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) has been updated. This method has the advantage of being both simple, fast and taking into account the basic concepts of seismology (Brune's source, realistic time envelope function, nonstationarity and ground-motion variability). Time-domain simulations are derived from the signal spectrogram and depend on few ground-motion parameters: Arias intensity, significant relative duration and central frequency. These indicators are obtained from empirical attenuation equations that relate them to the magnitude of the event, the source-receiver distance, and the site conditions. We improve the nonstationary stochastic method by using new functional forms (new surface rock dataset, analysis of both intra-event and inter-event residuals, consideration of the scaling relations and V S30 ), by assessing the central frequency with S-transform and by better considering the stress drop variability.

INTRODUCTION

For earthquake-resistant design, engineering seismologists employ time-history analysis for nonlinear simulations. Within worldwide accelerometric databases, few natural records are available in the magnitude-distance range of engineering interest for low seismicity region (near-field and moderate magnitude scenarios). Consequently, it is necessary to develop simulation methods to generate synthetic accelerograms. Among the available techniques for generating time histories [START_REF] Douglas | A survey of techniques for predicting earthquake ground motions for engineering purposes[END_REF], we focus on methods based on stochastic simulations. These techniques have the advantage of using few input parameters (they do not require detailed knowledge about the rupture) and not being site specific but rather global. The recent development of a large strong-motion database is also a key motivation for the development of this type of method as the data availability helps to calibrate the input parameters (e.g. [START_REF] Pousse | Nonstationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database[END_REF][START_REF] Rezaeian | Simulation of synthetic ground motions for specified earthquake and site characteristics[END_REF]. We chose to update the nonstationary stochastic method initially developed by [START_REF] Sabetta | Estimation of response spectra and simulation of nonstationary earthquake ground motions[END_REF] and then by [START_REF] Pousse | Nonstationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database[END_REF]. This method has the advantage of being simple, fast and taking into account the basic concepts of seismology (Brune's source, realistic time envelope function, nonstationarity and ground-motion variability). The synthetic generation depends on only three input parameters: moment magnitude, source-site distance and site conditions; and on only three groundmotion parameters: Arias intensity (AI), significant relative duration (D SR ) and the evolution of the central frequency over time (F C (t)). However, the functional forms used by [START_REF] Pousse | Nonstationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database[END_REF] are too simple. In this view, a Japanese database including only surface rock recordings is built. Secondly, ground-motion prediction equations are derived from this rock-motion database for the 5 % damped acceleration response spectra (SA(f)), peak ground acceleration(PGA), AI, D SR and F C (t). Finally the semi-empirical nonstationary stochastic method is improved by considering the new functional forms and also by better taking into account the stress drop variability.

