. Let u/v be a rational number in [0, 1).

Interestingly, the set Λu/v := {β > 1 | wβ = u/v} would have to be characterized. It is

just known that Λ0 is dense in (1, +∞) [Pa].
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