JAPANESE DATASET

After the destructive 1995 Kobe earthquake, Japanese scientists installed dense and uniform networks that cover the whole of Japan: the Hi-net (high-sensitivity), F-net (broadband), KiK-net and K-NET (strong-motion) networks [START_REF] Okada | Recent progress of seismic observation networks in Japan-Hi-net, F-net, K-NET and KiK-net[END_REF]. Each instrument is a three-component seismograph with a 24-bit analog-to-digital converter: the KiK-net and K-NET networks use 200-Hz and 100-Hz sampling frequencies. Japan is in a highly seismic area where a lot of quality digital data are recorded and made available to the scientific community (http://www.kyoshin.bosai.go.jp/indexen.html). In the present study, the KiK-net and K-NET strong-motion records are collected up to the end of 2009. To have consistent metaparameters, we only used events characterized in the F-net catalog. Thus, the values of M W , the hypocenter location (latitude, longitude and depth), and the rake angle used for focal mechanism characterization, were determined by F-net. We fix 4.5 M W as the lower magnitude limit of our selection, and to select stations located on rock sites, we keep in the analysis only the stations with V S30 greater than 500 m/s. In the case of the KiK-net network,with the sites characterized by velocity profiles ranging from 30 m to 2008 m, V S30 can be computed. In the case of the K-NET network, the surveys are made down 20 m in depth. Using the KiK-net velocity models, [START_REF] Boore | Regional Correlations of VS30 and Velocities Averaged Over Depths Less Than and Greater Than 30 Meters[END_REF] provided equations that related V S30 to V SZ for Z ranging from 5 m to 29 m in 1 m increments. V S30 is estimated from these equations for the K-NET network. To include only crustal events, shallow events with a focal depth ≤ 25 km were selected. Offshore events were excluded but we chose to add the events with M W ≥ 5.5 in the sea west of the eastern border of Japan. A magnitude-distance filter was applied according to the [START_REF] Kanno | A new attenuation relation for strong ground motion in Japan based on recorded data[END_REF] ground-motion prediction equation, which allows the data observed at large distances to be eliminated. We chose 2.5 gal as a PGA threshold. Following a visual inspection, faulty recordings like S-wave triggers, or recordings from multi-events are eliminated or shortened. At the same time, we collected all of the available fault-plane models for earthquakes with M W ≥5.7, as listed in Table 2.1. The source distance is the closest distance from a fault plane to the observation site, and it is the hypocentral distance in the case of earthquakes for which the fault model is not available. Our dataset finally consists of 2357 recordings, 405 observation sites (240 KiK-net and 165 K-NET) and 132 earthquake epicenters. The magnitude-distance distribution is shown in Fig. 2.1. 

GROUND-MOTION PREDICTION EQUATIONS

Characterizing the ground-motion properties is an important issue for engineering seismology. In the present study, we derive models for the several key ground-motion parameters (PGA, SA(f), AI, D SR , and F C (t)). 

Characterization of the ground-motion parameters

The Arias Intensity (AI) is a measure of the signal energy, as defined by [START_REF] Arias | A measure of earthquake intensity[END_REF]. The definition of D SR is the time interval between 5% and 95% of the cumulative AI over time [START_REF] Husid | Analisis de terremotos: analisis general[END_REF]. The central frequency F C (t) quantifies the nonstationarity of the signal. It is related to the spectral moments of the Power Spectrum Density [START_REF] Lai | Statistical characterization of strong ground motions using power spectral density function[END_REF]. The signal-to-noise ratio (SNR) is computed by using a 1s window of noise. Therefore, only the records with at least 1 s of noise are used. F C (τ) is computed for frequencies with SNR of more than 3, between the time arrival of the P wave and the time for which the AI reaches 95% by using S-transform [START_REF] Stockwell | Localization of the complex spectrum: the S transform[END_REF]. S-transform gives better resolution than the spectrogram used by [START_REF] Pousse | Nonstationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database[END_REF], and especially for short-term recordings. The P waves are at higher frequencies than the S waves and most of the records tend to shift to lower frequencies as time increases. So statistically, F C (τ) can be modelled as follows:

€ F C (τ ) = exp( A -B × ln(τ +1)) (3.1)
For each record, the A and B coefficients are assessed by a simple linear regression. However, the B coefficient is negative in some cases; this means that F C (τ) increases globally. In this case, the A and B coefficients are computed both between the time of arrival of the P wave and the maximum of the Stransform, and between it and D SR (95%). Finally, we take the values of the A and B coefficients from the S-wave part, or then the P-wave part if B is positive.

Functional forms

The ground-motion prediction equations are established for the two horizontal components. We consider different definitions (geometric mean and, arithmetic mean or independent components) for each parameter both to have a common definition for the ground-motion, and also to be consistent with previously published analyses. The ground-motion parameters are modelled as functions of the moment magnitude M W , the closest distance from a fault plane to the observation site R RUP and a site parameter defined according to V S30 . In the present study, the aim was not to develop new functional forms. We then tested pre-existing functional forms, and we finally selected the functional forms that maximize the likelihood. The coefficients are derived from the random effects method [START_REF] Abrahamson | A stable algorithm for regression analyses using the random effects model[END_REF], as well as from the within-event (ϕ) and between-event (τ) standard deviations of respectively δW ij and δB i residuals (the subscripts i and j refer to event and station).

Peak ground acceleration and 5% damped acceleration response spectra: Many studies have been conducted on these indicators. We chose to work with the following functional form [START_REF] Boore | Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s[END_REF][START_REF] Rodriguez-Marek | Analysis of Single Station Standard Deviation Using the KiK-net Data[END_REF]: 

€ ln(SA( f ) ij ) = a 1 + a 2 ⋅ (M W i -M h ) + a 3 ⋅ (M W i -M h ) 2 for M W i ≤ M h a 1 + a 4 ⋅ (M W i -M h ) for M W i ≥ M h ⎧ ⎨ ⎪ ⎩ ⎪ + (b 1 + b 2 ⋅ (M W i -4.5)) ⋅ ln R RUP ij 2 + h 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ + b 3 ⋅ R RUP ij 2 + h 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ + c 1 ⋅ ln V S 30 j /800 ( ) +δW ij +δB ij (3.2)
Some of the GMPE parameters are interdependent. Therefore some of them were constrained starting from subsets of data of [START_REF] Rodriguez-Marek | Analysis of Single Station Standard Deviation Using the KiK-net Data[END_REF]. Deriving GMPE coefficients from a database with only V S30 ≥ 500 m/s is not straightforward, as the number of records per event is more limited. So after trying to determine the coefficients M h , h and b 3 as reported by [START_REF] Rodriguez-Marek | Analysis of Single Station Standard Deviation Using the KiK-net Data[END_REF], we chose to use their coefficients because they allowed us to obtain a better distribution of residuals at different spectral periods.

Arias Intensity: Few functional forms have been developed for AI [START_REF] Travasarou | Empirical attenuation relationship for Arias Intensity[END_REF]Stafford et al., 2009;Foulser-Pigott and Stafford, 2012;[START_REF] Lee | Regional Arias Intensity Attenuation Relationship for Taiwan Considering VS30[END_REF]. Under the assumption of Parseval theorem, AI has been related to the acceleration Fourier amplitude spectrum of [START_REF] Boore | Simulation of ground motion using the stochastic method[END_REF]. Thus, [START_REF] Travasarou | Empirical attenuation relationship for Arias Intensity[END_REF] and [START_REF] Stafford | New predictive equations for Arias intensity from crustal earthquakes in New Zealand[END_REF] deduct functional forms based on theory. On the other hand, various studies have shown strong correlations between PGA and AI (we found a coefficient of correlation of 0.90). In the way of Foulser-Pigott and [START_REF] Foulser-Piggott | A predictive model for Arias intensity at multiple sites and consideration of spatial correlations[END_REF], we chose to adjust a functional form similar to PGA. Note that the functional forms developed by [START_REF] Travasarou | Empirical attenuation relationship for Arias Intensity[END_REF] and [START_REF] Stafford | New predictive equations for Arias intensity from crustal earthquakes in New Zealand[END_REF] were also tested although they were finally selected since the form giving the best standard deviations is the one adapted from the PGA. This functional form is defined as:

€ ln( AI ij ) = a 1 + a 2 ⋅ (M W i -5.6) + a 3 ⋅ (M W i -5.6) 2 + (b 1 + b 2 ⋅ (M W i -4.5)) ⋅ ln R RUP ij 2 + h 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ + c 1 ⋅ ln(V S 30 ij /800) +δW ij +δB ij (3.3)
Significant relative duration: Two recent papers have been published on this topic: [START_REF] Kempton | Prediction equations for significant duration of earthquake ground motions considering site and near-source effects[END_REF] and [START_REF] Bommer | Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion[END_REF]. These studies developed duration functional forms from basic seismological theory [START_REF] Boore | Simulation of ground motion using the stochastic method[END_REF], which predict that the source duration is inversely related to the corner frequency. We chose to adapt the form developed by [START_REF] Bommer | Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion[END_REF]:

€ ln(D SR ij ) = a 1 + a 2 ⋅ (M W i -5.6) + (b 1 + b 2 ⋅ (M W i -4.5)) ⋅ ln R RUP ij 2 + h 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ + c 1 ⋅ ln(V S 30 ij /800) +δW ij +δB ij (3.4)
The h coefficient controls the functional form at very short distances. However, the limited amount of rock data available in the near-field does not allow this coefficient to be calibrated. Therefore, we have chosen to use the h coefficient determined previously by [START_REF] Bommer | Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion[END_REF] on the NGA data.

Central frequency over time: [START_REF] Sabetta | Estimation of response spectra and simulation of nonstationary earthquake ground motions[END_REF], and then [START_REF] Pousse | Nonstationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database[END_REF], developed simple functional forms for predicting the central frequency over time. Few studies have used this definition of central frequency for characterizing the frequency content in time. Indeed, engineering seismologists usually prefer to use the cumulative number of zero crossings over time (e.g. [START_REF] Rezaeian | Simulation of synthetic ground motions for specified earthquake and site characteristics[END_REF]. [START_REF] Pousse | Nonstationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database[END_REF] showed that the A coefficient is mainly sensitive to site effects (A increases when V S30 increases) and to the distance (A decreases when R RUP increases).

This study also suggests that the B coefficient is mainly sensitive to the distance (the slope increases when R RUP decreases) and also to the magnitude (the slope increases when M W increases). Finally, we chose to develop a simple functional form as:

€

PAR ij = a 1 + a 2 ⋅ (M W i -5.6) + b 1 ⋅ ln(R RUP ij ) + c 1 ⋅ ln(V S 30 ij /800) +δW ij +δB ij (3.5)
with PAR= A, ln(B)

Results

The regression coefficients are presented in Tables 3.1 and 3.2. Figure 3.1 shows the inter-event and intra-event residuals according to M W , R RUP and V S30 . For SA(f), AI and D SR , the residuals are well distributed. For SA(f) and AI, the sigma deducted are stronger than those of previous studies. Our results show a standard deviation of 0.845, while [START_REF] Boore | Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s[END_REF] found a σ of 0.566 on NGA data and Rodriguez et al. ( 2011) found a σ of 0.78 on Japanese data. It was already recognized that the ergodic variability of ground-motion is stronger for Japan [START_REF] Rodriguez-Marek | Analysis of Single Station Standard Deviation Using the KiK-net Data[END_REF], because of larger site variability. In the case of AI, our σ is also larger than those of previous studies (see [START_REF] Lee | Regional Arias Intensity Attenuation Relationship for Taiwan Considering VS30[END_REF] for a summary of standard deviations achieved). For D SR prediction, our functional form is similar to that of [START_REF] Bommer | Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion[END_REF] and the sigma obtained is similar to this previous study. However, in detail, the inter-event and intra-event terms show significant differences. [START_REF] Bommer | Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion[END_REF] found the values of intra-event and inter-event almost similar, while our inter-event term is lower and our intra-event term is stronger (this confirms that Japanese sites might be more heterogeneous than the European and Californian sites for a given V S30 ). 

GENERATION OF TIME-HISTORIES WITH A NONSTATIONARY STOCHASTIC METHOD.

The nonstationary stochastic model formulation

Time domain simulations are derived from signal spectrogram PS(t,f) which depends on the prediction of ground-motion parameters such as AI, D SR and F C (t) of the signal. Sabetta and Pugliese (2006) assumed that PS(t,f) can be factorized as:

€ PS(t, f ) = PS t ( f ) ⋅ Pa(t) (4.1)
where PS t (f) represents the frequency content at each time t and Pa(t) the time envelope function. This factorization needs that PS t (f) and Pa(t) to follow a functional form based on the log-normal density of probability shape.

Frequency content: A benefit of this method is that its frequency content is realistic. It follows the ωsquare model [START_REF] Frankel | National seismic hazard maps[END_REF], which is multiplied by a high-cut filter. This filter can account for the diminution of the high frequency motions [START_REF] Boore | Simulation of ground motion using the stochastic method[END_REF]. The nonstationarity is given by replacing f max with F C (t) in this filter. The seismic spectrum relative to the source can be defined as:

€ S τ ( f ) = (2πf ) 2 1+ ( f / f c ) 2 1+ f / F C τ [ ] 8 (4.2)
where f c is the corner frequency defined as:

€ log( f c ) =1.341+ log(β × Δσ 1/ 3 ) -0.5M W
where Δσ is the stress drop in bars, M W is the moment magnitude and β is the shear wave velocity in kilometers per second (see Table 4.1). PS t (f) is assumed to follow the functional form of a probability density function, so its area must be 1 and its dimension should be that of a duration (s). S τ (f) must be normalized by its area. Moreover, for each simulation, the stress drop and the central frequency are drawn randomly. The [START_REF] Pousse | Nonstationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database[END_REF] method did not correctly take into account this stress drop dependency, and we have improved this part. The simulations are now calibrated to a stress drop reference of 10 bars (Fig. 4.1).

Envelope time function:

In the literature, different temporal envelopes are used (a gamma distribution a lognormal distribution). Only the time envelope of [START_REF] Pousse | Nonstationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database[END_REF] includes the arrival of P, S, and coda waves; and the radiated energy is distributed over each specified duration. The only difference between our method and the former [START_REF] Pousse | Nonstationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database[END_REF] studies concerns the evaluation of the quality factor, Q=Q 0 f N (see Table 4.1). In [START_REF] Pousse | Nonstationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database[END_REF], the frequency was chosen randomly between 1 Hz and 5 Hz, whatever the chosen scenario. Now, the frequency is the central frequency predicted for a given scenario. Variability: Another key advantage of this simulation method is to take into account the natural variability of ground motion. A Monte Carlo exploration of the key parameters is used to reproduce this variability (see Tab. 4.1). Computation of the time history: The accelerogram calculation is based on the assumption that the ground-motion at time t results from the contribution of random and uncorrelated phases [START_REF] Boore | Simulation of ground motion using the stochastic method[END_REF]. Synthetic accelerograms are then performed, by summing Fourier series with time-dependent coefficients derived from PS(t,f), as follows:

€

x(t) = C n (t) cos(n2πdft n =1 N ∑ +ϕ n ) (4.6) € C n (t) = 2PS(t, f )df (4.7)
where x(t) is the simulated accelerogram and the phases φ are random numbers uniformly distributed in the range -π to π.

Results

We compare the simulations obtained with real data. The chosen scenarios are all sampled by a significant number of records, i.e. a first scenario with M W = 5, R RUP = 50 km and V S30 = 550 m/s, and a second scenario with M W = 6.6, R RUP = 30 km and V S30 = 550 m/s. This method has the advantage that it can simulate many accelerograms in a few minutes. 2500 time histories were generated for the two scenarios by exploring the strong motion parameters between ± 1 σ. Figure 4.2 shows a comparison between the predicted response spectrum and the simulated response spectra. Until about 0.3 s, the distribution of the spectral amplifications is well reproduced by the simulations. However, at long periods, the simulated response spectra tend to overestimate the spectral amplitudes. Within these simulations, a subset has been selected. The mean squared error (MSE) between the spectral accelerations of the simulations and the target spectrum (the mean response spectrum in this example), were computed. Figure 4.2 also shows the 30 time histories that have the best match with the target spectrum over the whole period range. Note that using this method, the selected time histories show a better fit at long periods. Figure 4.3 compares the distributions of the ground-motion parameters from the predicted model with the simulations. For these three indicators, the variability is well reproduced by the simulations. In light gray lines, the 2500 simulations and in dark gray lines, the 30 best matched time-histories. 

CONCLUSIONS AND DISCUSSION

A new and homogeneous active shallow crustal accelerometric database of rock ground motion was built (V S30 ≤ 500 m/s). This database consists of 4998 Japanese digital records. New, rock-specific, ground-motion prediction equations were derived using this new database for the characterization of the key parameters (PGA, SA(f), AI, D SR and F C (t)). These new GMPEs take into account recent developments (analysis of both intra-variability and inter-variability, updated functional forms, including the scaling relations and V S30 ). Our equations should be used only for predictor variables in these ranges: 4.5≤M W ≤6.9, and 500≤V S30 ≤1500m/s. The intra-event is stronger than that derived in other regions, confirming that Japanese sites might be more heterogeneous than European and Californian sites. In addition, the site coefficient of these new rock specific GMPEs (PGA, AI and D SR ) was found to be smaller than that predicted from previous studies mixing rock and soil records. This shows the importance of having developed a specific rock database.

The nonstationary stochastic method is a simple method that includes the theoretical bases of seismology. This method allows the rapid generation of a large number of time histories. The new functional forms of the key ground-motion parameters and a new method to take into account the stress drop variability have been included. This method allows good reproducing of the ground motion and its variability at low periods, up to around 0.3 s. However, the response spectra are overestimated at long periods and so, the displacement is overestimated. This overestimation might have several origins:

-As reported by [START_REF] Safak | On low-frequency errors of uniformly modulated filtered white-noise models for ground motions[END_REF] and [START_REF] Rezaeian | Simulation of synthetic ground motions for specified earthquake and site characteristics[END_REF], it is necessary to assure zero residual velocity and displacement of the motion, as well as realistic response spectral values at long periods. Without such filtering, stochastically generated ground motions tend to overestimate response spectral values in the long period range. A high-pass filter was applied by these authors. However, our nonstationary stochastic method still includes a filter above the corner frequency (the ω-square model) and the use of this high-pass filter leads to an underestimation of the low frequencies.

-As reported by [START_REF] Atkinson | Stochastic modeling of California ground motions[END_REF], the Brune point-source model leads to an overestimation of the long periods for large magnitude events. They have shown that the use of a stochastic finitefault model or the use of a two-corner point-source model for the earthquake spectrum allow this overestimation to be eliminated. These two corner frequencies are however empirically derived, and they are difficult to apply outside the specific context of California.

Figure 2 . 1 .

 21 Figure 2.1. Distribution of moment magnitude (M W ) and rupture distance (R RUP ) of the selected records, differentiated by networks (ο: KiK-net and Δ: K-NET networks).

Figure 4 . 1 .

 41 Figure 4.1. Simulated acceleration Fourier spectra for different values of stress drop.

  Figure 4.4 shows for comparison a sample of simulated and real time histories. The simulated time histories show different waveforms, various amplitudes, and durations like the real time histories.
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 42 Figure 4.2. Comparison of simulated (gray lines) and predicted (purple line) acceleration response spectra corresponding to (left) M W =5, R RUP =50km and V S30 =550m/s; and (right) M W =6.6, R RUP =30km and V S30 =550m/s.In light gray lines, the 2500 simulations and in dark gray lines, the 30 best matched time-histories.
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 43 Figure 4.3. Comparison between the predicted distributions of the ground-motion parameters (red lined) and the ground-motion parameters distributions of the 2500 simulations (histogram) for the two scenarios: (top) M W =5, R RUP =50km and V S30 =550m/s; and (bottom) M W =6.6, R RUP =30km and V S30 =550m/s.
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 44 Figure 4.4. Comparison of simulated and recorded acceleration motions: (left) M W =5, R RUP =50 ± 1 km and V S30 =550 ± 50 m/s; and (right) M W =6.6, R RUP =30 ± 5 km and V S30 =550 ± 50 m/s.

Table 2 . 1 .

 21 Events for which the source geometry is taken into account to define the source-receiver distance (R RUP ). The Kagoshima 2 event has been described as two fault planes. In this case, the source-receiver distances are calculated for these two planes, and the shortest distance is selected.

	Name	Date	Mw Strike	Dip Length Width	Reference
	Kagoshima 1 199703261731 6.10	280	90	15	10	Horikawa (2001)
	Kagoshima 2 199705131438 6.00 (280, 190) (90, 90) (9, 8) (10, 10)	Horikawa (2001)
	Yamaguchi 199706251850 5.90	235	86	16	12	Ide (1999)
	Iwate	199809031658 5.69	216	41	10	10	Nakahara et al. (2002)
	Tottori	200010061330 6.62	145	90	28	17.6	Ikeda et al. (2002)
	Miyagi-Ken 200307260713 6.10 (220, 186) (45, 52) (6, 12) (10, 10)	Miura et al. (2004)
		200410231756 6.60	216	53	24	16
		200410231803 5.90	20	34	8	8
	Chuetsu	200410231812 5.70	20	58	8	8.3	Hikima and Koketsu (2005)
		200410231834 6.30	216	55	20	12
		200410271040 5.80	39	29	8	8
	Rumoi	200412141456 5.73	15	25	10	10	Maeada and Sasatani (2009)
	Fukuoka 200503201053 6.60	123	87.7	32	28	Kobayashi et al. (2006)
	Noto-Hanto 200703250942 6.70	58	66	30	18	Momiyama et al., 2009
	Chuetsu-Oki 200707161013 6.70	34	36	32	24	Miyake et al. (2010)
	Iwate-Miyagi 200806140843 6.90	203	37	42	18	Yokota et al. (2009)

Table 3 .

 3 1. Regression coefficients for PGA and 5 % damped acceleration response spectra (geometrical mean of the two horizontal components, g). Inter-event residuals plotted with respect to M W and inter-event residuals as a function of R RUP and V S30 at various spectral periods. The dark dots represent the average for a bin of M W , R RUP or V S30 .

	Per. (s)	a1	a2	a3	a4 Mh b1	b2	b3	h	c1	ϕ	τ	σ
	PGA -0.053447 0.51153 -0.13258 0.22396 5.6 -0.96551 0.2107 -0.014 1.36 -0.33707 0.65541 0.53346 0.84507
	0.0384 0.66897 0.58703 -0.20807 0.39223 5.6 -1.0025 0.16005 -0.014 1.2 -0.062352 0.67452 0.5656 0.88027
	0.0484 0.91612 0.64692 -0.22739 0.49764 5.6 -0.98952 0.13093 -0.014 1.2 -0.053157 0.69009 0.57479 0.89811
	0.0582 1.0402 0.86293 -0.15531 0.67188 5.6 -0.931 0.08792 -0.014 1.2 -0.063994 0.70965 0.57829 0.91543
	0.0769 1.174	1.1741 -0.040642 0.82768 5.6 -0.85675 0.049073 -0.014 1.2 -0.060246 0.75727 0.57423 0.95037
	0.0844 1.1251 1.1062 -0.077909 0.79292 5.6 -0.85304 0.05869 -0.014 1.2 -0.15693 0.76705 0.56967 0.95545
	0.097	1.049	1.1029 -0.097397 0.83191 5.6 -0.84279 0.060533 -0.014 1.2 -0.30829 0.76035 0.56389 0.94663
	0.1167 0.95244 1.1226 -0.033774 0.72045 5.6 -0.86795 0.090565 -0.0138 1.2 -0.45209 0.73082 0.54812 0.91353
	0.1472 0.9456 0.98923 -0.056821 0.55631 5.6 -0.957 0.1353 -0.0131 1.2 -0.63621 0.73475 0.53237 0.90735
	0.1691 0.83211 0.6902 -0.21985 0.3962 5.6 -1.0205 0.18065 -0.0126 1.2 -0.70706 0.72299 0.52852 0.89557
	0.2036 0.64394 0.4867 -0.29401 0.25966 5.6 -1.0727 0.21946 -0.0119 1.2 -0.76095 0.71194 0.52347 0.88367
	0.234 0.47552 0.55449 -0.30051 0.33502 5.6 -1.0613 0.20849 -0.0113 1.2 -0.79769 0.70218 0.50345 0.86402
	0.309 0.21697 0.40545 -0.32381 0.21518 5.6 -1.1407 0.25011 -0.01 1.2 -0.78078 0.67721 0.51352 0.84989
	0.3551 0.26779 0.54112 -0.12721 -0.05996 5.8 -1.1953 0.27496 -0.0092 1.2 -0.8036 0.67557 0.51987 0.85244
	0.3896 0.23289 0.37994 -0.17941 -0.17986 6 -1.2195 0.28412 -0.0087 1.2 -0.79823 0.67672 0.52827 0.8585
	0.4274 0.15474 0.39176 -0.15983 -0.23609 6 -1.2479 0.29566 -0.0082 1.2 -0.78573 0.67768 0.52833 0.85929
	0.469 0.16342 0.50356 -0.1262 -0.19146 6	-1.27	0.289 -0.0076 1.2 -0.75421 0.67615 0.53119 0.85985
	0.5913 0.004647 0.53229 -0.11926 -0.20505 6 -1.3329 0.3007 -0.0062 1.2 -0.69754 0.67022 0.54423 0.86336
	0.7456 -0.15406 0.72525 -0.03463 -0.21427 6 -1.3808 0.30522 -0.0049 1.2 -0.69847 0.65969 0.51299 0.83568
	0.818 -0.16584 0.75843 -0.025508 -0.23741 6 -1.4197 0.31173 -0.0043 1.2 -0.6784 0.65957 0.50082 0.82816
	0.9401 -0.28915 0.79785 -0.042921 -0.20283 6 -1.4363 0.30944 -0.0036 1.2 -0.65954 0.66032 0.47773 0.81501
	1.3622 -0.80171 0.71254 -0.048238 -0.13681 6 -1.5357 0.34884 -0.002 1.2 -0.66515 0.64908 0.41846 0.77228
	Table 3.2. Regression coefficients for the ground-motion parameters. Different horizontal definitions have been
	used: GM, geometrical mean; AM, arithmetic mean and IND, the two horizontal components are independent.
	Per. (s) H Def.	a1	a2	a3		b1	b2	h	c1	ϕ	τ	σ
	AI (m/s) AM 7.90495 3.8684 -0.15884 -3.04157 -0.24657 15.815 -0.71102 1.17046 0.98146 1.5275
	AI (m/s) GM 7.92892 3.88485 -0.15950 -3.04614 -0.24972 16.131 -0.71189 1.16603 0.98209 1.5245
	SMD (s) IND 0.36220 0.34394	X	0.63582 -0.038941 2.5	-0.10385 0.43360 0.19766 0.4765
	SMD (s) GM 0.37827 0.33056	X	0.62982 -0.036646	2.5	-0.10080 0.42182 0.17488 0.4566
	A	GM	3.55833 -0.043563	X	-0.17115	X	X	0.13792 0.33288 0.088269 0.34439
	B	GM -1.01196 0.14835	X	-0.24392	X	X	-0.40941 0.97950 0.27920 1.01852

Table 4 . 1 .

 41 Parameters used to simulate variability with the nonstationary stochastic method.

	Parameter	Fitted distribution	Distribution Bounds	Reference
	Phase (φ)	Uniform	[-π ; π]	
	Δσ (bars)	Uniform	Log([0;2])	Lay and Wallace (1995)
	β (km/s)	Fixed	3.6	
	Q 0 N	Uniform Uniform	[ 45 ; 140 ] [ 0.5 ; 0.9 ]	Oth et al. (2011)
	ln(AI) ln(D SR ) A and ln(B)	Normal	µ and σ results from GMPEs	

ACKNOWLEDGEMENTS

This work was funded by the CASHIMA project (ILL and CEA). We thank Fabrice Hollender (CEA) and Vérinique Caillot (ILL) for their support and useful suggestions. We are indebted to the National Research Institute for Earth Science and Disaster Prevention (NIED), Japan, for providing the data for this analysis and Hadi Ghasemi for providing the fault plane models. We have benefited from the experience of Adrian Rodriguez, Gonzalo Montalva, Sinan Akkar and Abdullah Sandikkaya regarding the regression procedure.